It's either "GNU *Library* General Public License version 2" or
"GNU Lesser General Public License version *2.1*", but there was
no "version 2.0" of the "Lesser" license. So assume that version
2.1 is meant here.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Message-Id: <1548769067-20792-1-git-send-email-thuth@redhat.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
The architecture specifies specification exceptions for all
unavailable subcodes.
The presence of subcodes is indicated by checking some query subcode.
For example 6 will indicate that 3-6 are available. So future systems
might call new subcodes to check for new features. This should not
trigger a hw error, instead we return the architectured specification
exception.
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Cc: qemu-stable@nongnu.org
Message-Id: <20190111113657.66195-3-frankja@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
When op raises an exception, it may not have initialized the output
temps that would be written back by wout or cout.
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Let's use the KVM_SET_DEVICE_ATTR ioctl to enable hardware
interpretation of AP instructions executed on the guest.
If the S390_FEAT_AP feature is switched on for the guest,
AP instructions must be interpreted by default; otherwise,
they will be intercepted.
This attribute setting may be overridden by a device. For example,
a device may want to provide AP instructions to the guest (i.e.,
S390_FEAT_AP turned on), but it may want to emulate them. In this
case, the AP instructions executed on the guest must be
intercepted; so when the device is realized, it must disable
interpretation.
Signed-off-by: Tony Krowiak <akrowiak@linux.ibm.com>
Tested-by: Pierre Morel <pmorel@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Halil Pasic <pasic@linux.ibm.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Message-Id: <20181010170309.12045-4-akrowiak@linux.ibm.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
A new CPU model feature and two new CPU model facilities are
introduced to support AP devices for a KVM guest.
CPU model features:
1. The S390_FEAT_AP CPU model feature indicates whether AP
instructions are available to the guest. This feature will
be enabled only if the AP instructions are available on the
linux host as determined by the availability of the
KVM_S390_VM_CRYPTO_ENABLE_APIE VM attribute which is exposed
by KVM only if the AP instructions are available on the
host.
This feature must be turned on from userspace to execute AP
instructions on the KVM guest. The QEMU command line to turn
this feature on looks something like this:
qemu-system-s390x ... -cpu xxx,ap=on ...
This feature will be supported for zEC12 and newer CPU models.
The feature will not be supported for older models because
there are few older systems on which to test and the older
crypto cards will be going out of service in the relatively
near future.
CPU model facilities:
1. The S390_FEAT_AP_QUERY_CONFIG_INFO feature indicates whether the
AP Query Configuration Information (QCI) facility is available
to the guest as determined by whether the facility is available
on the host. This feature will be exposed by KVM only if the
QCI facility is installed on the host.
2. The S390_FEAT_AP_FACILITY_TEST feature indicates whether the AP
Facility Test (APFT) facility is available to the guest as
determined by whether the facility is available on the host.
This feature will be exposed by KVM only if APFT is installed
on the host.
Signed-off-by: Tony Krowiak <akrowiak@linux.ibm.com>
Tested-by: Pierre Morel <pmorel@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Message-Id: <20181010170309.12045-3-akrowiak@linux.ibm.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Debug macros that are disabled by default should be avoided (since the
code bit-rots quite easily). Thus turn these debug prints into proper
qemu_log_mask(CPU_LOG_xxx, ...) statements instead. The DPRINTF statements
in do_[ext|io|mchk]_interrupt can even be removed completely since we can
log the information in a central place, s390_cpu_do_interrupt, instead.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <1538751601-7433-1-git-send-email-thuth@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
linux-user should always enable AFP, otherwise our emulated binary
might crash once it tries to make use of additional floating-point
registers or instructions.
Cc: Peter Maydell <peter.maydell@linaro.org>
Cc: Alex Bennée <alex.bennee@linaro.org>
Fixes: db0504154e ("s390x/tcg: check for AFP-register, BFP and DFP data exceptions")
Reported-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Tested-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
We can fit this nicely into less LOC, without harming readability.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180927130303.12236-10-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Valid register pairs are 0/2, 1/3, 4/6, 5/7, 8/10, 9/11, 12/14, 13/15.
R1/R2 always selects the lower number, so the current checks are not
correct as e.g. 2/4 could be selected as a pair.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180927130303.12236-9-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Let's check this also at a central place.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180927130303.12236-8-david@redhat.com>
Acked-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
With the annotated functions, we can now easily check this at a central
place.
DXC 1 is to be injected if an AFP register is used (for a HFP AND FPS
instruction) when AFP is disabled.
DXC 2 is to be injected if a BFP instruction is used when AFP is
disabled.
DXC 3 is to be injected if a DFP instruction is used when AFP is
disabled.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180927130303.12236-7-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
These flags allow us to later on detect if a DATA program interrupt
is to be injected, and which DXC (1,2,3) is to be used.
Interestingly, some support FP instructions are considered as HFP
instructions (I assume simply because they were available very early).
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180927130303.12236-6-david@redhat.com>
Acked-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Storing flags for instructions allows us to efficiently verify certain
properties at a central point. Examples might later be handling if
AFP is disabled in CR0, we are not in problem state, or if vector
instructions are disabled in CR0.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180927130303.12236-5-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
We exit the TB when changing the control registers, so just like PSW
bits, this should always be consistent for a TB.
Using the PSW bit semantic makes things a lot easier compared to
manually defining the spare, shifted bits.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180927130303.12236-4-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
The DXC is to be stored in the low core, and only in the FPC in case AFP
is enabled in CR0. Stub is not required in current code, but this way
we never run into problems.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180927130303.12236-3-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Move it into TCG-only code and provide a stub. Turn it into noreturn.
As Richard noted, we currently don't log the psw.addr before restoring
the state, fix that by moving (duplicating) the qemu_log_mask in the
tcg/kvm handlers.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180927130303.12236-2-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Both LPSW and LPSWE should raise a specification exception when their
operand is not doubleword aligned.
Signed-off-by: Pavel Zbitskiy <pavel.zbitskiy@gmail.com>
Message-Id: <20180902003322.3428-3-pavel.zbitskiy@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
As the kernel has no way of disallowing the start of a huge page
backed VM, we can migrate a running huge backed VM to a host that has
no huge page KVM support.
Let's glue huge page support support to the 3.1 machine, so we do not
migrate to a destination host that doesn't have QEMU huge page support
and can stop migration if KVM doesn't indicate support.
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Message-Id: <20180928093435.198573-1-frankja@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
In a few places translate.c contains non-breaking spaces (0xc2 0xa0)
instead of regular ones (0x20):
7c 7c c2 a0 63 63
7c 7c 20 63 63
| | c c
This confuses some text editors.
Signed-off-by: Pavel Zbitskiy <pavel.zbitskiy@gmail.com>
Message-Id: <20180822144039.5796-2-pavel.zbitskiy@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
PACK fails on the test from the Principles of Operation: F1F2F3F4
becomes 0000234C instead of 0001234C due to an off-by-one error.
Furthermore, it overwrites one extra byte to the left of F1.
If len_dest is 0, then we only want to flip the 1st byte and never loop
over the rest. Therefore, the loop condition should be > and not >=.
If len_src is 1, then we should flip the 1st byte and pack the 2nd.
Since len_src is already decremented before the loop, the first
condition should be >=, and not >.
Likewise for len_src == 2 and the second condition.
Signed-off-by: Pavel Zbitskiy <pavel.zbitskiy@gmail.com>
Message-Id: <20180821025104.19604-7-pavel.zbitskiy@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Improves "b213c9f5: target/s390x: Implement TRTR" by introducing the
intermediate functions, which are compatible with dx_helper type.
Signed-off-by: Pavel Zbitskiy <pavel.zbitskiy@gmail.com>
Message-Id: <20180821025104.19604-6-pavel.zbitskiy@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Suppose psw.mask=0x0000000080000000, cc=2, r1=0 and we do "ipm 1".
This command must touch only bits 32-39, so the expected output
is r1=0x20000000. However, currently qemu yields r1=0x20008000,
because irrelevant parts of PSW leak into r1 during program mask
transfer.
Signed-off-by: Pavel Zbitskiy <pavel.zbitskiy@gmail.com>
Message-Id: <20180821025104.19604-5-pavel.zbitskiy@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
CSST is defined as:
C(0xc802, CSST, SSF, CASS, la1, a2, 0, 0, csst, 0)
It means that the first parameter is handled by in1_la1().
in1_la1() fills addr1 field, and not in1.
Furthermore, when extract32() is used for the alignment check, the
third parameter should specify the number of trailing bits that must
be 0. For FC these numbers are:
FC=0 (word, 4 bytes): 2
FC=1 (double word, 8 bytes): 3
FC=2 (quad word, 16 bytes): 4
For SC these numbers correspond to the size:
SC=0: 0
SC=1: 1
SC=2: 2
SC=3: 3
SC=4: 4
Signed-off-by: Pavel Zbitskiy <pavel.zbitskiy@gmail.com>
Message-Id: <20180821025104.19604-4-pavel.zbitskiy@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
These instructions are provided for compatibility purposes and are
used only by old software, in the new code BAS and BASR are preferred.
The difference between the old and new instruction exists only in the
24-bit mode.
In addition, fix BAS polluting high 32 bits of the first operand in
24- and 31-bit addressing modes.
Signed-off-by: Pavel Zbitskiy <pavel.zbitskiy@gmail.com>
Message-Id: <20180821025104.19604-3-pavel.zbitskiy@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Iterating over the list without using atomics is undefined behaviour,
since the list can be modified concurrently by other threads (e.g.
every time a new thread is created in user-mode).
Fix it by implementing the CPU list as an RCU QTAILQ. This requires
a little bit of extra work to traverse list in reverse order (see
previous patch), but other than that the conversion is trivial.
Signed-off-by: Emilio G. Cota <cota@braap.org>
Message-Id: <20180819091335.22863-12-cota@braap.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
QEMU has had huge page support for a longer time already, but KVM
memory management under s390x needed some changes to work with huge
backings.
Now that we have support, let's enable it if requested and
available. Otherwise we now properly tell the user if there is no
support and back out instead of failing to run the VM later on.
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180802070201.257406-1-frankja@linux.ibm.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Provide the etoken facility. We need to handle cpu model, migration and
clear reset.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Janosch Frank <frankja@linux.ibm.com>
Message-Id: <20180731090448.36662-3-borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
The "max" CPU model behaves like "-cpu host" when KVM is enabled, and like
a CPU with the maximum possible feature set when TCG is enabled.
While the "host" model can not be used under TCG ("kvm_required"), the
"max" model can and "Enables all features supported by the accelerator in
the current host".
So we can treat "host" just as a special case of "max" (like x86 does).
It differs to the "qemu" CPU model under TCG such that compatibility
handling will not be performed and that some experimental CPU features
not yet part of the "qemu" model might be indicated.
These are right now under TCG (see "qemu_MAX"):
- stfle53
- msa5-base
- zpci
This will result right now in the following warning when starting QEMU TCG
with the "max" model:
"qemu-system-s390x: warning: 'msa5-base' requires 'kimd-sha-512'."
The "qemu" model (used as default in QEMU under TCG) will continue to
work without such warnings. The "max" model in the current form
might be interesting for kvm-unit-tests (where we would e.g. now also
test "msa5-base").
The "max" model is neither static nor migration safe (like the "host"
model). It is independent of the machine but dependends on the accelerator.
It can be used to detect the maximum CPU model also under TCG from upper
layers without having to care about CPU model names for CPU model
expansion.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180725091233.3300-1-david@redhat.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
[CH: minor wording changes]
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
This option has been deprecated for two releases; remove it.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Acked-by: Halil Pasic <pasic@linux.ibm.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
The enumeration type S390FeatGroup is now generated as well.
This shall simplify the definition of new feature groups
without the requirement to modify existing code.
Signed-off-by: Michael Mueller <mimu@linux.ibm.com>
Message-Id: <20180725143617.8731-1-mimu@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Usually, when baselining two CPU models, whereby one of them has base
CPU features disabled (e.g. z14-base,msa=off), we fallback to an older
model that did not have these features in the base model. We always try to
create a "sane" CPU model (as far as possible), and one part of it is that
removing base features is no good and to be avoided.
Now, if we disable base features that were part of a z900, we're out of
luck. We won't find a CPU model and QEMU will segfault. This is a
scenario that should never happen in real life, but it can be used to
crash QEMU.
So let's properly report an error if we baseline e.g.:
{ "execute": "query-cpu-model-baseline",
"arguments" : { "modela": { "name": "z14-base", "props": {"esan3" : false}},
"modelb": { "name": "z14"}} }
Instead of segfaulting.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180718092330.19465-1-david@redhat.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
tcg_s390_tod_updated() is always called with the iothread being locked
(e.g. from S390TODClass->set() e.g. via HELPER(sck) or on incoming
migration). The helper we call takes the lock itself - bad.
Let's change that by factoring out updating the ckc timer. This now looks
much nicer than having to call a helper from another function.
While touching it we also make sure that env->ckc is updated even if the
new value is -1ULL, for now it would not have been modified in that case.
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180629170520.13671-1-david@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Let's do this for completeness reason, although we don't support e.g.
PCDIMM/NVDIMM, which would use the alignment for placing the memory
region in guest physical memory. But maybe someday we would want to
support something like this - then we don't forget about this if
allowing multiple allocations in legacy_s390_alloc().
Use the same alignment as we would set in qemu_anon_ram_alloc(). Our
fixed address satisfies this alignment (1MB). This implicitly sets the
alignment of the underlying memory region.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180628113817.30814-3-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
We always allocate at a fixed address, a second allocation can therefore
of course never work. We would simply overwrite mappings.
This can e.g. happen in s390_memory_init(), if trying to allocate more
than > 8TB. Let's just bail out, as there is no need for supporting it
(legacy handling for z/VM).
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180628113817.30814-2-david@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
run_on_cpu() doesn't seem to work reliably until the CPU has been fully
created if the single-threaded TCG main loop is already running.
Therefore, hotplugging a CPU under single-threaded TCG does currently
not work. We should use the direct call instead of going via
run_on_cpu().
So let's use run_on_cpu() for KVM only - KVM requires it due to the initial
CPU reset ioctl. As a nice side effect, we get rid of the ifdef.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-10-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
If the CPU data is migrated after the TOD clock, the CKC timer of a CPU
is not rearmed. Let's rearm it when loading the CPU state.
Introduce tcg-stub.c just like kvm-stub.c for tcg specific stubs.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-9-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
This allows a guest to change its TOD. We already take care of updating
all CKC timers from within S390TODClass.
Use MO_ALIGN to load the operand manually - this will properly trigger a
SPECIFICATION exception.
Acked-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-8-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Let's stop the timer and delete any pending CKC IRQ before doing
anything else.
While at it, add a comment why the check for ckc == -1ULL is needed.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-7-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Right now, each CPU has its own TOD. Especially, the TOD will differ
based on creation time of a CPU - e.g. when hotplugging a CPU the times
will differ quite a lot, resulting in stall warnings in the guest.
Let's use a single TOD by implementing our new TOD device. Prepare it
for TOD-clock epoch extension.
Most importantly, whenever we set the TOD, we have to update the CKC
timer.
Introduce "tcg_s390x.h" just like "kvm_s390x.h" for tcg specific
function declarations that should not go into cpu.h.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-6-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Never set to anything but 0.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-5-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Let's treat this like a separate device. TCG will have to store the
actual state/time later on.
Include cpu-qom.h in kvm_s390x.h (due to S390CPU) to compile tod-kvm.c.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-4-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
We are going to factor out the TOD into a separate device and use const
pointers for device class functions where possible. We are passing right
now ordinary pointers that should never be touched when setting the TOD.
Let's just pass the values directly.
Note that s390_set_clock() will be removed in a follow-on patch and
therefore its calling convention is not changed.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-3-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Big values for the TOD/ns clock can result in some overflows that can be
avoided. Not all overflows can be handled however, as the conversion either
multiplies by 4.096 or divided by 4.096.
Apply the trick used in the Linux kernel in arch/s390/include/asm/timex.h
for tod_to_ns() and use the same trick also for the conversion in the
other direction.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180627134410.4901-2-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Most systems and host kernels provide the necessary building blocks for
bpb and ppa15. We can reverse the logic and default enable those
features, while still allowing to disable it via cpu model.
So let us add bpb and ppa15 to z196 and later default CPU model for the
qemu 3.0 machine. (like -cpu z13). Older machine types (e.g.
s390-ccw-virtio-2.12) will retain the old value and not provide those
bits in the default model.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Message-Id: <20180626123830.18282-1-borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Determining the size of a field is useful when you don't have a struct
variable handy. Open-coding this is ugly.
This patch adds the sizeof_field() macro, which is similar to
typeof_field(). Existing instances are updated to use the macro.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Message-id: 20180614164431.29305-1-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Introduce the new z14 Model ZR1 cpu model. Mostly identical to z14, only
the cpu type differs (3906 vs. 3907)
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Message-Id: <20180613081819.147178-1-borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>