In my "build everything" tree, changing migration/vmstate.h triggers a
recompile of some 2700 out of 6600 objects (not counting tests and
objects that don't depend on qemu/osdep.h).
hw/hw.h supposedly includes it for convenience. Several other headers
include it just to get VMStateDescription. The previous commit made
that unnecessary.
Include migration/vmstate.h only where it's still needed. Touching it
now recompiles only some 1600 objects.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-16-armbru@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Leading underscores are ill-advised because such identifiers are
reserved. Trailing underscores are merely ugly. Strip both.
Our header guards commonly end in _H. Normalize the exceptions.
Done with scripts/clean-header-guards.pl.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190315145123.28030-7-armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
[Changes to slirp/ dropped, as we're about to spin it off]
The qemu coding standard is to use CamelCase for type and structure names,
and the pseries code follows that... sort of. There are quite a lot of
places where we bend the rules in order to preserve the capitalization of
internal acronyms like "PHB", "TCE", "DIMM" and most commonly "sPAPR".
That was a bad idea - it frequently leads to names ending up with hard to
read clusters of capital letters, and means they don't catch the eye as
type identifiers, which is kind of the point of the CamelCase convention in
the first place.
In short, keeping type identifiers look like CamelCase is more important
than preserving standard capitalization of internal "words". So, this
patch renames a heap of spapr internal type names to a more standard
CamelCase.
In addition to case changes, we also make some other identifier renames:
VIOsPAPR* -> SpaprVio*
The reverse word ordering was only ever used to mitigate the capital
cluster, so revert to the natural ordering.
VIOsPAPRVTYDevice -> SpaprVioVty
VIOsPAPRVLANDevice -> SpaprVioVlan
Brevity, since the "Device" didn't add useful information
sPAPRDRConnector -> SpaprDrc
sPAPRDRConnectorClass -> SpaprDrcClass
Brevity, and makes it clearer this is the same thing as a "DRC"
mentioned in many other places in the code
This is 100% a mechanical search-and-replace patch. It will, however,
conflict with essentially any and all outstanding patches touching the
spapr code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The new property ibm,dynamic-memory-v2 allows memory to be represented
in a more compact manner in device tree.
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
On POWER9, the Client Architecture Support (CAS) negotiation process
determines whether the guest operates in XIVE Legacy compatibility or
in XIVE exploitation mode. Now that we have initial guest support for
the XIVE interrupt controller, let's fix the bits definition which have
evolved in the latest specs.
The platform advertises the XIVE Exploitation Mode support using the
property "ibm,arch-vec-5-platform-support-vec-5", byte 23 bits 0-1 :
- 0b00 XIVE legacy mode Only
- 0b01 XIVE exploitation mode Only
- 0b10 XIVE legacy or exploitation mode
The OS asks for XIVE Exploitation Mode support using the property
"ibm,architecture-vec-5", byte 23 bits 0-1:
- 0b00 XIVE legacy mode Only
- 0b01 XIVE exploitation mode Only
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We've now implemented a PAPR extension allowing PAPR guest to resize
their hash page table (HPT) during runtime.
This patch makes use of that facility to allocate smaller HPTs by default.
Specifically when a guest is aware of the HPT resize facility, qemu sizes
the HPT to the initial memory size, rather than the maximum memory size on
the assumption that the guest will resize its HPT if necessary for hot
plugged memory.
When the initial memory size is much smaller than the maximum memory size
(a common configuration with e.g. oVirt / RHEV) then this can save
significant memory on the HPT.
If the guest does *not* advertise HPT resize awareness when it makes the
ibm,client-architecture-support call, qemu resizes the HPT for maxmimum
memory size (unless it's been configured not to allow such guests at all).
For now we make that reallocation assuming the guest has not yet used the
HPT at all. That's true in practice, but not, strictly, an architectural
or PAPR requirement. If we need to in future we can fix this by having
the client-architecture-support call reboot the guest with the revised
HPT size (the client-architecture-support call is explicitly permitted to
trigger a reboot in this way).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
On POWER9, the Client Architecture Support (CAS) negotiation process
determines whether the guest operates in XIVE Legacy compatibility
(the former POWER8 interrupt model) or in XIVE exploitation mode (the
newer POWER9 interrupt model).
Bit 7 of Byte 23 of vector 5 is used for this purpose.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
For a little while around 4.9, Linux kernels that saw the radix bit in
ibm,pa-features would attempt to set up the MMU as if they were a
hypervisor, even if they were a guest, which would cause them to
crash.
Work around this by detecting pre-ISA 3.0 guests by their lack of that
bit in option vector 1, and then removing the radix bit from
ibm,pa-features. Note: This now requires regeneration of that node
after CAS negotiation.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add the new node, /chosen/ibm,arch-vec-5-platform-support to the
device tree. This allows the guest to determine which modes are
supported by the hypervisor.
Update the option vector processing in h_client_architecture_support()
to handle the new MMU bits. This allows guests to request hash or
radix mode and QEMU to create the guest's HPT at this time if it is
necessary but hasn't yet been done. QEMU will terminate the guest if
it requests an unavailable mode, as required by the architecture.
Extend the ibm,pa-features node with the new ISA 3.0 values
and set the radix bit if KVM supports radix mode. This probably won't
be used directly by guests to determine the availability of radix mode
(that is indicated by the new node added above) but the architecture
requires that it be set when the hardware supports it.
If QEMU is using KVM, and KVM is capable of running in radix mode,
guests can be run in real-mode without allocating a HPT (because KVM
will use a minimal RPT). So in this case, we avoid creating the HPT
at reset time and later (during CAS) create it if it is necessary.
ISA 3.0 guests will now begin to call h_register_process_table(),
which has been added previously.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
[dwg: Strip some unneeded prefix from error messages]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
With the additional of the OV5_HP_EVT option vector, we now have
certain functionality (namely, memory unplug) that checks at run-time
for whether or not the guest negotiated the option via CAS. Because
we don't currently migrate these negotiated values, we are unable
to unplug memory from a guest after it's been migrated until after
the guest is rebooted and CAS-negotiation is repeated.
This patch fixes this by adding CAS-negotiated options to the
migration stream. We do this using a subsection, since the
negotiated value of OV5_HP_EVT is the only option currently needed
to maintain proper functionality for a running guest.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Hotplug events were previously delivered using an EPOW interrupt
and were queued by linux guests into a circular buffer. For traditional
EPOW events like shutdown/resets, this isn't an issue, but for hotplug
events there are cases where this buffer can be exhausted, resulting
in the loss of hotplug events, resets, etc.
Newer-style hotplug event are delivered using a dedicated event source.
We enable this in supported guests by adding standard an additional
event source in the guest device-tree via /event-sources, and, if
the guest advertises support for the newer-style hotplug events,
using the corresponding interrupt to signal the available of
hotplug/unplug events.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
ibm,architecture-vec-5 is supposed to encode all option vector 5 bits
negotiated between platform/guest. Currently we hardcode this property
in the boot-time device tree to advertise a single negotiated
capability, "Form 1" NUMA Affinity, regardless of whether or not CAS
has been invoked or that capability has actually been negotiated.
Improve this by generating ibm,architecture-vec-5 based on the full
set of option vector 5 capabilities negotiated via CAS.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Currently we access individual bytes of an option vector via
ldub_phys() to test for the presence of a particular capability
within that byte. Currently this is only done for the "dynamic
reconfiguration memory" capability bit. If that bit is present,
we pass a boolean value to spapr_h_cas_compose_response()
to generate a modified device tree segment with the additional
properties required to enable this functionality.
As more capability bits are added, will would need to modify the
code to add additional option vector accesses and extend the
param list for spapr_h_cas_compose_response() to include similar
boolean values for these parameters.
Avoid this by switching to spapr_ovec_* helpers so we can do all
the parsing in one shot and then test for these additional bits
within spapr_h_cas_compose_response() directly.
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
PAPR guests advertise their capabilities to the platform by passing
an ibm,architecture-vec structure via an
ibm,client-architecture-support hcall as described by LoPAPR v11,
B.6.2.3. during early boot.
Using this information, the platform enables the capabilities it
supports, then encodes a subset of those enabled capabilities (the
5th option vector of the ibm,architecture-vec structure passed to
ibm,client-architecture-support) into the guest device tree via
"/chosen/ibm,architecture-vec-5".
The logical format of these these option vectors is a bit-vector,
where individual bits are addressed/documented based on the byte-wise
offset from the beginning of the bit-vector, followed by the bit-wise
index starting from the byte-wise offset. Thus the bits of each of
these bytes are stored in reverse order. Additionally, the first
byte of each option vector is encodes the length of the option vector,
so byte offsets begin at 1, and bit offset at 0.
This is not very intuitive for the purposes of mapping these bits to
a particular documented capability, so this patch introduces a set
of abstractions that encapsulate the work of parsing/encoding these
options vectors and testing for individual capabilities.
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
[dwg: Tweaked double-include protection to not trigger a checkpatch
false positive]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>