CXL host bridges themselves may have MMIO. Since host bridges don't have
a BAR they are treated as special for MMIO. This patch includes
i386/pc support.
Also hook up the device reset now that we have have the MMIO
space in which the results are visible.
Note that we duplicate the PCI express case for the aml_build but
the implementations will diverge when the CXL specific _OSC is
introduced.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Co-developed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-24-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Implement get and set handlers for the Label Storage Area
used to hold data describing persistent memory configuration
so that it can be ensured it is seen in the same configuration
after reboot.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20220429144110.25167-22-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This should introduce no change. Subsequent work will make use of this
new class member.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20220429144110.25167-21-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
A CXL memory device (AKA Type 3) is a CXL component that contains some
combination of volatile and persistent memory. It also implements the
previously defined mailbox interface as well as the memory device
firmware interface.
Although the memory device is configured like a normal PCIe device, the
memory traffic is on an entirely separate bus conceptually (using the
same physical wires as PCIe, but different protocol).
Once the CXL topology is fully configure and address decoders committed,
the guest physical address for the memory device is part of a larger
window which is owned by the platform. The creation of these windows
is later in this series.
The following example will create a 256M device in a 512M window:
-object "memory-backend-file,id=cxl-mem1,share,mem-path=cxl-type3,size=512M"
-device "cxl-type3,bus=rp0,memdev=cxl-mem1,id=cxl-pmem0"
Note: Dropped PCDIMM info interfaces for now. They can be added if
appropriate at a later date.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20220429144110.25167-18-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This works like adding a typical pxb device, except the name is
'pxb-cxl' instead of 'pxb-pcie'. An example command line would be as
follows:
-device pxb-cxl,id=cxl.0,bus="pcie.0",bus_nr=1
A CXL PXB is backward compatible with PCIe. What this means in practice
is that an operating system that is unaware of CXL should still be able
to enumerate this topology as if it were PCIe.
One can create multiple CXL PXB host bridges, but a host bridge can only
be connected to the main root bus. Host bridges cannot appear elsewhere
in the topology.
Note that as of this patch, the ACPI tables needed for the host bridge
(specifically, an ACPI object in _SB named ACPI0016 and the CEDT) aren't
created. So while this patch internally creates it, it cannot be
properly used by an operating system or other system software.
Also necessary is to add an exception to scripts/device-crash-test
similar to that for exiting pxb as both must created on a PCIexpress
host bus.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan.Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-15-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
There are going to be some potential overheads to CXL enablement,
for example the host bridge region reserved in memory maps.
Add a machine level control so that CXL is disabled by default.
Signed-off-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-14-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
The easiest way to differentiate a CXL bus, and a PCIE bus is using a
flag. A CXL bus, in hardware, is backward compatible with PCIE, and
therefore the code tries pretty hard to keep them in sync as much as
possible.
The other way to implement this would be to try to cast the bus to the
correct type. This is less code and useful for debugging via simply
looking at the flags.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-13-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Errata F4 to CXL 2.0 clarified the meaning of the timer as the
sum of the value set with the timestamp set command and the number
of nano seconds since it was last set.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-10-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Memory devices implement extra capabilities on top of CXL devices. This
adds support for that.
A large part of memory devices is the mailbox/command interface. All of
the mailbox handling is done in the mailbox-utils library. Longer term,
new CXL devices that are being emulated may want to handle commands
differently, and therefore would need a mechanism to opt in/out of the
specific generic handlers. As such, this is considered sufficient for
now, but may need more depth in the future.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-8-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This is the beginning of implementing mailbox support for CXL 2.0
devices. The implementation recognizes when the doorbell is rung,
handles the command/payload, clears the doorbell while returning error
codes and data.
Generally the mailbox mechanism is designed to permit communication
between the host OS and the firmware running on the device. For our
purposes, we emulate both the firmware, implemented primarily in
cxl-mailbox-utils.c, and the hardware.
No commands are implemented yet.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-7-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This implements all device MMIO up to the first capability. That
includes the CXL Device Capabilities Array Register, as well as all of
the CXL Device Capability Header Registers. The latter are filled in as
they are implemented in the following patches.
Endianness and alignment are managed by softmmu memory core.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-6-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
A CXL device is a type of CXL component. Conceptually, a CXL device
would be a leaf node in a CXL topology. From an emulation perspective,
CXL devices are the most complex and so the actual implementation is
reserved for discrete commits.
This new device type is specifically catered towards the eventual
implementation of a Type3 CXL.mem device, 8.2.8.5 in the CXL 2.0
specification.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Message-Id: <20220429144110.25167-5-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
A CXL 2.0 component is any entity in the CXL topology. All components
have a analogous function in PCIe. Except for the CXL host bridge, all
have a PCIe config space that is accessible via the common PCIe
mechanisms. CXL components are enumerated via DVSEC fields in the
extended PCIe header space. CXL components will minimally implement some
subset of CXL.mem and CXL.cache registers defined in 8.2.5 of the CXL
2.0 specification. Two headers and a utility library are introduced to
support the minimum functionality needed to enumerate components.
The cxl_pci header manages bits associated with PCI, specifically the
DVSEC and related fields. The cxl_component.h variant has data
structures and APIs that are useful for drivers implementing any of the
CXL 2.0 components. The library takes care of making use of the DVSEC
bits and the CXL.[mem|cache] registers. Per spec, the registers are
little endian.
None of the mechanisms required to enumerate a CXL capable hostbridge
are introduced at this point.
Note that the CXL.mem and CXL.cache registers used are always 4B wide.
It's possible in the future that this constraint will not hold.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Message-Id: <20220429144110.25167-3-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
A CXL component is a hardware entity that implements CXL component
registers from the CXL 2.0 spec (8.2.3). Currently these represent 3
general types.
1. Host Bridge
2. Ports (root, upstream, downstream)
3. Devices (memory, other)
A CXL component can be conceptually thought of as a PCIe device with
extra functionality when enumerated and enabled. For this reason, CXL
does here, and will continue to add on to existing PCI code paths.
Host bridges will typically need to be handled specially and so they can
implement this newly introduced interface or not. All other components
should implement this interface. Implementing this interface allows the
core PCI code to treat these devices as special where appropriate.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Message-Id: <20220429144110.25167-2-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Handle HostMemoryBackend creation and setting of ms->ram entirely in
machine_run_board_init.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220414165300.555321-5-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make -boot syntactic sugar for a compound property "-machine boot.{order,menu,...}".
machine_boot_parse is replaced by the setter for the property.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220414165300.555321-3-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As part of converting -boot to a property with a QAPI type, define
the struct and use it throughout QEMU to access boot configuration.
machine_boot_parse takes care of doing the QemuOpts->QAPI conversion by
hand, for now.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220414165300.555321-2-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
igd-passthrough-isa-bridge is only requested in xen_pt but was
implemented in pc_piix.c. This caused xen_pt to dependend on i386/pc
which is hereby resolved.
Signed-off-by: Bernhard Beschow <shentey@gmail.com>
Acked-by: Anthony PERARD <anthony.perard@citrix.com>
Message-Id: <20220326165825.30794-2-shentey@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cleaned up with scripts/clean-header-guards.pl.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20220506134911.2856099-5-armbru@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Leading underscores are ill-advised because such identifiers are
reserved. Trailing underscores are merely ugly. Strip both.
Our header guards commonly end in _H. Normalize the exceptions.
Macros should be ALL_CAPS. Normalize the exception.
Done with scripts/clean-header-guards.pl.
include/hw/xen/interface/ and tools/virtiofsd/ left alone, because
these were imported from Xen and libfuse respectively.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20220506134911.2856099-3-armbru@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Header guard symbols should match their file name to make guard
collisions less likely.
Cleaned up with scripts/clean-header-guards.pl, followed by some
renaming of new guard symbols picked by the script to better ones.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20220506134911.2856099-2-armbru@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
[Change to generated file ebpf/rss.bpf.skeleton.h backed out]
There is no longer a need to expose the request and related APIs in
virtio-scsi.h since there are no callers outside virtio-scsi.c.
Note the block comment in VirtIOSCSIReq has been adjusted to meet the
coding style.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20220427143541.119567-7-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
virtio_scsi_handle_cmd_vq() is only called from hw/scsi/virtio-scsi.c
now and its return value is no longer used. Remove the function
prototype from virtio-scsi.h and drop the return value.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20220427143541.119567-6-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
virtio_scsi_handle_ctrl_vq() is only called from hw/scsi/virtio-scsi.c
now and its return value is no longer used. Remove the function
prototype from virtio-scsi.h and drop the return value.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20220427143541.119567-5-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
virtio_scsi_handle_event_vq() is only called from hw/scsi/virtio-scsi.c
now and its return value is no longer used. Remove the function
prototype from virtio-scsi.h and drop the return value.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20220427143541.119567-4-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The virtio-scsi event virtqueue is not emptied by its handler function.
This is typical for rx virtqueues where the device uses buffers when
some event occurs (e.g. a packet is received, an error condition
happens, etc).
Polling non-empty virtqueues wastes CPU cycles. We are not waiting for
new buffers to become available, we are waiting for an event to occur,
so it's a misuse of CPU resources to poll for buffers.
Introduce the new virtio_queue_aio_attach_host_notifier_no_poll() API,
which is identical to virtio_queue_aio_attach_host_notifier() except
that it does not poll the virtqueue.
Before this patch the following command-line consumed 100% CPU in the
IOThread polling and calling virtio_scsi_handle_event():
$ qemu-system-x86_64 -M accel=kvm -m 1G -cpu host \
--object iothread,id=iothread0 \
--device virtio-scsi-pci,iothread=iothread0 \
--blockdev file,filename=test.img,aio=native,cache.direct=on,node-name=drive0 \
--device scsi-hd,drive=drive0
After this patch CPU is no longer wasted.
Reported-by: Nir Soffer <nsoffer@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Tested-by: Nir Soffer <nsoffer@redhat.com>
Message-id: 20220427143541.119567-3-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Move the LASI device implementation from hw/hppa to hw/misc so that it is
located with all the other miscellaneous devices.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Acked-by: Helge Deller <deller@gmx.de>
Message-Id: <20220504092600.10048-43-mark.cave-ayland@ilande.co.uk>
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Move the DINO device implementation from hw/hppa to hw/pci-host so that it is
located with all the other PCI host bridges.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Acked-by: Helge Deller <deller@gmx.de>
Message-Id: <20220504092600.10048-23-mark.cave-ayland@ilande.co.uk>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
The pcspk device is the only user of the init_isa function, and the only
-soundhw option which does not create a new device (it hacks into the
PCSpkState by hand). Remove it, since it was deprecated.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vhost-scsi and vhost-user-scsi are two devices of their own; it should
be possible to enable/disable them with --without-default-devices, not
--without-default-features. Compute their default value in Kconfig to
obtain the more intuitive behavior.
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename VFIOGuestIOMMU iommu field into iommu_mr. Then it becomes clearer
it is an IOMMU memory region.
no functional change intended
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Link: https://lore.kernel.org/r/20220502094223.36384-4-yi.l.liu@intel.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
When pulling or pushing an OS context from/to a CPU, we should
re-evaluate the state of the External interrupt signal. Otherwise, we
can end up catching the External interrupt exception in hypervisor
mode, which is unexpected.
The problem is best illustrated with the following scenario:
1. an External interrupt is raised while the guest is on the CPU.
2. before the guest can ack the External interrupt, an hypervisor
interrupt is raised, for example the Hypervisor Decrementer or
Hypervisor Virtualization interrupt. The hypervisor interrupt forces
the guest to exit while the External interrupt is still pending.
3. the hypervisor handles the hypervisor interrupt. At this point, the
External interrupt is still pending. So it's very likely to be
delivered while the hypervisor is running. That's unexpected and can
result in an infinite loop where the hypervisor catches the External
interrupt, looks for an interrupt in its hypervisor queue, doesn't
find any, exits the interrupt handler with the External interrupt
still raised, repeat...
The fix is simply to always lower the External interrupt signal when
pulling an OS context. It means it needs to be raised again when
re-pushing the OS context. Fortunately, it's already the case, as we
now always call xive_tctx_ipb_update(), which will raise the signal if
needed.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Frederic Barrat <fbarrat@linux.ibm.com>
Message-Id: <20220429071620.177142-3-fbarrat@linux.ibm.com>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Per ast1030_v7.pdf, AST1030 HACE engine is identical to AST2600's HACE
engine.
Signed-off-by: Steven Lee <steven_lee@aspeedtech.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The aspeed ast2600 accumulative mode is described in datasheet
ast2600v10.pdf section 25.6.4:
1. Allocating and initiating accumulative hash digest write buffer
with initial state.
* Since QEMU crypto/hash api doesn't provide the API to set initial
state of hash library, and the initial state is already set by
crypto library (gcrypt/glib/...), so skip this step.
2. Calculating accumulative hash digest.
(a) When receiving the last accumulative data, software need to add
padding message at the end of the accumulative data. Padding
message described in specific of MD5, SHA-1, SHA224, SHA256,
SHA512, SHA512/224, SHA512/256.
* Since the crypto library (gcrypt/glib) already pad the
padding message internally.
* This patch is to remove the padding message which fed byguest
machine driver.
Signed-off-by: Troy Lee <troy_lee@aspeedtech.com>
Signed-off-by: Steven Lee <steven_lee@aspeedtech.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220426021120.28255-3-steven_lee@aspeedtech.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Support HACE28: Hash HMAC Key Buffer Base Address Register.
Signed-off-by: Troy Lee <troy_lee@aspeedtech.com>
Signed-off-by: Steven Lee <steven_lee@aspeedtech.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220426021120.28255-2-steven_lee@aspeedtech.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The embedded core of AST1030 SoC is ARM Coretex M4.
It is hard to be integrated in the common Aspeed Soc framework.
We introduce a new ast1030 class with instance_init and realize
handlers.
Signed-off-by: Troy Lee <troy_lee@aspeedtech.com>
Signed-off-by: Jamin Lin <jamin_lin@aspeedtech.com>
Signed-off-by: Steven Lee <steven_lee@aspeedtech.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
[ clg: rename aspeed_ast10xx.c to aspeed_ast10x0.c to match zephyr ]
Message-Id: <20220401083850.15266-8-jamin_lin@aspeedtech.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Per ast1030_v07.pdf, AST1030 SOC doesn't have SCU300, the pclk divider
selection is defined in SCU310[11:8].
Add a get_apb_freq function and a class init handler for ast1030.
Signed-off-by: Troy Lee <troy_lee@aspeedtech.com>
Signed-off-by: Jamin Lin <jamin_lin@aspeedtech.com>
Signed-off-by: Steven Lee <steven_lee@aspeedtech.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220401083850.15266-7-jamin_lin@aspeedtech.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
ast1030 tmc(timer controller) is identical to ast2600 tmc.
Signed-off-by: Troy Lee <troy_lee@aspeedtech.com>
Signed-off-by: Jamin Lin <jamin_lin@aspeedtech.com>
Signed-off-by: Steven Lee <steven_lee@aspeedtech.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220401083850.15266-6-jamin_lin@aspeedtech.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
AST1030 wdt controller is similiar to AST2600's wdt, but it has extra
registers.
Introduce ast1030 object class and increse the number of regs(offset) of
ast1030 model.
Signed-off-by: Troy Lee <troy_lee@aspeedtech.com>
Signed-off-by: Jamin Lin <jamin_lin@aspeedtech.com>
Signed-off-by: Steven Lee <steven_lee@aspeedtech.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220401083850.15266-5-jamin_lin@aspeedtech.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Per ast2500_2520_datasheet_v1.8 and ast2600v11.pdf, the default value of
WDT00 and WDT04 is 0x014FB180 for ast2500/ast2600.
Add default_status and default_reload_value attributes for storing
counter status and reload value as they are different from ast2400.
Signed-off-by: Troy Lee <troy_lee@aspeedtech.com>
Signed-off-by: Jamin Lin <jamin_lin@aspeedtech.com>
Signed-off-by: Steven Lee <steven_lee@aspeedtech.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220401083850.15266-4-jamin_lin@aspeedtech.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Per ast1030_v7.pdf, AST1030 ADC engine is identical to AST2600's ADC.
Signed-off-by: Troy Lee <troy_lee@aspeedtech.com>
Signed-off-by: Jamin Lin <jamin_lin@aspeedtech.com>
Signed-off-by: Steven Lee <steven_lee@aspeedtech.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220401083850.15266-2-jamin_lin@aspeedtech.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Guest code (u-boot) pokes at this on boot. No functionality is required
for guest code to work correctly, but it helps to document the region
being read from.
Signed-off-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220318092211.723938-1-joel@jms.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
AST2600 clkin is always 25MHz, introduce clkin_25Mhz attribute
for aspeed_scu_get_clkin() to return the correct clkin for ast2600.
Signed-off-by: Steven Lee <steven_lee@aspeedtech.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220315075753.8591-3-steven_lee@aspeedtech.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
AST2600's HPLL register offset and bit definition are different from
AST2500. Add a hpll calculation function and an apb frequency calculation
function based on SCU200 register description in ast2600v11.pdf.
Signed-off-by: Steven Lee <steven_lee@aspeedtech.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
[ clg: checkpatch fixes ]
Message-Id: <20220315075753.8591-2-steven_lee@aspeedtech.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Create a platform bus to allow dynamic devices to be connected. This is
based on the ARM implementation.
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@amd.com>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Message-Id: <20220427234146.1130752-4-alistair.francis@opensource.wdc.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
The ARM virt machine currently uses sysbus-fdt to create device tree
entries for dynamically created MMIO devices.
The RISC-V virt machine can also benefit from this, so move the code to
the core directory.
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@amd.com>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Message-Id: <20220427234146.1130752-3-alistair.francis@opensource.wdc.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Move the binary and device tree loading code to the machine done
notifier. This allows us to prepare for editing the device tree as part
of the notifier.
This is based on similar code in the ARM virt machine.
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@amd.com>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Message-Id: <20220427234146.1130752-2-alistair.francis@opensource.wdc.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
The Record bit in the Context Descriptor tells the SMMU to report fault
events to the event queue. Since we don't cache the Record bit at the
moment, access faults from a cached Context Descriptor are never
reported. Store the Record bit in the cached SMMUTransCfg.
Fixes: 9bde7f0674 ("hw/arm/smmuv3: Implement translate callback")
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Message-id: 20220427111543.124620-1-jean-philippe@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>