When a virtual-device tries to access some buffer in memory over DMA, we
add call-backs into the fuzzer(next commit). The fuzzer checks verifies
that the DMA request maps to a physical RAM address and fills the memory
with fuzzer-provided data. The patterns that we use to fill this memory
are specified using add_dma_pattern and clear_dma_patterns operations.
Signed-off-by: Alexander Bulekov <alxndr@bu.edu>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Message-Id: <20201023150746.107063-5-alxndr@bu.edu>
[thuth: Reformatted one comment according to the QEMU coding style]
Signed-off-by: Thomas Huth <thuth@redhat.com>
This patch compares TYPE_PCI_DEVICE objects against the user-provided
matching pattern. If there is a match, we use some hacks and leverage
QOS to map each possible BAR for that device. Now fuzzed inputs might be
converted to pci_read/write commands which target specific. This means
that we can fuzz a particular device's PCI configuration space,
Signed-off-by: Alexander Bulekov <alxndr@bu.edu>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Message-Id: <20201023150746.107063-4-alxndr@bu.edu>
Signed-off-by: Thomas Huth <thuth@redhat.com>
This is a generic fuzzer designed to fuzz a virtual device's
MemoryRegions, as long as they exist within the Memory or Port IO (if it
exists) AddressSpaces. The fuzzer's input is interpreted into a sequence
of qtest commands (outb, readw, etc). The interpreted commands are
separated by a magic seaparator, which should be easy for the fuzzer to
guess. Without ASan, the separator can be specified as a "dictionary
value" using the -dict argument (see libFuzzer documentation).
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Alexander Bulekov <alxndr@bu.edu>
Message-Id: <20201023150746.107063-3-alxndr@bu.edu>
Signed-off-by: Thomas Huth <thuth@redhat.com>