Each POWER9 processor chip has a XIVE presenter that can generate four
different exceptions to its threads:
- hypervisor exception,
- O/S exception
- Event-Based Branch (EBB)
- msgsnd (doorbell).
Each exception has a state independent from the others called a Thread
Interrupt Management context. This context is a set of registers which
lets the thread handle priority management and interrupt acknowledgment
among other things. The most important ones being :
- Interrupt Priority Register (PIPR)
- Interrupt Pending Buffer (IPB)
- Current Processor Priority (CPPR)
- Notification Source Register (NSR)
These registers are accessible through a specific MMIO region, called
the Thread Interrupt Management Area (TIMA), four aligned pages, each
exposing a different view of the registers. First page (page address
ending in 0b00) gives access to the entire context and is reserved for
the ring 0 view for the physical thread context. The second (page
address ending in 0b01) is for the hypervisor, ring 1 view. The third
(page address ending in 0b10) is for the operating system, ring 2
view. The fourth (page address ending in 0b11) is for user level, ring
3 view.
The thread interrupt context is modeled with a XiveTCTX object
containing the values of the different exception registers. The TIMA
region is mapped at the same address for each CPU.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The Event Notification Descriptor (END) XIVE structure also contains
two Event State Buffers providing further coalescing of interrupts,
one for the notification event (ESn) and one for the escalation events
(ESe). A MMIO page is assigned for each to control the EOI through
loads only. Stores are not allowed.
The END ESBs are modeled through an object resembling the 'XiveSource'
It is stateless as the END state bits are backed into the XiveEND
structure under the XiveRouter and the MMIO accesses follow the same
rules as for the XiveSource ESBs.
END ESBs are not supported by the Linux drivers neither on OPAL nor on
sPAPR. Nevetherless, it provides a mean to study the question in the
future and validates a bit more the XIVE model.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fold in a later fix for field access]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The XIVE sPAPR IRQ backend will use it to define the number of ENDs of
the IC controller.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Initialize the MSI bitmap from it as this will be necessary for the
sPAPR IRQ backend for XIVE.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
To complete the event routing, the IVRE sub-engine uses a second table
containing Event Notification Descriptor (END) structures.
An END specifies on which Event Queue (EQ) the event notification
data, defined in the associated EAS, should be posted when an
exception occurs. It also defines which Notification Virtual Target
(NVT) should be notified.
The Event Queue is a memory page provided by the O/S defining a
circular buffer, one per server and priority couple, containing Event
Queue entries. These are 4 bytes long, the first bit being a
'generation' bit and the 31 following bits the END Data field. They
are pulled by the O/S when the exception occurs.
The END Data field is a way to set an invariant logical event source
number for an IRQ. On sPAPR machines, it is set with the
H_INT_SET_SOURCE_CONFIG hcall when the EISN flag is used.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fold in a later fix from Cédric fixing field accessors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The XiveRouter models the second sub-engine of the XIVE architecture :
the Interrupt Virtualization Routing Engine (IVRE).
The IVRE handles event notifications of the IVSE and performs the
interrupt routing process. For this purpose, it uses a set of tables
stored in system memory, the first of which being the Event Assignment
Structure (EAS) table.
The EAT associates an interrupt source number with an Event Notification
Descriptor (END) which will be used in a second phase of the routing
process to identify a Notification Virtual Target.
The XiveRouter is an abstract class which needs to be inherited from
to define a storage for the EAT, and other upcoming tables.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Folded in parts of a later fix by Cédric fixing field access]
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The XiveNotifier offers a simple interface, between the XiveSource
object and the main interrupt controller of the machine. It will
forward event notifications to the XIVE Interrupt Virtualization
Routing Engine (IVRE).
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Adjust type name string for XiveNotifier]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The 'sent' status of the LSI interrupt source is modeled with the 'P'
bit of the ESB and the assertion status of the source is maintained
with an extra bit under the main XiveSource object. The type of the
source is stored in the same array for practical reasons.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix style nit]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The first sub-engine of the overall XIVE architecture is the Interrupt
Virtualization Source Engine (IVSE). An IVSE can be integrated into
another logic, like in a PCI PHB or in the main interrupt controller
to manage IPIs.
Each IVSE instance is associated with an Event State Buffer (ESB) that
contains a two bit state entry for each possible event source. When an
event is signaled to the IVSE, by MMIO or some other means, the
associated interrupt state bits are fetched from the ESB and
modified. Depending on the resulting ESB state, the event is forwarded
to the IVRE sub-engine of the controller doing the routing.
Each supported ESB entry is associated with either a single or a
even/odd pair of pages which provides commands to manage the source:
to EOI, to turn off the source for instance.
On a sPAPR machine, the O/S will obtain the page address of the ESB
entry associated with a source and its characteristic using the
H_INT_GET_SOURCE_INFO hcall. On PowerNV, a similar OPAL call is used.
The xive_source_notify() routine is in charge forwarding the source
event notification to the routing engine. It will be filled later on.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The OpenPIC have 5 outputs per connected CPU. The machine init code hence
needs a bi-dimensional array (smp_cpu lines, 5 columns) to wire up the irqs
between the PIC and the CPUs.
The current code first allocates an array of smp_cpus pointers to qemu_irq
type, then it allocates another array of smp_cpus * 5 qemu_irq and fills the
first array with pointers to each line of the second array. This is rather
convoluted.
Simplify the logic by introducing a structured type that describes all the
OpenPIC outputs for a single CPU, ie, fixed size of 5 qemu_irq, and only
allocate a smp_cpu sized array of those.
This also allows to use g_new(T, n) instead of g_malloc(sizeof(T) * n)
as recommended in HACKING.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add the spapr cap SPAPR_CAP_NESTED_KVM_HV to be used to control the
availability of nested kvm-hv to the level 1 (L1) guest.
Assuming a hypervisor with support enabled an L1 guest can be allowed to
use the kvm-hv module (and thus run it's own kvm-hv guests) by setting:
-machine pseries,cap-nested-hv=true
or disabled with:
-machine pseries,cap-nested-hv=false
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The spapr-rng device is suboptimal when compared to virtio-rng, so
users might want to disable it in their builds. Thus let's introduce
a proper CONFIG switch to allow us to compile QEMU without this device.
The function spapr_rng_populate_dt is required for linking, so move it
to a different location.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The new layout using static IRQ number does not leave much space to
the dynamic MSI range, only 0x100 IRQ numbers. Increase the total
number of IRQS for newer machines and introduce a legacy XICS backend
for pre-3.1 machines to maintain compatibility.
For the old backend, provide a 'nr_msis' value covering the full IRQ
number space as it does not use the bitmap allocator to allocate MSI
interrupt numbers.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The number of MSI interrupts a sPAPR machine can allocate is in direct
relation with the number of interrupts of the sPAPRIrq backend. Define
statically this value at the sPAPRIrq class level and use it for the
"ibm,pe-total-#msi" property of the sPAPR PHB.
According to the PAPR specs, "ibm,pe-total-#msi" defines the maximum
number of MSIs that are available to the PE. We choose to advertise
the maximum number of MSIs that are available to the machine for
simplicity of the model and to avoid segmenting the MSI interrupt pool
which can be easily shared. If the pool limit is reached, it can be
extended dynamically.
Finally, remove XICS_IRQS_SPAPR which is now unused.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This proposal moves all the related IRQ routines of the sPAPR machine
behind a sPAPR IRQ backend interface 'spapr_irq' to prepare for future
changes. First of which will be to increase the size of the IRQ number
space, then, will follow a new backend for the POWER9 XIVE IRQ controller.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This proposal introduces a new IRQ number space layout using static
numbers for all devices, depending on a device index, and a bitmap
allocator for the MSI IRQ numbers which are negotiated by the guest at
runtime.
As the VIO device model does not have a device index but a "reg"
property, we introduce a formula to compute an IRQ number from a "reg"
value. It should minimize most of the collisions.
The previous layout is kept in pre-3.1 machines raising the
'legacy_irq_allocation' machine class flag.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The last user of the PowerPCCPU typedef in "hw/ppc/xics.h" vanished with
commit b1fd36c363. It isn't necessary to
include "target/ppc/cpu-qom.h" there anymore.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Here's a last minue pull request before today's soft freeze. Ideally
I would have sent this earlier, but I was waiting for a couple of
extra fixes I knew were close. And the freeze crept up on me, like
always.
Most of the changes here are bugfixes in any case. There are some
cleanups as well, which have been in my staging tree for a little
while. There are a couple of truly new features (some extensions to
the sam460ex platform), but these are low risk, since they only affect
a new and not really stabilized machine type anyway.
Higlights are:
* Mac platform improvements from Mark Cave-Ayland
* Sam460ex improvements from BALATON Zoltan et al.
* XICS interrupt handler cleanups from Cédric Le Goater
* TCG improvements for atomic loads and stores from Richard
Henderson
* Assorted other bugfixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEdfRlhq5hpmzETofcbDjKyiDZs5IFAls7D8oACgkQbDjKyiDZ
s5Lxmg//YzPfC/nKqTTKkyJPzh/NnSC+kRTMAT3mbxdRIc7yfgMqJtWGGbS1iKgK
EeJ9hl5Qm0HfscfDuzf0xasU62ZEv3kNdLnWJEIgkqiXrxoO5KCnC0y4D8NN1W03
mvINNCa8+QDg2OsirGmNUTkriiG3wLIrHTpLZ4+JuC2Bd9H3nTHZgJ0MXON/1VWY
oRgr6kMZ5+IAzPhvYLFR6l3nPI883fgJOFyRo7YqYrkVBKFrFkfK0Xjw6vpsNxcx
2dE/YCHhNIriLuBG5noewL7GuqZRtLnl6rjjee5VAKIe1EmFeR+jsXwNjzGOVOJg
dhjOtsJsQQ3WdEw5uImJzE64kV228WCgmkeXzZd1010JBLr7sUkrd2EuoZ23vvat
uvZAHVSBrJg5WvzMo1VMEoPU3VeeZQ5HL+MI80iKiU6oUgRK11gVJcebtA0sEKt+
zhJC4JiUlHtZLTGIpMBmU8DJZ3Tyk1cBEm+Ky+SaPE+dsz16UHI0fazFQXJnXphE
MLHEGAyQgzWYp7kIcAjUFev0Geq/Uovy4JKIGI6ISop1wRPEQDxkthfkfRyQxQkE
zuse4EBcEH/Undw9KrmEQa0hCe+8BRkxklVbPesFPPdqH3PKNxtHYuWpSShQF0PW
XMjw43O2Rbsl8kBUHCpy4pYSugD1hpfgaw/mVUOU1u/M1O6toTw=
=AHrx
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-3.0-20180703' into staging
ppc patch queue 2018-07-03
Here's a last minue pull request before today's soft freeze. Ideally
I would have sent this earlier, but I was waiting for a couple of
extra fixes I knew were close. And the freeze crept up on me, like
always.
Most of the changes here are bugfixes in any case. There are some
cleanups as well, which have been in my staging tree for a little
while. There are a couple of truly new features (some extensions to
the sam460ex platform), but these are low risk, since they only affect
a new and not really stabilized machine type anyway.
Higlights are:
* Mac platform improvements from Mark Cave-Ayland
* Sam460ex improvements from BALATON Zoltan et al.
* XICS interrupt handler cleanups from Cédric Le Goater
* TCG improvements for atomic loads and stores from Richard
Henderson
* Assorted other bugfixes
# gpg: Signature made Tue 03 Jul 2018 06:55:22 BST
# gpg: using RSA key 6C38CACA20D9B392
# gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>"
# gpg: aka "David Gibson (Red Hat) <dgibson@redhat.com>"
# gpg: aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>"
# gpg: aka "David Gibson (kernel.org) <dwg@kernel.org>"
# Primary key fingerprint: 75F4 6586 AE61 A66C C44E 87DC 6C38 CACA 20D9 B392
* remotes/dgibson/tags/ppc-for-3.0-20180703: (35 commits)
ppc: Include vga cirrus card into the compiling process
target/ppc: Relax reserved bitmask of indexed store instructions
target/ppc: set is_jmp on ppc_tr_breakpoint_check
spapr: compute default value of "hpt-max-page-size" later
target/ppc/kvm: don't pass cpu to kvm_get_smmu_info()
target/ppc/kvm: get rid of kvm_get_fallback_smmu_info()
ppc440_uc: Basic emulation of PPC440 DMA controller
sam460ex: Add RTC device
hw/timer: Add basic M41T80 emulation
ppc4xx_i2c: Rewrite to model hardware more closely
hw/ppc: Give sam46ex its own config option
fpu_helper.c: fix setting FPSCR[FI] bit
target/ppc: Implement the rest of gen_st_atomic
target/ppc: Implement the rest of gen_ld_atomic
target/ppc: Use atomic min/max helpers
target/ppc: Use MO_ALIGN for EXIWX and ECOWX
target/ppc: Split out gen_st_atomic
target/ppc: Split out gen_ld_atomic
target/ppc: Split out gen_load_locked
target/ppc: Tidy gen_conditional_store
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
# Conflicts:
# hw/ppc/spapr.c
Just like for the realize handlers, this makes possible to move the
common ICSState code of the reset handlers in the ics-base class.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This makes possible to move the common ICSState code of the realize
handlers in the ics-base class.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This changes the ICP realize and reset handlers in DeviceRealize and
DeviceReset handlers. parent handlers are now called from the
inheriting classes which is a cleaner object pattern.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
It eases code review, unit is explicit.
Patch generated using:
$ git grep -E '(1024|2048|4096|8192|(<<|>>).?(10|20|30))' hw/ include/hw/
and modified manually.
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20180625124238.25339-33-f4bug@amsat.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The way we used to handle KVM allowable guest pagesizes for PAPR guests
required some convoluted checking of memory attached to the guest.
The allowable pagesizes advertised to the guest cpus depended on the memory
which was attached at boot, but then we needed to ensure that any memory
later hotplugged didn't change which pagesizes were allowed.
Now that we have an explicit machine option to control the allowable
maximum pagesize we can simplify this. We just check all memory backends
against that declared pagesize. We check base and cold-plugged memory at
reset time, and hotplugged memory at pre_plug() time.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
The way the POWER Hash Page Table (HPT) MMU is virtualized by KVM HV means
that every page that the guest puts in the pagetables must be truly
physically contiguous, not just GPA-contiguous. In effect this means that
an HPT guest can't use any pagesizes greater than the host page size used
to back its memory.
At present we handle this by changing what we advertise to the guest based
on the backing pagesizes. This is pretty bad, because it means the guest
sees a different environment depending on what should be host configuration
details.
As a start on fixing this, we add a new capability parameter to the
pseries machine type which gives the maximum allowed pagesizes for an
HPT guest. For now we just create and validate the parameter without
making it do anything.
For backwards compatibility, on older machine types we set it to the max
available page size for the host. For the 3.0 machine type, we fix it to
16, the intention being to only allow HPT pagesizes up to 64kiB by default
in future.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
spapr_irq_alloc_block and spapr_irq_alloc() are now deprecated.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Today, when a device requests for IRQ number in a sPAPR machine, the
spapr_irq_alloc() routine first scans the ICSState status array to
find an empty slot and then performs the assignement of the selected
numbers. Split this sequence in two distinct routines : spapr_irq_find()
for lookups and spapr_irq_claim() for claiming the IRQ numbers.
This will ease the introduction of a static layout of IRQ numbers.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
spapr capabilities have an apply hook to actually activate (or deactivate)
the feature in the system at reset time. However, a number of capabilities
affect the setup of cpus, and need to be applied to each of them -
including hotplugged cpus for extra complication. To make this simpler,
add an optional cpu_apply hook that is called from spapr_cpu_reset().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Previously, the effective values of the various spapr capability flags
were only determined at machine reset time. That was a lazy way of making
sure it was after cpu initialization so it could use the cpu object to
inform the defaults.
But we've now improved the compat checking code so that we don't need to
instantiate the cpus to use it. That lets us move the resolution of the
capability defaults much earlier.
This is going to be necessary for some future capabilities.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
It introduces a base PnvChip class from which the specific processor
chip classes, Pnv8Chip and Pnv9Chip, inherit. Each of them needs to
define an init and a realize routine which will create the controllers
of the target processor. For the moment, the base PnvChip class
handles the XSCOM bus and the cores.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
A per-CPU machine data pointer was recently added to PowerPCCPU. The
motivation is to to hide platform specific details from the core CPU
code. This per-CPU data can hold state which is relevant to the guest
though, eg, Virtual Processor Areas, and we should migrate this state.
This patch adds the plumbing so that we can migrate the per-CPU data
for PAPR guests. We only do this for newer machine types for the sake
of backward compatibility. No state is migrated for the moment: the
vmstate_spapr_cpu_state structure will be populated by subsequent
patches.
Signed-off-by: Greg Kurz <groug@kaod.org>
[dwg: Fix some trivial spelling and spacing errors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This moves the details of the ISA bus creation under the LPC model but
more important, the new PnvChip operation will let us choose the chip
class to use when we introduce the different chip classes for Power9
and Power8. It hides away the processor chip controllers from the
machine.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
On Power9, the thread interrupt presenter has a different type and is
linked to the chip owning the cores.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
CPUPPCState currently contains a number of fields containing the state of
the VPA. The VPA is a PAPR specific concept covering several guest/host
shared memory areas used to communicate some information with the
hypervisor.
As a PAPR concept this is really machine specific information, although it
is per-cpu, so it doesn't really belong in the core CPU state structure.
There's also other information that's per-cpu, but platform/machine
specific. So create a (void *)machine_data in PowerPCCPU which can be
used by the machine to locate per-cpu data. Intialization, lifetime and
cleanup of machine_data is entirely up to the machine type.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Tested-by: Greg Kurz <groug@kaod.org>
Currently, we allocate space for all the cpu objects within a single core
in one big block. This was copied from an older version of the spapr code
and requires some ugly pointer manipulation to extract the individual
objects.
This design was due to a misunderstanding of qemu lifetime conventions and
has already been changed in spapr (in 94ad93bd "spapr_cpu_core: instantiate
CPUs separately".
Make an equivalent change in pnv_core to get rid of the nasty pointer
arithmetic.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
This option allows the VIA configuration to be controlled between 3
different possible setups: cuda, pmu-adb and pmu with USB rather than ADB
keyboard/mouse.
For the moment we don't do anything with the configuration except to pass
it to the macio device (the via-cuda parent) and also to the firmware via
the fw_cfg interface so that it can present the correct device tree.
The default is cuda which is the current default and so will have no
change in behaviour.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
A specific MemoryRegion is required for the LPC HC Firmware address
space.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is used in OpenBIOS to define the memory layout of the NVRAM device. Whilst
currently left at its default value, add the missing definition to ensure it is
reserved.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
There is no need to include pci.h in these files.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Let's make it clear at relevant places that we are dealing with device
memory. That it can be used for memory hotplug is just a special case.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180423165126.15441-11-david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
[ehabkost: rebased series, solved conflicts at spapr.c]
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Let's allow to query the MemoryHotplugState directly from the machine.
If the pointer is NULL, the machine does not support memory devices. If
the pointer is !NULL, the machine supports memory devices and the
data structure contains information about the applicable physical
guest address space region.
This allows us to generically detect if a certain machine has support
for memory devices, and to generically manage it (find free address
range, plug/unplug a memory region).
We will rename "MemoryHotplugState" to something more meaningful
("DeviceMemory") after we completed factoring out the pc-dimm code into
MemoryDevice code.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180423165126.15441-3-david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
[ehabkost: rebased series, solved conflicts at spapr.c]
[ehabkost: squashed fix to use g_malloc0()]
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Under PAPR, only the boot CPU is active when the system starts. Other cpus
must be explicitly activated using an RTAS call. The entry state for the
boot and secondary cpus isn't identical, but it has some things in common.
We're going to add a bit more common setup later, too, so to simplify
make a helper which sets up the common entry state for both boot and
secondary cpu threads.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
The new property ibm,dynamic-memory-v2 allows memory to be represented
in a more compact manner in device tree.
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
As a rule we prefer to pass PowerPCCPU instead of CPUPPCState, and this
change will make some things simpler later on.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Convert cap-ibs (indirect branch speculation) to a custom spapr-cap
type.
All tristate caps have now been converted to custom spapr-caps, so
remove the remaining support for them.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
[dwg: Don't explicitly list "?"/help option, trust convention]
[dwg: Fold tristate removal into here, to not break bisect]
[dwg: Fix minor style problems]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is to faciliate access to OpenPICState when wiring up the PIC to the macio
controller.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is needed before the next patch because the target-dependent kvm stub
uses the existing kvm_openpic_connect_vcpu() declaration, making it impossible
to move the device-specific declarations into the same file without breaking
ppc-linux-user compilation.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
In my "build everything" tree, a change to the types in
qapi-schema.json triggers a recompile of about 4800 out of 5100
objects.
The previous commit split up qmp-commands.h, qmp-event.h, qmp-visit.h,
qapi-types.h. Each of these headers still includes all its shards.
Reduce compile time by including just the shards we actually need.
To illustrate the benefits: adding a type to qapi/migration.json now
recompiles some 2300 instead of 4800 objects. The next commit will
improve it further.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20180211093607.27351-24-armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
[eblake: rebase to master]
Signed-off-by: Eric Blake <eblake@redhat.com>
The spapr_vcpu_id() function is an accessor actually. Let's rename it
for symmetry with the recently added spapr_set_vcpu_id() helper.
The motivation behind this is that a later patch will consolidate
the VCPU id formula in a function and spapr_vcpu_id looks like an
appropriate name.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The VCPU ids are currently computed and assigned to each individual
CPU threads in spapr_cpu_core_realize(). But the numbering logic
of VCPU ids is actually a machine-level concept, and many places
in hw/ppc/spapr.c also have to compute VCPU ids out of CPU indexes.
The current formula used in spapr_cpu_core_realize() is:
vcpu_id = (cc->core_id * spapr->vsmt / smp_threads) + i
where:
cc->core_id is a multiple of smp_threads
cpu_index = cc->core_id + i
0 <= i < smp_threads
So we have:
cpu_index % smp_threads == i
cc->core_id / smp_threads == cpu_index / smp_threads
hence:
vcpu_id =
(cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
This formula was used before VSMT at the time VCPU ids where computed
at the target emulation level. It has the advantage of being useable
to derive a VPCU id out of a CPU index only. It is fitted for all the
places where the machine code has to compute a VCPU id.
This patch introduces an accessor to set the VCPU id in a PowerPCCPU object
using the above formula. It is a first step to consolidate all the VCPU id
logic in a single place.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The new H-Call H_GET_CPU_CHARACTERISTICS is used by the guest to query
behaviours and available characteristics of the cpu.
Implement the handler for this new H-Call which formulates its response
based on the setting of the spapr_caps cap-cfpc, cap-sbbc and cap-ibs.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>