Now the kernel commit 05f0c03fbac1 ("vfio-pci: Allow to mmap
sub-page MMIO BARs if the mmio page is exclusive") allows VFIO
to mmap sub-page BARs. This is the corresponding QEMU patch.
With those patches applied, we could passthrough sub-page BARs
to guest, which can help to improve IO performance for some devices.
In this patch, we expand MemoryRegions of these sub-page
MMIO BARs to PAGE_SIZE in vfio_pci_write_config(), so that
the BARs could be passed to KVM ioctl KVM_SET_USER_MEMORY_REGION
with a valid size. The expanding size will be recovered when
the base address of sub-page BAR is changed and not page aligned
any more in guest. And we also set the priority of these BARs'
memory regions to zero in case of overlap with BARs which share
the same page with sub-page BARs in guest.
Signed-off-by: Yongji Xie <xyjxie@linux.vnet.ibm.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
When a PCI device is reset, pci_do_device_reset resets all BAR addresses
in the relevant PCIDevice's config buffer.
The VFIO configuration space stays untouched, so the guest OS may choose
to skip restoring the BAR addresses as they would seem intact. The PCI
device may be left non-operational.
One example of such a scenario is when the guest exits S3.
Fix this by resetting the BAR addresses in the VFIO configuration space
as well.
Signed-off-by: Ido Yariv <ido@wizery.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
When vfio device is reset(encounter FLR, or bus reset), if need to do
bus reset(vfio_pci_hot_reset_one is called), vfio_pci_pre_reset &
vfio_pci_post_reset will be called twice.
Signed-off-by: Cao jin <caoj.fnst@cn.fujitsu.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
In case the end-user calls qemu with -vfio-pci option without passing
either sysfsdev or host property value, the device is interpreted as
0000:00:00.0. Let's create a specific error message to guide the end-user.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
The returned value (either -errno or -1) is not used anymore by the caller,
vfio_realize, since the error now is stored in the error object. So let's
remove it.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
The returned value is not used anymore by the caller, vfio_realize,
since the error now is stored in the error object. So let's remove it.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
This patch converts VFIO PCI to realize function.
Also original initfn errors now are propagated using QEMU
error objects. All errors are formatted with the same pattern:
"vfio: %s: the error description"
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Pass an error object to prepare for migration to VFIO-PCI realize.
In vfio platform vfio_base_device_init we currently just report the
error. Subsequent patches will propagate the error up to the realize
function.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Pass an error object to prepare for migration to VFIO-PCI realize.
For the time being let's just simply report the error in
vfio platform's vfio_base_device_init(). A subsequent patch will
duly propagate the error up to vfio_platform_realize.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Pass an error object to prepare for migration to VFIO-PCI realize.
In vfio_probe_igd_bar4_quirk, simply report the error.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Pass an error object to prepare for migration to VFIO-PCI realize.
The error is cascaded downto vfio_add_std_cap and then vfio_msi(x)_setup,
vfio_setup_pcie_cap.
vfio_add_ext_cap does not return anything else than 0 so let's transform
it into a void function.
Also use pci_add_capability2 which takes an error object.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Pass an error object to prepare for migration to VFIO-PCI realize.
The error object is propagated down to vfio_intx_enable_kvm().
The three other callers, vfio_intx_enable_kvm(), vfio_msi_disable_common()
and vfio_pci_post_reset() do not propagate the error and simply call
error_reportf_err() with the ERR_PREFIX formatting.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Pass an error object to prepare for migration to VFIO-PCI realize.
The returned value will be removed later on.
We now format an error in case of reading failure for
- the MSIX flags
- the MSIX table,
- the MSIX PBA.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Pass an error object to prepare for migration to VFIO-PCI realize.
The returned value will be removed later on.
The case where error recovery cannot be enabled is not converted into
an error object but directly reported through error_report, as before.
Populating an error instead would cause the future realize function to
fail, which is not wanted.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Pass an error object to prepare for the same operation in
vfio_populate_device. Eventually this contributes to the migration
to VFIO-PCI realize.
We now report an error on vfio_get_region_info failure.
vfio_probe_igd_bar4_quirk is not involved in the migration to realize
and simply calls error_reportf_err.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
To prepare for migration to realize, let's use a local error
object in vfio_initfn. Also let's use the same error prefix for all
error messages.
On top of the 1-1 conversion, we start using a common error prefix for
all error messages. We also introduce a similar warning prefix which will
be used later on.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
d1f6af6 "kvm-irqchip: simplify kvm_irqchip_add_msi_route" was a cleanup
of kvmchip routing configuration, that was mostly intended for x86.
However, it also contains a subtle change in behaviour which breaks EEH[1]
error recovery on certain VFIO passthrough devices on spapr guests. So far
it's only been seen on a BCM5719 NIC on a POWER8 server, but there may be
other hardware with the same problem. It's also possible there could be
circumstances where it causes a bug on x86 as well, though I don't know of
any obvious candidates.
Prior to d1f6af6, both vfio_msix_vector_do_use() and
vfio_add_kvm_msi_virq() used msg == NULL as a special flag to mark this
as the "dummy" vector used to make the host hardware state sync with the
guest expected hardware state in terms of MSI configuration.
Specifically that flag caused vfio_add_kvm_msi_virq() to become a no-op,
meaning the dummy irq would always be delivered via qemu. d1f6af6 changed
vfio_add_kvm_msi_virq() so it takes a vector number instead of the msg
parameter, and determines the correct message itself. The test for !msg
was removed, and not replaced with anything there or in the caller.
With an spapr guest which has a VFIO device, if an EEH error occurs on the
host hardware, then the device will be isolated then reset. This is a
combination of host and guest action, mediated by some EEH related
hypercalls. I haven't fully traced the mechanics, but somehow installing
the kvm irqchip route for the dummy irq on the BCM5719 means that after EEH
reset and recovery, at least some irqs are no longer delivered to the
guest.
In particular, the guest never gets the link up event, and so the NIC is
effectively dead.
[1] EEH (Enhanced Error Handling) is an IBM POWER server specific PCI-*
error reporting and recovery mechanism. The concept is somewhat
similar to PCI-E AER, but the details are different.
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1373802
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Gavin Shan <gwshan@au1.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: qemu-stable@nongnu.org
Fixes: d1f6af6a17 ("kvm-irqchip: simplify kvm_irqchip_add_msi_route")
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
In the past, we are doing gsi route commit for each irqchip route
update. This is not efficient if we are updating lots of routes in the
same time. This patch removes the committing phase in
kvm_irqchip_update_msi_route(). Instead, we do explicit commit after all
routes updated.
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Changing the original MSIMessage parameter in kvm_irqchip_add_msi_route
into the vector number. Vector index provides more information than the
MSIMessage, we can retrieve the MSIMessage using the vector easily. This
will avoid fetching MSIMessage every time before adding MSI routes.
Meanwhile, the vector info will be used in the coming patches to further
enable gsi route update notifications.
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
QEMU supports ARI on downstream ports and assigned devices may support
ARI in their extended capabilities. The endpoint ARI capability
specifies the next function, such that the OS doesn't need to walk
each possible function, however this next function is relative to the
host, not the guest. This leads to device discovery issues when we
combine separate functions into virtual multi-function packages in a
guest. For example, SR-IOV VFs are not enumerated by simply probing
the function address space, therefore the ARI next-function field is
zero. When we combine multiple VFs together as a multi-function
device in the guest, the guest OS identifies ARI is enabled, relies on
this next-function field, and stops looking for additional function
after the first is found.
Long term we should expose the ARI capability to the guest to enable
configurations with more than 8 functions per slot, but this requires
additional QEMU PCI infrastructure to manage the next-function field
for multiple, otherwise independent devices. In the short term,
hiding this capability allows equivalent functionality to what we
currently have on non-express chipsets.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Marcel Apfelbaum <marcel@redhat.com>
msi_init() reports errors with error_report(), which is wrong
when it's used in realize().
Fix by converting it to Error.
Fix its callers to handle failure instead of ignoring it.
For those callers who don't handle the failure, it might happen:
when user want msi on, but he doesn't get what he want because of
msi_init fails silently.
cc: Gerd Hoffmann <kraxel@redhat.com>
cc: John Snow <jsnow@redhat.com>
cc: Dmitry Fleytman <dmitry@daynix.com>
cc: Jason Wang <jasowang@redhat.com>
cc: Michael S. Tsirkin <mst@redhat.com>
cc: Hannes Reinecke <hare@suse.de>
cc: Paolo Bonzini <pbonzini@redhat.com>
cc: Alex Williamson <alex.williamson@redhat.com>
cc: Markus Armbruster <armbru@redhat.com>
cc: Marcel Apfelbaum <marcel@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Cao jin <caoj.fnst@cn.fujitsu.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
The kernel currently exposes the SR-IOV capability as read-only
through vfio-pci. This is sufficient to protect the host kernel, but
has the potential to confuse guests without further virtualization.
In particular, OVMF tries to size the VF BARs and comes up with absurd
results, ending with an assert. There's not much point in adding
virtualization to a read-only capability, so we simply hide it for
now. If the kernel ever enables SR-IOV virtualization, we should
easily be able to test it through VF BAR sizing or explicit flags.
Testing whether we should parse extended capabilities is also pulled
into the function to keep these assumptions in one place.
Tested-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
For vfio pcie device, we could expose the extended capability on
PCIE bus. due to add a new pcie capability at the tail of the chain,
in order to avoid config space overwritten, we introduce a copy config
for parsing extended caps. and rebuild the pcie extended config space.
Signed-off-by: Chen Fan <chen.fan.fnst@cn.fujitsu.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
qemu/osdep.h checks whether MAP_ANONYMOUS is defined, but this check
is bogus without a previous inclusion of sys/mman.h. Include it in
sysemu/os-posix.h and remove it from everywhere else.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The IGD OpRegion is enabled automatically when running in legacy mode,
but it can sometimes be useful in universal passthrough mode as well.
Without an OpRegion, output spigots don't work, and even though Intel
doesn't officially support physical outputs in UPT mode, it's a
useful feature. Note that if an OpRegion is enabled but a monitor is
not connected, some graphics features will be disabled in the guest
versus a headless system without an OpRegion, where they would work.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
Tested-by: Gerd Hoffmann <kraxel@redhat.com>
Enable quirks to support SandyBridge and newer IGD devices as primary
VM graphics. This requires new vfio-pci device specific regions added
in kernel v4.6 to expose the IGD OpRegion, the shadow ROM, and config
space access to the PCI host bridge and LPC/ISA bridge. VM firmware
support, SeaBIOS only so far, is also required for reserving memory
regions for IGD specific use. In order to enable this mode, IGD must
be assigned to the VM at PCI bus address 00:02.0, it must have a ROM,
it must be able to enable VGA, it must have or be able to create on
its own an LPC/ISA bridge of the proper type at PCI bus address
00:1f.0 (sorry, not compatible with Q35 yet), and it must have the
above noted vfio-pci kernel features and BIOS. The intention is that
to enable this mode, a user simply needs to assign 00:02.0 from the
host to 00:02.0 in the VM:
-device vfio-pci,host=0000:00:02.0,bus=pci.0,addr=02.0
and everything either happens automatically or it doesn't. In the
case that it doesn't, we leave error reports, but assume the device
will operate in universal passthrough mode (UPT), which doesn't
require any of this, but has a much more narrow window of supported
devices, supported use cases, and supported guest drivers.
When using IGD in this mode, the VM firmware is required to reserve
some VM RAM for the OpRegion (on the order or several 4k pages) and
stolen memory for the GTT (up to 8MB for the latest GPUs). An
additional option, x-igd-gms allows the user to specify some amount
of additional memory (value is number of 32MB chunks up to 512MB) that
is pre-allocated for graphics use. TBH, I don't know of anything that
requires this or makes use of this memory, which is why we don't
allocate any by default, but the specification suggests this is not
actually a valid combination, so the option exists as a workaround.
Please report if it's actually necessary in some environment.
See code comments for further discussion about the actual operation
of the quirks necessary to assign these devices.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
Tested-by: Gerd Hoffmann <kraxel@redhat.com>
Capability probing modifies wmask, which quirks may be interested in
changing themselves. Apply our BAR quirks after the capability scan
to make this possible.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
Tested-by: Gerd Hoffmann <kraxel@redhat.com>
Combine VGA discovery and registration. Quirks can have dependencies
on BARs, so the quirks push out until after we've scanned the BARs.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
Tested-by: Gerd Hoffmann <kraxel@redhat.com>
This function returns success if either we setup the VGA region or
the host vfio doesn't return enough regions to support the VGA index.
This latter case doesn't make any sense. If we're asked to populate
VGA, fail if it doesn't exist and let the caller decide if that's
important.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
Tested-by: Gerd Hoffmann <kraxel@redhat.com>
Devices like Intel graphics are known to not only have bad checksums,
but also the wrong device ID. This is not so surprising given that
the video BIOS is typically part of the system firmware image rather
that embedded into the device and needs to support any IGD device
installed into the system.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Match common vfio code with setup, exit, and finalize functions for
BAR, quirk, and VGA management. VGA is also changed to dynamic
allocation to match the other MemoryRegions.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Both platform and PCI vfio drivers create a "slow", I/O memory region
with one or more mmap memory regions overlayed when supported by the
device. Generalize this to a set of common helpers in the core that
pulls the region info from vfio, fills the region data, configures
slow mapping, and adds helpers for comleting the mmap, enable/disable,
and teardown. This can be immediately used by the PCI MSI-X code,
which needs to mmap around the MSI-X vector table.
This also changes VFIORegion.mem to be dynamically allocated because
otherwise we don't know how the caller has allocated VFIORegion and
therefore don't know whether to unreference it to destroy the
MemoryRegion or not.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
In preparation for supporting capability chains on regions, wrap
ioctl(VFIO_DEVICE_GET_REGION_INFO) so we don't duplicate the code for
each caller.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
vfio-pci currently requires a host= parameter, which comes in the
form of a PCI address in [domain:]<bus:slot.function> notation. We
expect to find a matching entry in sysfs for that under
/sys/bus/pci/devices/. vfio-platform takes a similar approach, but
defines the host= parameter to be a string, which can be matched
directly under /sys/bus/platform/devices/. On the PCI side, we have
some interest in using vfio to expose vGPU devices. These are not
actual discrete PCI devices, so they don't have a compatible host PCI
bus address or a device link where QEMU wants to look for it. There's
also really no requirement that vfio can only be used to expose
physical devices, a new vfio bus and iommu driver could expose a
completely emulated device. To fit within the vfio framework, it
would need a kernel struct device and associated IOMMU group, but
those are easy constraints to manage.
To support such devices, which would include vGPUs, that honor the
VFIO PCI programming API, but are not necessarily backed by a unique
PCI address, add support for specifying any device in sysfs. The
vfio API already has support for probing the device type to ensure
compatibility with either vfio-pci or vfio-platform.
With this, a vfio-pci device could either be specified as:
-device vfio-pci,host=02:00.0
or
-device vfio-pci,sysfsdev=/sys/devices/pci0000:00/0000:00:1c.0/0000:02:00.0
or even
-device vfio-pci,sysfsdev=/sys/bus/pci/devices/0000:02:00.0
When vGPU support comes along, this might look something more like:
-device vfio-pci,sysfsdev=/sys/devices/virtual/intel-vgpu/vgpu0@0000:00:02.0
NB - This is only a made up example path
The same change is made for vfio-platform, specifying sysfsdev has
precedence over the old host option.
Tested-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Even PCI_CAP_FLAGS has the same value as PCI_MSIX_FLAGS, the later one is
the more proper on retrieving MSIX entries.
This patch uses PCI_MSIX_FLAGS to retrieve the MSIX entries.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Use the macro PCI_CAP_LIST_NEXT instead of 1, so that the code would be
more self-explain.
This patch makes this change and also fixs one typo in comment.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
this function search the capability from the end, the last
size should 0x100 - pos, not 0xff - pos.
Signed-off-by: Chen Fan <chen.fan.fnst@cn.fujitsu.com>
Reviewed-by: Marcel Apfelbaum <marcel@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Clean up includes so that osdep.h is included first and headers
which it implies are not included manually.
This commit was created with scripts/clean-includes.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1453832250-766-22-git-send-email-peter.maydell@linaro.org
The PCI spec recommends devices use additional alignment for MSI-X
data structures to allow software to map them to separate processor
pages. One advantage of doing this is that we can emulate those data
structures without a significant performance impact to the operation
of the device. Some devices fail to implement that suggestion and
assigned device performance suffers.
One such case of this is a Mellanox MT27500 series, ConnectX-3 VF,
where the MSI-X vector table and PBA are aligned on separate 4K
pages. If PBA emulation is enabled, performance suffers. It's not
clear how much value we get from PBA emulation, but the solution here
is to only lazily enable the emulated PBA when a masked MSI-X vector
fires. We then attempt to more aggresively disable the PBA memory
region any time a vector is unmasked. The expectation is then that
a typical VM will run entirely with PBA emulation disabled, and only
when used is that emulation re-enabled.
Reported-by: Shyam Kaushik <shyam.kaushik@gmail.com>
Tested-by: Shyam Kaushik <shyam.kaushik@gmail.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
g_new(T, n) is neater than g_malloc(sizeof(T) * n). It's also safer,
for two reasons. One, it catches multiplication overflowing size_t.
Two, it returns T * rather than void *, which lets the compiler catch
more type errors.
This commit only touches allocations with size arguments of the form
sizeof(T). Same Coccinelle semantic patch as in commit b45c03f.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
When we have a PCIe VM, such as Q35, guests start to care more about
valid configurations of devices relative to the VM view of the PCI
topology. Windows will error with a Code 10 for an assigned device if
a PCIe capability is found for a device on a conventional bus. We
also have the possibility of IOMMUs, like VT-d, where the where the
guest may be acutely aware of valid express capabilities on physical
hardware.
Some devices, like tg3 are adversely affected by this due to driver
dependencies on the PCIe capability. The only solution for such
devices is to attach them to an express capable bus in the VM.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
In-kernel ITS emulation on ARM64 will require to supply requester IDs.
These IDs can now be retrieved from the device pointer using new
pci_requester_id() function.
This patch adds pci_dev pointer to KVM GSI routing functions and makes
callers passing it.
x86 architecture does not use requester IDs, but hw/i386/kvm/pci-assign.c
also made passing PCI device pointer instead of NULL for consistency with
the rest of the code.
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Message-Id: <ce081423ba2394a4efc30f30708fca07656bc500.1444916432.git.p.fedin@samsung.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Specifying an emulated PCI vendor/device ID can be useful for testing
various quirk paths, even though the behavior and functionality of
the device with bogus IDs is fully unsupportable. We need to use a
uint32_t for the vendor/device IDs, even though the registers
themselves are only 16-bit in order to be able to determine whether
the value is valid and user set.
The same support is added for subsystem vendor/device ID, though these
have the possibility of being useful and supported for more than a
testing tool. An emulated platform might want to impose their own
subsystem IDs or at least hide the physical subsystem ID. Windows
guests will often reinstall drivers due to a change in subsystem IDs,
something that VM users may want to avoid. Of course careful
attention would be required to ensure that guest drivers do not rely
on the subsystem ID as a basis for device driver quirks.
All of these options are added using the standard experimental option
prefix and should not be considered stable.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Simplify access to commonly referenced PCI vendor and device ID by
caching it on the VFIOPCIDevice struct.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
This is just another quirk, for reset rather than affecting memory
regions. Move it to our new quirks file.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
The default should be to allow mmap and new drivers shouldn't need to
expose an option or set it to other than the allocation default in
their initfn. Take advantage of the experimental flag to change this
option to the correct polarity.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>