This semantics is needed by drive-backup so implement it before using
this API there.
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Fam Zheng <famz@redhat.com>
Message-id: 20180703023758.14422-3-famz@redhat.com
Signed-off-by: Jeff Cody <jcody@redhat.com>
src may be NULL if BDRV_REQ_ZERO_WRITE flag is set, in this case only
check dst and dst->bs. This bug was introduced when moving in the
request tracking code from bdrv_co_copy_range, in 37aec7d75e.
This especially fixes the possible segfault when initializing src_bs
with a NULL src.
Signed-off-by: Fam Zheng <famz@redhat.com>
Message-id: 20180703023758.14422-2-famz@redhat.com
Reviewed-by: Jeff Cody <jcody@redhat.com>
Signed-off-by: Jeff Cody <jcody@redhat.com>
We are gradually moving away from sector-based interfaces, towards
byte-based. Now that all callers of vectored I/O have been converted
to use our preferred byte-based bdrv_co_p{read,write}v(), we can
delete the unused bdrv_co_{read,write}v().
Furthermore, this gets rid of the signature difference between the
public bdrv_co_writev() and the callback .bdrv_co_writev (the
latter still exists, because some drivers still need more work
before they are fully byte-based).
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Jeff Cody <jcody@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
in_flight and tracked requests need to be tracked in every layer during
recursion. For now the only user is qemu-img convert where overlapping
requests and IOThreads don't exist, therefore this change doesn't make
much difference form user point of view, but it is incorrect as part of
the API. Fix it.
Reported-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Fam Zheng <famz@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
When growing an image, block drivers (especially protocol drivers) may
initialise the newly added area. I/O requests to the same area need to
wait for this initialisation to be completed so that data writes don't
get overwritten and reads don't read uninitialised data.
To avoid overhead in the fast I/O path by adding new locking in the
protocol drivers and to restrict the impact to requests that actually
touch the new area, reuse the existing tracked request infrastructure in
block/io.c and mark all discard requests as serialising.
With this change, it is safe for protocol drivers to make
.bdrv_co_truncate actually asynchronous.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
This moves the bdrv_truncate() implementation from block.c to block/io.c
so it can have access to the tracked requests infrastructure.
This involves making refresh_total_sectors() public (in block_int.h).
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
bdrv_drain_all_*() used bdrv_next() to iterate over all root nodes and
did a subtree drain for each of them. This works fine as long as the
graph is static, but sadly, reality looks different.
If the graph changes so that root nodes are added or removed, we would
have to compensate for this. bdrv_next() returns each root node only
once even if it's the root node for multiple BlockBackends or for a
monitor-owned block driver tree, which would only complicate things.
The much easier and more obviously correct way is to fundamentally
change the way the functions work: Iterate over all BlockDriverStates,
no matter who owns them, and drain them individually. Compensation is
only necessary when a new BDS is created inside a drain_all section.
Removal of a BDS doesn't require any action because it's gone afterwards
anyway.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
In the future, bdrv_drained_all_begin/end() will drain all invidiual
nodes separately rather than whole subtrees. This means that we don't
want to propagate the drain to all parents any more: If the parent is a
BDS, it will already be drained separately. Recursing to all parents is
unnecessary work and would make it an O(n²) operation.
Prepare the drain function for the changed drain_all by adding an
ignore_bds_parents parameter to the internal implementation that
prevents the propagation of the drain to BDS parents. We still (have to)
propagate it to non-BDS parents like BlockBackends or Jobs because those
are not drained separately.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Before we can introduce a single polling loop for all nodes in
bdrv_drain_all_begin(), we must make sure to run it outside of coroutine
context like we already do for bdrv_do_drained_begin().
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
We cannot allow aio_poll() in bdrv_drain_invoke(begin=true) until we're
done with propagating the drain through the graph and are doing the
single final BDRV_POLL_WHILE().
Just schedule the coroutine with the callback and increase bs->in_flight
to make sure that the polling phase will wait for it.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
bdrv_do_drained_begin() is only safe if we have a single
BDRV_POLL_WHILE() after quiescing all affected nodes. We cannot allow
that parent callbacks introduce a nested polling loop that could cause
graph changes while we're traversing the graph.
Split off bdrv_do_drained_begin_quiesce(), which only quiesces a single
node without waiting for its requests to complete. These requests will
be waited for in the BDRV_POLL_WHILE() call down the call chain.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Anything can happen inside BDRV_POLL_WHILE(), including graph
changes that may interfere with its callers (e.g. child list iteration
in recursive callers of bdrv_do_drained_begin).
Switch to a single BDRV_POLL_WHILE() call for the whole subtree at the
end of bdrv_do_drained_begin() to avoid such effects. The recursion
happens now inside the loop condition. As the graph can only change
between bdrv_drain_poll() calls, but not inside of it, doing the
recursion here is safe.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
For bdrv_drain(), recursively waiting for child node requests is
pointless because we didn't quiesce their parents, so new requests could
come in anyway. Letting the function work only on a single node makes it
more consistent.
For subtree drains and drain_all, we already have the recursion in
bdrv_do_drained_begin(), so the extra recursion doesn't add anything
either.
Remove the useless code.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
We already requested that block jobs be paused in .bdrv_drained_begin,
but no guarantee was made that the job was actually inactive at the
point where bdrv_drained_begin() returned.
This introduces a new callback BdrvChildRole.bdrv_drained_poll() and
uses it to make bdrv_drain_poll() consider block jobs using the node to
be drained.
For the test case to work as expected, we have to switch from
block_job_sleep_ns() to qemu_co_sleep_ns() so that the test job is even
considered active and must be waited for when draining the node.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Commit 91af091f92 added an additional aio_poll() to BDRV_POLL_WHILE()
in order to make sure that all pending BHs are executed on drain. This
was the wrong place to make the fix, as it is useless overhead for all
other users of the macro and unnecessarily complicates the mechanism.
This patch effectively reverts said commit (the context has changed a
bit and the code has moved to AIO_WAIT_WHILE()) and instead polls in the
loop condition for drain.
The effect is probably hard to measure in any real-world use case
because actual I/O will dominate, but if I run only the initialisation
part of 'qemu-img convert' where it calls bdrv_block_status() for the
whole image to find out how much data there is copy, this phase actually
needs only roughly half the time after this patch.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
All involved nodes are already idle, we called bdrv_do_drain_begin() on
them.
The comment in the code suggested that this was not correct because the
completion of a request on one node could spawn a new request on a
different node (which might have been drained before, so we wouldn't
drain the new request). In reality, new requests to different nodes
aren't spawned out of nothing, but only in the context of a parent
request, and they aren't submitted to random nodes, but only to child
nodes. As long as we still poll for the completion of the parent request
(which we do), draining each root node separately is good enough.
Remove the additional polling code from bdrv_drain_all_begin() and
replace it with an assertion that all nodes are already idle after we
drained them separately.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
All callers pass false for the 'recursive' parameter now. Remove it.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
bdrv_do_drain_begin/end() implement already everything that
bdrv_drain_all_begin/end() need and currently still do manually: Disable
external events, call parent drain callbacks, call block driver
callbacks.
It also does two more things:
The first is incrementing bs->quiesce_counter. bdrv_drain_all() already
stood out in the test case by behaving different from the other drain
variants. Adding this is not only safe, but in fact a bug fix.
The second is calling bdrv_drain_recurse(). We already do that later in
the same function in a loop, so basically doing an early first iteration
doesn't hurt.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
As long as nobody keeps the other I/O thread from working, there is no
reason why bdrv_drain() wouldn't work with cross-AioContext events. The
key is that the root request we're waiting for is in the AioContext
we're polling (which it always is for bdrv_drain()) so that aio_poll()
is woken up in the end.
Add a test case that shows that it works. Remove the comment in
bdrv_drain() that claims otherwise.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Introduce the bdrv_co_copy_range() API for copy offloading. Block
drivers implementing this API support efficient copy operations that
avoid reading each block from the source device and writing it to the
destination devices. Examples of copy offload primitives are SCSI
EXTENDED COPY and Linux copy_file_range(2).
Signed-off-by: Fam Zheng <famz@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-id: 20180601092648.24614-2-famz@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Alberto Garcia <berto@igalia.com>
Message-id: 20180421132929.21610-5-mreitz@redhat.com
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
This flag signifies that a write request will not change the visible
disk content. With this flag set, it is sufficient to have the
BLK_PERM_WRITE_UNCHANGED permission instead of BLK_PERM_WRITE.
Signed-off-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Alberto Garcia <berto@igalia.com>
Message-id: 20180421132929.21610-4-mreitz@redhat.com
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
We have too many driver callback interfaces; simplify the mess
somewhat by merging the flags parameter of .bdrv_co_writev_flags()
into .bdrv_co_writev(). Note that as long as a driver doesn't set
.supported_write_flags, the flags argument will be 0 and behavior is
identical. Also note that the public function bdrv_co_writev() still
lacks a flags argument; so the driver signature is thus intentionally
slightly different. But that's not the end of the world, nor the first
time that the driver interface differs slightly from the public
interface.
Ideally, we should be rewriting all of these drivers to use modern
byte-based interfaces. But that's a more invasive patch to write
and audit, compared to the simplification done here.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
We are gradually moving away from sector-based interfaces, towards
byte-based. Now that all drivers with aio callbacks are using the
byte-based interfaces, we can remove the sector-based versions.
Signed-off-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
We are gradually moving away from sector-based interfaces, towards
byte-based. Add new sector-based aio callbacks for read and write,
to match the fact that bdrv_aio_pdiscard is already byte-based.
Ideally, drivers should be converted to use coroutine callbacks
rather than aio; but that is not quite as trivial (and if we were
to do that conversion, the null-aio driver would disappear), so for
the short term, converting the signature but keeping things with
aio is easier. However, we CAN declare that a driver that uses
the byte-based aio interfaces now defaults to byte-based
operations, and must explicitly provide a refresh_limits override
to stick with larger alignments (making the alignment issues more
obvious directly in the drivers touched in the next few patches).
Once all drivers are converted, the sector-based aio callbacks will
be removed; in the meantime, a FIXME comment is added due to a
slight inefficiency that will be touched up as part of that later
cleanup.
Simplify some instances of 'bs->drv' into 'drv' while touching this,
since the local variable already exists to reduce typing.
Signed-off-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
qemu_aio_coroutine_enter() is (indirectly) called recursively when
processing co_queue_wakeup. This can lead to stack exhaustion.
This patch rewrites co_queue_wakeup in an iterative fashion (instead of
recursive) with bounded memory usage to prevent stack exhaustion.
qemu_co_queue_run_restart() is inlined into qemu_aio_coroutine_enter()
and the qemu_coroutine_enter() call is turned into a loop to avoid
recursion.
There is one change that is worth mentioning: Previously, when
coroutine A queued coroutine B, qemu_co_queue_run_restart() entered
coroutine B from coroutine A. If A was terminating then it would still
stay alive until B yielded. After this patch B is entered by A's parent
so that a A can be deleted immediately if it is terminating.
It is safe to make this change since B could never interact with A if it
was terminating anyway.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20180322152834.12656-3-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
BlockDriverState has the BDRV_POLL_WHILE() macro to wait on event loop
activity while a condition evaluates to true. This is used to implement
synchronous operations where it acts as a condvar between the IOThread
running the operation and the main loop waiting for the operation. It
can also be called from the thread that owns the AioContext and in that
case it's just a nested event loop.
BlockBackend needs this behavior but doesn't always have a
BlockDriverState it can use. This patch extracts BDRV_POLL_WHILE() into
the AioWait abstraction, which can be used with AioContext and isn't
tied to BlockDriverState anymore.
This feature could be built directly into AioContext but then all users
would kick the event loop even if they signal different conditions.
Imagine an AioContext with many BlockDriverStates, each time a request
completes any waiter would wake up and re-check their condition. It's
nicer to keep a separate AioWait object for each condition instead.
Please see "block/aio-wait.h" for details on the API.
The name AIO_WAIT_WHILE() avoids the confusion between AIO_POLL_WHILE()
and AioContext polling.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
The normal bdrv_co_pwritev() use is either
- BDRV_REQ_ZERO_WRITE clear and iovector provided
- BDRV_REQ_ZERO_WRITE set and iovector == NULL
while
- the flag clear and iovector == NULL is an assertion failure
in bdrv_co_do_zero_pwritev()
- the flag set and iovector provided is in fact allowed
(the flag prevails and zeroes are written)
However the alignment logic does not support the latter case so the padding
areas get overwritten with zeroes.
Currently, general functions like bdrv_rw_co() do provide iovector
regardless of flags. So, keep it supported and use bdrv_co_do_zero_pwritev()
alignment for it which also makes the code a bit more obvious anyway.
Signed-off-by: Anton Nefedov <anton.nefedov@virtuozzo.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Alberto Garcia <berto@igalia.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
We are gradually moving away from sector-based interfaces, towards
byte-based. Now that all drivers have been updated to provide the
byte-based .bdrv_co_block_status(), we can delete the sector-based
interface.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
We are gradually moving away from sector-based interfaces, towards
byte-based. Update the generic helpers, and all passthrough clients
(blkdebug, commit, mirror, throttle) accordingly.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
We are gradually moving away from sector-based interfaces, towards
byte-based. Now that the block layer exposes byte-based allocation,
it's time to tackle the drivers. Add a new callback that operates
on as small as byte boundaries. Subsequent patches will then update
individual drivers, then finally remove .bdrv_co_get_block_status().
The new code also passes through the 'want_zero' hint, which will
allow subsequent patches to further optimize callers that only care
about how much of the image is allocated (want_zero is false),
rather than full details about runs of zeroes and which offsets the
allocation actually maps to (want_zero is true). As part of this
effort, fix another part of the documentation: the claim in commit
4c41cb4 that BDRV_BLOCK_ALLOCATED is short for 'DATA || ZERO' is a
lie at the block layer (see commit e88ae2264), even though it is
how the bit is computed from the driver layer. After all, there
are intentionally cases where we return ZERO but not ALLOCATED at
the block layer, when we know that a read sees zero because the
backing file is too short. Note that the driver interface is thus
slightly different than the public interface with regards to which
bits will be set, and what guarantees are provided on input.
We also add an assertion that any driver using the new callback will
make progress (the only time pnum will be 0 is if the block layer
already handled an out-of-bounds request, or if there is an error);
the old driver interface did not provide this guarantee, which
could lead to some inf-loops in drastic corner-case failures.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Allow block driver to map and unmap a buffer for later I/O, as a performance
hint.
Signed-off-by: Fam Zheng <famz@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20180116060901.17413-5-famz@redhat.com>
Signed-off-by: Fam Zheng <famz@redhat.com>
We need to remember how many of the drain sections in which a node is
were recursive (i.e. subtree drain rather than node drain), so that they
can be correctly applied when children are added or removed during the
drained section.
With this change, it is safe to modify the graph even inside a
bdrv_subtree_drained_begin/end() section.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
bdrv_drained_begin() waits for the completion of requests in the whole
subtree, but it only actually keeps its immediate bs parameter quiesced
until bdrv_drained_end().
Add a version that keeps the whole subtree drained. As of this commit,
graph changes cannot be allowed during a subtree drained section, but
this will be fixed soon.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
This is in preparation for subtree drains, i.e. drained sections that
affect not only a single node, but recursively all child nodes, too.
Calling the parent callbacks for drain is pointless when we just came
from that parent node recursively and leads to multiple increases of
bs->quiesce_counter in a single drain call. Don't do it.
In order for this to work correctly, the parent callback must be called
for every bdrv_drain_begin/end() call, not only for the outermost one:
If we have a node N with two parents A and B, recursive draining of A
should cause the quiesce_counter of B to increase because its child N is
drained independently of B. If now B is recursively drained, too, A must
increase its quiesce_counter because N is drained independently of A
only now, even if N is going from quiesce_counter 1 to 2.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
bdrv_do_drained_begin() restricts the call of parent callbacks and
aio_disable_external() to the outermost drain section, but the block
driver callbacks are always called. bdrv_do_drained_end() must match
this behaviour, otherwise nodes stay drained even if begin/end calls
were balanced.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Block jobs are already paused using the BdrvChildRole drain callbacks,
so we don't need an additional block_job_pause_all() call.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
bdrv_drained_begin() doesn't increase bs->quiesce_counter recursively
and also doesn't notify other parent nodes of children, which both means
that the child nodes are not actually drained, and bdrv_drained_begin()
is providing useful functionality only on a single node.
To keep things consistent, we also shouldn't call the block driver
callbacks recursively.
A proper recursive drain version that provides an actually working
drained section for child nodes will be introduced later.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Drain requests are propagated to child nodes, parent nodes and directly
to the AioContext. The order in which this happened was different
between all combinations of drain/drain_all and begin/end.
The correct order is to keep children only drained when their parents
are also drained. This means that at the start of a drained section, the
AioContext needs to be drained first, the parents second and only then
the children. The correct order for the end of a drained section is the
opposite.
This patch changes the three other functions to follow the example of
bdrv_drained_begin(), which is the only one that got it right.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
The device is drained, so there is no point in waiting for requests at
the end of the drained section. Remove the bdrv_drain_recurse() calls
there.
The bdrv_drain_recurse() calls were introduced in commit 481cad48e5
in order to call the .bdrv_co_drain_end() driver callback. This is now
done by a separate bdrv_drain_invoke() call.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Now that the bdrv_drain_invoke() calls are pulled up to the callers of
bdrv_drain_recurse(), the 'begin' parameter isn't needed any more.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
bdrv_drain_all_begin() used to call the .bdrv_co_drain_begin() driver
callback inside its polling loop. This means that how many times it got
called for each node depended on long it had to poll the event loop.
This is obviously not right and results in nodes that stay drained even
after bdrv_drain_all_end(), which calls .bdrv_co_drain_begin() once per
node.
Fix bdrv_drain_all_begin() to call the callback only once, too.
Cc: qemu-stable@nongnu.org
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
This change separates bdrv_drain_invoke(), which calls the BlockDriver
drain callbacks, from bdrv_drain_recurse(). Instead, the function
performs its own recursion now.
One reason for this is that bdrv_drain_recurse() can be called multiple
times by bdrv_drain_all_begin(), but the callbacks may only be called
once. The separation is necessary to fix this bug.
The other reason is that we intend to go to a model where we call all
driver callbacks first, and only then start polling. This is not fully
achieved yet with this patch, as bdrv_drain_invoke() contains a
BDRV_POLL_WHILE() loop for the block driver callbacks, which can still
call callbacks for any unrelated event. It's a step in this direction
anyway.
Cc: qemu-stable@nongnu.org
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
The .drained_begin/end callbacks can (directly or indirectly via
aio_poll()) cause block nodes to be removed or the current BdrvChild to
point to a different child node.
Use QLIST_FOREACH_SAFE() to make sure we don't access invalid
BlockDriverStates or accidentally continue iterating the parents of the
new child node instead of the node we actually came from.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Tested-by: Jeff Cody <jcody@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Jeff Cody <jcody@redhat.com>
Reviewed-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
We currently do not guard everywhere against a NULL bs->drv where we
should be doing so. Most of the places fixed here just do not care
about that case at all.
Some care implicitly, e.g. through a prior function call to
bdrv_getlength() which would always fail for an ejected BDS. Add an
assert there to make it more obvious.
Other places seem to care, but do so insufficiently: Freeing clusters in
a qcow2 image is an error-free operation, but it may leave the image in
an unusable state anyway. Giving qcow2_free_clusters() an error code is
not really viable, it is much easier to note that bs->drv may be NULL
even after a successful driver call. This concerns bdrv_co_flush(), and
the way the check is added to bdrv_co_pdiscard() (in every iteration
instead of only once).
Finally, some places employ at least an assert(bs->drv); somewhere, that
may be reasonable (such as in the reopen code), but in
bdrv_has_zero_init(), it is definitely not. Returning 0 there in case
of an ejected BDS saves us much headache instead.
Reported-by: R. Nageswara Sastry <nasastry@in.ibm.com>
Buglink: https://bugs.launchpad.net/qemu/+bug/1728660
Signed-off-by: Max Reitz <mreitz@redhat.com>
Message-id: 20171110203111.7666-4-mreitz@redhat.com
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
Now that bdrv_is_allocated accepts non-aligned inputs, we can
remove the TODO added in commit d6a644bb.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Any device that has request_alignment greater than 512 should be
unable to report status at a finer granularity; it may also be
simpler for such devices to be guaranteed that the block layer
has rounded things out to the granularity boundary (the way the
block layer already rounds all other I/O out). Besides, getting
the code correct for super-sector alignment also benefits us
for the fact that our public interface now has byte granularity,
even though none of our drivers have byte-level callbacks.
Add an assertion in blkdebug that proves that the block layer
never requests status of unaligned sections, similar to what it
does on other requests (while still keeping the generic helper
in place for when future patches add a throttle driver). Note
that iotest 177 already covers this (it would fail if you use
just the blkdebug.c hunk without the io.c changes). Meanwhile,
we can drop assertions in callers that no longer have to pass
in sector-aligned addresses.
There is a mid-function scope added for 'count' and 'longret',
for a couple of reasons: first, an upcoming patch will add an
'if' statement that checks whether a driver has an old- or
new-style callback, and can conveniently use the same scope for
less indentation churn at that time. Second, since we are
trying to get rid of sector-based computations, wrapping things
in a scope makes it easier to group and see what will be
deleted in a final cleanup patch once all drivers have been
converted to the new-style callback.
Signed-off-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
We are gradually moving away from sector-based interfaces, towards
byte-based. In the common case, allocation is unlikely to ever use
values that are not naturally sector-aligned, but it is possible
that byte-based values will let us be more precise about allocation
at the end of an unaligned file that can do byte-based access.
Changing the name of the function from bdrv_get_block_status_above()
to bdrv_block_status_above() ensures that the compiler enforces that
all callers are updated. Likewise, since it a byte interface allows
an offset mapping that might not be sector aligned, split the mapping
out of the return value and into a pass-by-reference parameter. For
now, the io.c layer still assert()s that all uses are sector-aligned,
but that can be relaxed when a later patch implements byte-based
block status in the drivers.
For the most part this patch is just the addition of scaling at the
callers followed by inverse scaling at bdrv_block_status(), plus
updates for the new split return interface. But some code,
particularly bdrv_block_status(), gets a lot simpler because it no
longer has to mess with sectors. Likewise, mirror code no longer
computes s->granularity >> BDRV_SECTOR_BITS, and can therefore drop
an assertion about alignment because the loop no longer depends on
alignment (never mind that we don't really have a driver that
reports sub-sector alignments, so it's not really possible to test
the effect of sub-sector mirroring). Fix a neighboring assertion to
use is_power_of_2 while there.
For ease of review, bdrv_get_block_status() was tackled separately.
Signed-off-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>