This moves some code that prepares the allocation of new clusters to
where the actual allocation happens. This is the minimum required to be
able to move it to a separate function in the next patch.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This is a more precise description of what really constitutes a
dependency. The behaviour doesn't change at this point because the COW
area of the old request is still aligned to cluster boundaries and
therefore an overlap is detected wheneven the requests touch any part of
the same cluster.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The old code detected an overlapping allocation even when the
allocations didn't actually overlap, but were only adjacent.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Handling overlapping allocations isn't just a detail of cluster
allocation. It is rather one of three ways to get the host cluster
offset for a write request:
1. If a request overlaps an in-flight allocations, the cluster offset
can be taken from there (this is what handle_dependencies will evolve
into) or the request must just wait until the allocation has
completed. Accessing the L2 is not valid in this case, it has
outdated information.
2. Outside overlapping areas, check the clusters that can be written to
as they are, with no COW involved.
3. If a COW is required, allocate new clusters
Changing the code to reflect this doesn't change the behaviour because
overlaps cannot exist for clusters that are kept in step 2. It does
however make it easier for later patches to work on clusters that belong
to an allocation that is still in flight.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Otherwise, live migration of the top layer will miss zero clusters and
let the backing file show through. This also matches what is done in qed.
QCOW2_CLUSTER_ZERO clusters are invalid in v2 image files. Check this
directly in qcow2_get_cluster_offset instead of replicating the test
everywhere.
Cc: qemu-stable@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
qcow2 images now accept a boolean lazy_refcounts options. Use it like
this:
-drive file=test.qcow2,lazy_refcounts=on
If the option is specified on the command line, it overrides the default
specified by the qcow2 header flags that were set when creating the
image.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This is closer to where the dirty flag is really needed, and it avoids
having checks for special cases related to cluster allocation directly
in the writev loop.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Even for writes to already allocated clusters, an l2meta is allocated,
though it stays effectively unused. After this patch, only allocating
requests still have one. Each l2meta now describes an in-flight request
that writes to clusters that are not yet hooked up in the L2 table.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
There's no real reason to have an l2meta for normal requests that don't
allocate anything. Before we can get rid of it, we must return the host
cluster offset in a different way.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
This makes it easier to address the areas for which a COW must be
performed. As a nice side effect, the COW code in
qcow2_alloc_cluster_link_l2 becomes really trivial.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
The offset within the cluster is already present as n_start and this is
what the code uses. QCowL2Meta.offset is only needed at a cluster
granularity.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Lazy refcounts is a performance optimization for qcow2 that postpones
refcount metadata updates and instead marks the image dirty. In the
case of crash or power failure the image will be left in a dirty state
and repaired next time it is opened.
Reducing metadata I/O is important for cache=writethrough and
cache=directsync because these modes guarantee that data is on disk
after each write (hence we cannot take advantage of caching updates in
RAM). Refcount metadata is not needed for guest->file block address
translation and therefore does not need to be on-disk at the time of
write completion - this is the motivation behind the lazy refcount
optimization.
The lazy refcount optimization must be enabled at image creation time:
qemu-img create -f qcow2 -o compat=1.1,lazy_refcounts=on a.qcow2 10G
qemu-system-x86_64 -drive if=virtio,file=a.qcow2,cache=writethrough
Update qemu-iotests 031 and 036 since the extension header size changes
when we add feature bit table entries.
Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
avail_sectors should really be the number of sectors from the start of
the allocation, not from the start of the write request.
We're lucky enough that this mistake didn't cause any real bug.
avail_sectors is only used in the intialiser of QCowL2Meta:
.nb_available = MIN(requested_sectors, avail_sectors),
m->nb_available in turn is only used for COW at the end of the
allocation. A COW occurs only if the request wasn't cluster aligned,
which in turn would imply that requested_sectors was less than
avail_sectors (both in the original and in the fixed version). In this
case avail_sectors is ignored and therefore the mistake doesn't cause
any misbehaviour.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
copy_sectors() always uses the sum (cluster_offset + n_start) or
(start_sect + n_start), so if some value is added to both cluster_offset
and start_sect, and subtracted from n_start, it's cancelled out anyway.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Commit 3948d1d4 removed the pointer argument we filled in with l2_offset
but forgot to remove the unnecessary l2_offset assignment.
Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com>
Reviewed-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Some gcc versions seem not to be able to figure out that the switch
statement covers all possible values and that c is therefore always
initialised. Add a default branch for them.
Reported-by: malc <av1474@comtv.ru>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: malc <av1474@comtv.ru>
When using qcow2_alloc_clusters_at(), the cluster allocation code
checked the wrong variable for an error code.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
This fixes a regression introduced in commit 250196f1. The bug leads to
data corruption, found during an Autotest run with a Fedora 8 guest.
Consider a write request whose first part is covered by an already
allocated cluster, but additional clusters need to be newly allocated.
When counting the number of clusters to allocate, the qcow2 code would
decide to do COW for all remaining clusters of the write request, even
if some of them are already allocated.
If during this COW operation another write request is issued that touches
the same cluster, it will still refer to the old cluster. When the COW
completes, the first request will update the L2 table and the second
write request will be lost. Note that the requests need not overlap, it's
enough for them to touch the same cluster.
This patch ensures that only clusters that really require COW are
considered for allocation. In this case any other request writing to the
same cluster will be an allocating write and gets serialised.
Reported-by: Marcelo Tosatti <mtosatti@redhat.com>
Tested-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
If cache references are held while the coroutine has yielded, the cache
may get used up and abort() when it can't find a free entry.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
count_cow_clusters() tries to reuse existing functions, and all it
achieves is to make things much more complicated than they really are:
Everything needs COW, unless it's a normal cluster with refcount 1.
This patch implements the obvious way of doing this, and by using
qcow2_get_cluster_type() it gets rid of all flag magic.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
This changes the still existing places that assume that the only flags
are QCOW_OFLAG_COPIED and QCOW_OFLAG_COMPRESSED to properly mask out
reserved bits.
It does not convert bdrv_check yet.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
qcow2_alloc_compressed_cluster_offset() already fails if the copied flag
is set, because qcow2_write_compressed() doesn't perform COW as it would
have to do to allow this.
However, what we really want to check here is whether the cluster is
allocated or not. With internal snapshots the copied flag may not be set
on allocated clusters. Check the cluster offset instead.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Until now, count_contiguous_clusters() has an argument that allowed to
specify flags that should be ignored in the comparison, i.e. that are
allowed to change between contiguous clusters.
This patch changes the function so that it ignores all flags by default
now and you need to pass the flags on which it should stop.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
With this change, reading from a qcow2 image ignores all reserved bits
that are set in an L1 or L2 table entry.
Now get_cluster_offset() assigns *cluster_offset only the offset without
any other flags. The cluster type is not longer encoded in the offset,
but a positive return value in case of success.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
If do_alloc_cluster_offset() fails, the error handling code tried to
remove the request from the in-flight queue, to which it wasn't added
yet, resulting in a NULL pointer dereference.
m->nb_clusters really only becomes != 0 when the request is in the list.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Since everything goes through the cache, callers don't use the L2 table
offset any more.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
If the first part of a write request is allocated, but the second isn't
and it can be allocated so that the resulting area is contiguous, handle
it at once. This is a common case for sequential writes.
After this patch, alloc_cluster_offset() only checks if the clusters are
already allocated or how many new clusters can be allocated contigouosly.
The actual cluster allocation is split off into a new function
do_alloc_cluster_offset().
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
A BlockDriverState should not issue requests on itself through the
public block layer interface. Nested, or reentrant, requests are
problematic because they do I/O throttling and request tracking twice.
Features like block layer copy-on-read use request tracking to avoid
race conditions between concurrent requests. The reentrant request will
have to "wait" for its parent request to complete. But the parent is
waiting for the reentrant request to make progress so we have reached
deadlock.
The solution is for block drivers to avoid the public block layer
interfaces for reentrant requests. Instead they should call their own
internal functions if they wish to perform reentrant requests.
This is also a good opportunity to make copy_sectors() a true
coroutine_fn. That means calling bdrv_co_writev() instead of
bdrv_write(). Behavior is unchanged but we're being explicit that this
executes in coroutine context.
Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Unlocking during COW allows for more parallelism. One change it requires is
that buffers are dynamically allocated instead of just using a per-image
buffer.
While touching the code, drop the synchronous qcow2_read() function and replace
it by a bdrv_read() call.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
If during allocation of compressed clusters the cluster was already allocated
uncompressed, fail and properly release the l2_table (the latter avoids a
failed assertion).
While at it, make it return some real error numbers instead of -1.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Dong Xu Wang <wdongxu@linux.vnet.ibm.com>
QCowL2Meta::offset is not cluster aligned but only sector aligned
however nb_clusters count cluster from cluster start.
This fix range check. Note that old code have no corruption issues
related to this check cause it only cause intersection to occur
when shouldn't.
Signed-off-by: Frediano Ziglio <freddy77@gmail.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
QCow2Meta structure was inserted into list before many fields are
initialized. Currently is not a problem cause all occur in a lock
but if qcow2_alloc_clusters would in a future unlock this lock
some issues could arise.
Initializing fields before inserting fix the problem.
Signed-off-by: Frediano Ziglio <freddy77@gmail.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Documentation states the num is measured in clusters, but its
actually measured in sectors
Signed-off-by: Devin Nakamura <devin122@gmail.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
If qcow2_cache_put returns an error during cluster allocation and the
allocation fails, it must be removed from the list of in-flight allocations.
Otherwise we'd get a loop in the list when the ACB is used for the next
allocation.
Luckily, this qcow2_cache_put shouldn't fail anyway because the L2 table is
only read, so that qcow2_cache_put doesn't even involve I/O.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This fixes memory leaks that may be caused by I/O errors during L1 table growth
(can happen during save_vm) and in qemu-img check.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
When copying L2 tables (this happens only with internal snapshots), the order
wasn't completely safe, so that after a crash you could end up with a L2 table
that has too low refcount, possibly leading to corruption in the long run.
This patch puts the operations in the right order: First allocate the new
L2 table and replace the reference, and only then decrease the refcount of the
old table.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
When reading a compressed cluster failed, qcow2 falsely returned success.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
This adds a bdrv_discard function to qcow2 that frees the discarded clusters.
It does not yet pass the discard on to the underlying file system driver, but
the space can be reused by future writes to the image.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
qcow2 calls bdrv_flush() after performing COW in order to ensure that the
L2 table change is never written before the copy is safe on disk. Now that the
L2 table is cached, we can wait with flushing until we write out the next L2
table.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>