Add sPAPR CPU Core definition for Power11
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Aditya Gupta <adityag@linux.ibm.com>
Tested-by: Amit Machhiwal <amachhiw@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Commit 0cac0f1b964 marked pseries-2.12 machines as deprecated
with reasons mentioned in its commit log.
Removing pseries-2.12 specific code with this patch.
While at it, also remove pre-3.0-migration hacks introduced for backward
compatibility which are now turned useless.
Suggested-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Reviewed-by: Cédric Le Goater <clg@redhat.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Use device_class_set_legacy_reset() instead of opencoding an
assignment to DeviceClass::reset. This change was produced
with:
spatch --macro-file scripts/cocci-macro-file.h \
--sp-file scripts/coccinelle/device-reset.cocci \
--keep-comments --smpl-spacing --in-place --dir hw
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20240830145812.1967042-8-peter.maydell@linaro.org
The decision to branch out to a slower SMT path in instruction
emulation will become a bit more complicated with the way that
"big-core" topology that will be implemented in subsequent changes.
Hide these details from the wider CPU emulation code with a bool
has_smt_siblings flag that can be set by machine initialisation.
Reviewed-by: Cédric Le Goater <clg@redhat.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
The way SMT thread siblings are matched is clunky, using hard-coded
logic that checks the PIR SPR.
Change that to use a new core_index variable in the CPUPPCState,
where all siblings have the same core_index. CPU realize routines have
flexibility in setting core/sibling topology.
Reviewed-by: Cédric Le Goater <clg@redhat.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
The POWER9 DD1 and POWER10 DD1 chips are not public and are no longer of
any use in QEMU. Remove them.
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
The initial MSR state for the OpenFirmware binding specifies
MSR[ME] and MSR[FP] are set.
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Prefer QDev API for QDev objects, avoid the underlying QOM layer.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Message-Id: <20240216110313.17039-4-philmd@linaro.org>
The character "+" is now forbidden in QOM device names (see commit
b447378e1217 - "Limit type names to alphanumerical and some few special
characters"). For the "power5+" and "power7+" CPU names, there is
currently a hack in type_name_is_valid() to still allow them for
compatibility reasons. However, there is a much nicer solution for this:
Simply use aliases! This way we can still support the old names without
the need for the ugly hack in type_name_is_valid().
Message-ID: <20240117141054.73841-2-thuth@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
CPUState::start_powered_off field is part of the internal
implementation of a QDev CPU. It is exposed as the QDev
"start-powered-off" property. External components should
use the qdev properties API to access it.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Message-Id: <20231123143813.42632-2-philmd@linaro.org>
Lower interrupts, delete timers, and set time facility registers
back to initial state on machine reset.
This is not so important for record-replay since timebase and
decrementer are migrated, but it gives a cleaner reset state.
Cc: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Cc: BALATON Zoltan <balaton@eik.bme.hu>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[ clg: checkpatch.pl fixes ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The Power ISA has the concept of sub-processors:
Hardware is allowed to sub-divide a multi-threaded processor into
"sub-processors" that appear to privileged programs as multi-threaded
processors with fewer threads.
POWER9 and POWER10 have two modes, either every thread is a
sub-processor or all threads appear as one multi-threaded processor. In
the user manuals these are known as "LPAR per thread" / "Thread LPAR",
and "LPAR per core" / "1 LPAR", respectively.
The practical difference is: in thread LPAR mode, non-hypervisor SPRs
are not shared between threads and msgsndp can not be used to message
siblings. In 1 LPAR mode, some SPRs are shared and msgsndp is usable.
Thrad LPAR allows multiple partitions to run concurrently on the same
core, and is a requirement for KVM to run on POWER9/10 (which does not
gang-schedule an LPAR on all threads of a core like POWER8 KVM).
Traditionally, SMT in PAPR environments including PowerVM and the
pseries QEMU machine with KVM acceleration behaves as in 1 LPAR mode.
In OPAL systems, Thread LPAR is used. When adding SMT to the powernv
machine, it is therefore preferable to emulate Thread LPAR.
To account for this difference between pseries and powernv, an LPAR mode
flag is added such that SPRs can be implemented as per-LPAR shared, and
that becomes either per-thread or per-core depending on the flag.
Reviewed-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Message-ID: <20230705120631.27670-2-npiggin@gmail.com>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
PPC TCG supports SMT CPU configurations for non-hypervisor state, so
permit POWER8-10 pseries machines to enable SMT.
This requires PIR and TIR be set, because that's how sibling thread
matching is done by TCG.
spapr's nested-HV capability does not currently coexist with SMT, so
that combination is prohibited (interestingly somewhat analogous to
LPAR-per-core mode on real hardware which also does not support KVM).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
[ clg: Also test smp_threads when checking for POWER8 CPU and above ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
POWER9 DD2.1 and earlier had significant limitations when running KVM,
including lack of "mixed mode" MMU support (ability to run HPT and RPT
mode on threads of the same core), and a translation prefetch issue
which is worked around by disabling "AIL" mode for the guest.
These processors are not widely available, and it's difficult to deal
with all these quirks in qemu +/- KVM, so create a POWER9 DD2.2 CPU
and make it the default POWER9 CPU.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.ibm.com>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Message-Id: <20230515160201.394587-1-npiggin@gmail.com>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
The timebase is allocated during spapr_realize_vcpu() and it's not
freed. This results in memory leaks when doing vcpu unplugs:
==636935==
==636935== 144 (96 direct, 48 indirect) bytes in 1 blocks are definitely lost in loss record 6
,461 of 8,135
==636935== at 0x4897468: calloc (vg_replace_malloc.c:760)
==636935== by 0x5077213: g_malloc0 (in /usr/lib64/libglib-2.0.so.0.6400.4)
==636935== by 0x507757F: g_malloc0_n (in /usr/lib64/libglib-2.0.so.0.6400.4)
==636935== by 0x93C3FB: cpu_ppc_tb_init (ppc.c:1066)
==636935== by 0x97BC2B: spapr_realize_vcpu (spapr_cpu_core.c:268)
==636935== by 0x97C01F: spapr_cpu_core_realize (spapr_cpu_core.c:337)
==636935== by 0xD4626F: device_set_realized (qdev.c:531)
==636935== by 0xD55273: property_set_bool (object.c:2273)
==636935== by 0xD523DF: object_property_set (object.c:1408)
==636935== by 0xD588B7: object_property_set_qobject (qom-qobject.c:28)
==636935== by 0xD52897: object_property_set_bool (object.c:1477)
==636935== by 0xD4579B: qdev_realize (qdev.c:333)
==636935==
This patch adds a cpu_ppc_tb_free() helper in hw/ppc/ppc.c to allow us
to free the timebase. This leak is then solved by calling
cpu_ppc_tb_free() in spapr_unrealize_vcpu().
Fixes: 6f4b5c3ec590 ("spapr: CPU hot unplug support")
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20220329124545.529145-2-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The spapr virtual hypervisor does not require the hdecr timer.
Remove it.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Message-Id: <20220216102545.1808018-3-npiggin@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
"PowerPC Processor binding to IEEE 1275" says in
"8.2.1. Initial Register Values" that the initial state is defined as
32bit so do it for both SLOF and VOF.
This should not cause behavioral change as SLOF switches to 64bit very
early anyway. As nothing enforces LE anywhere, this drops it for VOF.
The goal is to make VOF work with TCG as otherwise it barfs with
qemu: fatal: TCG hflags mismatch (current:0x6c000004 rebuilt:0x6c000000)
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220107072423.2278113-1-aik@ozlabs.ru>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This patch starts an IBM Power8+ compatible PMU implementation by adding
the representation of PMU events that we are going to sample,
PMUEventType. This enum represents a Perf event that is being sampled by
a specific counter 'sprn'. Events that aren't available (i.e. no event
was set in MMCR1) will be of type 'PMU_EVENT_INVALID'. Events that are
inactive due to frozen counter bits state are of type
'PMU_EVENT_INACTIVE'. Other types added in this patch are
PMU_EVENT_CYCLES and PMU_EVENT_INSTRUCTIONS. More types will be added
later on.
Let's also add the required PMU cycle overflow timers. They will be used
to trigger cycle overflows when cycle events are being sampled. This
timer will call cpu_ppc_pmu_timer_cb(), which in turn calls
fire_PMC_interrupt(). Both functions are stubs that will be implemented
later on when EBB support is added.
Two new helper files are created to host this new logic.
cpu_ppc_pmu_init() will init all overflow timers during CPU init time.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-2-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20210901094153.227671-3-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Use g_autoptr() with Object and g_autofree with the string to
avoid the need of a cleanup path.
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20210114180628.1675603-6-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Now that the error path of spapr_cpu_core_realize() is just to call
idempotent spapr_cpu_core_unrealize() for rollback, no need to create
and realize the vCPUs in two separate loops.
Merge them and do them same in spapr_cpu_core_unrealize() for symmetry.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <160279673321.1808373.2248221100790367912.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
spapr_cpu_core_realize() has a rollback path which partially duplicates
the code of spapr_cpu_core_unrealize().
Let's make spapr_cpu_core_unrealize() idempotent and call it instead. This
requires to:
- move the registration and unregistration of the reset handler around
but it is harmless,
- allocate the array of vCPUs with g_new0() to be able to filter out
unused slots,
- make sure to only unrealize vCPUs that have been already realized.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <160279672626.1808373.14142129300586424514.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The 'sc' argument is unused. Drop it.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <160279671929.1808373.10333672533575251075.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Since we introduced CPU hot-unplug in sPAPR, we don't unrealize the
vCPU objects explicitly. Instead, we let QOM handle that for us under
object_property_del_all() when the CPU core object is finalized. The
only thing we do is calling cpu_remove_sync() to tear the vCPU thread
down.
This happens to work but it is ugly because:
- we call qdev_realize() but the corresponding qdev_unrealize() is
buried deep in the QOM code
- we call cpu_remove_sync() to undo qemu_init_vcpu() called by
ppc_cpu_realize() in target/ppc/translate_init.c.inc
- the CPU init and teardown paths aren't really symmetrical
The latter didn't bite us so far but a future patch that greatly
simplifies the CPU core realize path needs it to avoid a crash
in QOM.
For all these reasons, have ppc_cpu_unrealize() to undo the changes
of ppc_cpu_realize() by calling cpu_remove_sync() at the right place,
and have the sPAPR CPU core code to call qdev_unrealize().
This requires to add a missing stub because translate_init.c.inc is
also compiled for user mode.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <160279671236.1808373.14732005038172874990.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When a CPU core is being removed, the machine specific data of each
CPU thread object is leaked.
Fix this by calling the dedicated helper we have for that instead of
simply unparenting the CPU object. Call it from a separate loop in
spapr_cpu_core_unrealize() for symmetry with spapr_cpu_core_realize().
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <160279670540.1808373.17319746576919615623.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
As recommended in "qapi/error.h", add a bool return value to
spapr_realize_vcpu() and use it in spapr_cpu_core_realize()
in order to get rid of the error propagation overhead.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <20200914123505.612812-12-groug@kaod.org>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
As recommended in "qapi/error.h", return true on success and false on
failure. This allows to reduce error propagation overhead in the callers.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <20200914123505.612812-11-groug@kaod.org>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
PowerPC sPAPR CPUs start in the halted state, and spapr_reset_vcpu()
attempts to implement this by setting CPUState::halted to 1. But that's too
late for the case of hotplugged CPUs in a machine configure with 2 or more
threads per core.
By then, other parts of QEMU have already caused the vCPU to run in an
unitialized state a couple of times. For example, ppc_cpu_reset() calls
ppc_tlb_invalidate_all(), which ends up calling async_run_on_cpu(). This
kicks the new vCPU while it has CPUState::halted = 0, causing QEMU to issue
a KVM_RUN ioctl on the new vCPU before the guest is able to make the
start-cpu RTAS call to initialize its register state.
This problem doesn't seem to cause visible issues for regular guests, but
on a secure guest running under the Ultravisor it does. The Ultravisor
relies on being able to snoop on the start-cpu RTAS call to map vCPUs to
guests, and this issue causes it to see a stray vCPU that doesn't belong to
any guest.
Fix by setting the start-powered-off CPUState property in
spapr_create_vcpu(), which makes cpu_common_reset() initialize
CPUState::halted to 1 at an earlier moment.
Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Message-Id: <20200826055535.951207-4-bauerman@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When all we do with an Error we receive into a local variable is
propagating to somewhere else, we can just as well receive it there
right away. The previous two commits did that for sufficiently simple
cases with Coccinelle. Do it for several more manually.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20200707160613.848843-37-armbru@redhat.com>
Convert
foo(..., &err);
if (err) {
...
}
to
if (!foo(..., &err)) {
...
}
for qdev_realize(), qdev_realize_and_unref(), qbus_realize() and their
wrappers isa_realize_and_unref(), pci_realize_and_unref(),
sysbus_realize(), sysbus_realize_and_unref(), usb_realize_and_unref().
Coccinelle script:
@@
identifier fun = {
isa_realize_and_unref, pci_realize_and_unref, qbus_realize,
qdev_realize, qdev_realize_and_unref, sysbus_realize,
sysbus_realize_and_unref, usb_realize_and_unref
};
expression list args, args2;
typedef Error;
Error *err;
@@
- fun(args, &err, args2);
- if (err)
+ if (!fun(args, &err, args2))
{
...
}
Chokes on hw/arm/musicpal.c's lcd_refresh() with the unhelpful error
message "no position information". Nothing to convert there; skipped.
Fails to convert hw/arm/armsse.c, because Coccinelle gets confused by
ARMSSE being used both as typedef and function-like macro there.
Converted manually.
A few line breaks tidied up manually.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Message-Id: <20200707160613.848843-5-armbru@redhat.com>
All remaining conversions to qdev_realize() are for bus-less devices.
Coccinelle script:
// only correct for bus-less @dev!
@@
expression errp;
expression dev;
@@
- qdev_init_nofail(dev);
+ qdev_realize(dev, NULL, &error_fatal);
@ depends on !(file in "hw/core/qdev.c") && !(file in "hw/core/bus.c")@
expression errp;
expression dev;
symbol true;
@@
- object_property_set_bool(OBJECT(dev), true, "realized", errp);
+ qdev_realize(DEVICE(dev), NULL, errp);
@ depends on !(file in "hw/core/qdev.c") && !(file in "hw/core/bus.c")@
expression errp;
expression dev;
symbol true;
@@
- object_property_set_bool(dev, true, "realized", errp);
+ qdev_realize(DEVICE(dev), NULL, errp);
Note that Coccinelle chokes on ARMSSE typedef vs. macro in
hw/arm/armsse.c. Worked around by temporarily renaming the macro for
the spatch run.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200610053247.1583243-57-armbru@redhat.com>
Devices may have component devices and buses.
Device realization may fail. Realization is recursive: a device's
realize() method realizes its components, and device_set_realized()
realizes its buses (which should in turn realize the devices on that
bus, except bus_set_realized() doesn't implement that, yet).
When realization of a component or bus fails, we need to roll back:
unrealize everything we realized so far. If any of these unrealizes
failed, the device would be left in an inconsistent state. Must not
happen.
device_set_realized() lets it happen: it ignores errors in the roll
back code starting at label child_realize_fail.
Since realization is recursive, unrealization must be recursive, too.
But how could a partly failed unrealize be rolled back? We'd have to
re-realize, which can fail. This design is fundamentally broken.
device_set_realized() does not roll back at all. Instead, it keeps
unrealizing, ignoring further errors.
It can screw up even for a device with no buses: if the lone
dc->unrealize() fails, it still unregisters vmstate, and calls
listeners' unrealize() callback.
bus_set_realized() does not roll back either. Instead, it stops
unrealizing.
Fortunately, no unrealize method can fail, as we'll see below.
To fix the design error, drop parameter @errp from all the unrealize
methods.
Any unrealize method that uses @errp now needs an update. This leads
us to unrealize() methods that can fail. Merely passing it to another
unrealize method cannot cause failure, though. Here are the ones that
do other things with @errp:
* virtio_serial_device_unrealize()
Fails when qbus_set_hotplug_handler() fails, but still does all the
other work. On failure, the device would stay realized with its
resources completely gone. Oops. Can't happen, because
qbus_set_hotplug_handler() can't actually fail here. Pass
&error_abort to qbus_set_hotplug_handler() instead.
* hw/ppc/spapr_drc.c's unrealize()
Fails when object_property_del() fails, but all the other work is
already done. On failure, the device would stay realized with its
vmstate registration gone. Oops. Can't happen, because
object_property_del() can't actually fail here. Pass &error_abort
to object_property_del() instead.
* spapr_phb_unrealize()
Fails and bails out when remove_drcs() fails, but other work is
already done. On failure, the device would stay realized with some
of its resources gone. Oops. remove_drcs() fails only when
chassis_from_bus()'s object_property_get_uint() fails, and it can't
here. Pass &error_abort to remove_drcs() instead.
Therefore, no unrealize method can fail before this patch.
device_set_realized()'s recursive unrealization via bus uses
object_property_set_bool(). Can't drop @errp there, so pass
&error_abort.
We similarly unrealize with object_property_set_bool() elsewhere,
always ignoring errors. Pass &error_abort instead.
Several unrealize methods no longer handle errors from other unrealize
methods: virtio_9p_device_unrealize(),
virtio_input_device_unrealize(), scsi_qdev_unrealize(), ...
Much of the deleted error handling looks wrong anyway.
One unrealize methods no longer ignore such errors:
usb_ehci_pci_exit().
Several realize methods no longer ignore errors when rolling back:
v9fs_device_realize_common(), pci_qdev_unrealize(),
spapr_phb_realize(), usb_qdev_realize(), vfio_ccw_realize(),
virtio_device_realize().
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200505152926.18877-17-armbru@redhat.com>
The only way object_property_add() can fail is when a property with
the same name already exists. Since our property names are all
hardcoded, failure is a programming error, and the appropriate way to
handle it is passing &error_abort.
Same for its variants, except for object_property_add_child(), which
additionally fails when the child already has a parent. Parentage is
also under program control, so this is a programming error, too.
We have a bit over 500 callers. Almost half of them pass
&error_abort, slightly fewer ignore errors, one test case handles
errors, and the remaining few callers pass them to their own callers.
The previous few commits demonstrated once again that ignoring
programming errors is a bad idea.
Of the few ones that pass on errors, several violate the Error API.
The Error ** argument must be NULL, &error_abort, &error_fatal, or a
pointer to a variable containing NULL. Passing an argument of the
latter kind twice without clearing it in between is wrong: if the
first call sets an error, it no longer points to NULL for the second
call. ich9_pm_add_properties(), sparc32_ledma_realize(),
sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize()
are wrong that way.
When the one appropriate choice of argument is &error_abort, letting
users pick the argument is a bad idea.
Drop parameter @errp and assert the preconditions instead.
There's one exception to "duplicate property name is a programming
error": the way object_property_add() implements the magic (and
undocumented) "automatic arrayification". Don't drop @errp there.
Instead, rename object_property_add() to object_property_try_add(),
and add the obvious wrapper object_property_add().
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200505152926.18877-15-armbru@redhat.com>
[Two semantic rebase conflicts resolved]
At the moment "pseries" starts in SLOF which only expects the FDT blob
pointer in r3. As we are going to introduce a OpenFirmware support in
QEMU, we will be booting OF clients directly and these expect a stack
pointer in r1, Linux looks at r3/r4 for the initramdisk location
(although vmlinux can find this from the device tree but zImage from
distro kernels cannot).
This extends spapr_cpu_set_entry_state() to take more registers. This
should cause no behavioral change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Message-Id: <20200310050733.29805-2-aik@ozlabs.ru>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
For the "pseries" machine, we use "virtual hypervisor" mode where we
only model the CPU in non-hypervisor privileged mode. This means that
we need guest physical addresses within the modelled cpu to be treated
as absolute physical addresses.
We used to do that by clearing LPCR[VPM0] and setting LPCR[RMLS] to a high
limit so that the old offset based translation for guest mode applied,
which does what we need. However, POWER9 has removed support for that
translation mode, which meant we had some ugly hacks to keep it working.
We now explicitly handle this sort of translation for virtual hypervisor
mode, so the hacks aren't necessary. We don't need to set VPM0 and RMLS
from the machine type code - they're now ignored in vhyp mode. On the cpu
side we don't need to allow LPCR[RMLS] to be set on POWER9 in vhyp mode -
that was only there to allow the hack on the machine side.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
SpaprInterruptControllerClass and PnvChipClass have an intc_create() method
that calls the appropriate routine, ie. icp_create() or xive_tctx_create(),
to establish the link between the VCPU and the presenter component of the
interrupt controller during realize.
There aren't any symmetrical call to be called when the VCPU gets unrealized
though. It is assumed that object_unparent() is the only thing to do.
This is questionable because the parenting logic around the CPU and
presenter objects is really an implementation detail of the interrupt
controller. It shouldn't be open-coded in the machine code.
Fix this by adding an intc_destroy() method that undoes what was done in
intc_create(). Also NULLify the presenter pointers to avoid having
stale pointers around. This will allow to reliably check if a vCPU has
a valid presenter.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <157192724208.3146912.7254684777515287626.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
On the sPAPR machine and PowerNV machine, the interrupt presenters are
created by a machine handler at the core level and are reset
independently. This is not consistent and it raises issues when it
comes to handle hot-plugged CPUs. In that case, the presenters are not
reset. This is less of an issue in XICS, although a zero MFFR could
be a concern, but in XIVE, the OS CAM line is not set and this breaks
the presenting algorithm. The current code has workarounds which need
a global cleanup.
Extend the sPAPR IRQ backend and the PowerNV Chip class with a new
cpu_intc_reset() handler called by the CPU reset handler and remove
the XiveTCTX reset handler which is now redundant.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20191022163812.330-6-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Since vCPUs aren't plugged into a bus, we manually register a reset
handler for each vCPU. We also call this handler at realize time
to ensure hot plugged vCPUs are reset before being exposed to the
guest. This results in vCPUs being reset twice at machine reset.
It doesn't break anything but it is slightly suboptimal and above
all confusing.
The hotplug path in device_set_realized() already knows how to reset
a hotplugged device if the device reset handler is present. Implement
one for sPAPR CPU cores that resets all vCPUs under a core.
While here rename spapr_cpu_reset() to spapr_reset_vcpu() for
consistency with spapr_realize_vcpu() and spapr_unrealize_vcpu().
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
[clg: add documentation on the reset helper usage ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20191022163812.330-3-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This change prepares ground for future changes which will reset the
interrupt presenter in the reset handler of the sPAPR and PowerNV
cores.
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20191022163812.330-2-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This method essentially represents code which belongs to the interrupt
controller, but needs to be called on all possible intcs, rather than
just the currently active one. The "dual" version therefore calls
into the xics and xive versions confusingly.
Handle this more directly, by making it instead a method on the intc
backend, and always calling it on every backend that exists.
While we're there, streamline the error reporting a bit.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
A recent change in spapr_machine_reset() showed that resetting the compat
mode in spapr_machine_reset() for the boot vCPU and in spapr_cpu_reset()
for all other vCPUs was fragile. The fix was thus to reset the compat mode
for all vCPUs in spapr_machine_reset(), but we still have to propagate
it to hot-plugged CPUs. This is still performed from spapr_cpu_reset(),
hence resulting in ppc_set_compat() being called twice for every vCPU at
machine reset. Apart from wasting cycles, which isn't really an issue
during machine reset, this seems to indicate that spapr_cpu_reset() isn't
the best place to set the compat mode.
A natural candidate for CPU-hotplug specific code is spapr_core_plug().
Also, it sits in the same file as spapr_machine_reset() : this makes
it easier for someone who wants to know when the compat PVR is set.
Call ppc_set_compat() from there. This doesn't need to be done for
initial vCPUs since the compat PVR is 0 and spapr_machine_reset() sets
the appropriate value later. No need to do this on manually added vCPUS
on the destination QEMU during migration since the compat PVR is
part of the migrated vCPU state. Both conditions can be checked with
spapr_drc_hotplugged().
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156701285312.499757.7807417667750711711.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
If we a migrate P8 machine to a P9 machine, the migration fails on
destination with:
error while loading state for instance 0x1 of device 'cpu'
load of migration failed: Operation not permitted
This is caused because the compat_pvr field is only present for the first
CPU.
Originally, spapr_machine_reset() calls ppc_set_compat() to set the value
max_compat_pvr for the first cpu and this was propagated to all CPUs by
spapr_cpu_reset(). Now, as spapr_cpu_reset() is called before that, the
value is not propagated to all CPUs and the migration fails.
To fix that, propagate the new value to all CPUs in spapr_machine_reset().
Fixes: 25c9780d38d4 ("spapr: Reset CAS & IRQ subsystem after devices")
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Message-Id: <20190826090812.19080-1-lvivier@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
hw/boards.h pulls in almost 60 headers. The less we include it into
headers, the better. As a first step, drop superfluous inclusions,
and downgrade some more to what's actually needed. Gets rid of just
one inclusion into a header.
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-23-armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
In my "build everything" tree, changing hw/qdev-properties.h triggers
a recompile of some 2700 out of 6600 objects (not counting tests and
objects that don't depend on qemu/osdep.h).
Many places including hw/qdev-properties.h (directly or via hw/qdev.h)
actually need only hw/qdev-core.h. Include hw/qdev-core.h there
instead.
hw/qdev.h is actually pointless: all it does is include hw/qdev-core.h
and hw/qdev-properties.h, which in turn includes hw/qdev-core.h.
Replace the remaining uses of hw/qdev.h by hw/qdev-properties.h.
While there, delete a few superfluous inclusions of hw/qdev-core.h.
Touching hw/qdev-properties.h now recompiles some 1200 objects.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Daniel P. Berrangé" <berrange@redhat.com>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20190812052359.30071-22-armbru@redhat.com>
In my "build everything" tree, changing migration/vmstate.h triggers a
recompile of some 2700 out of 6600 objects (not counting tests and
objects that don't depend on qemu/osdep.h).
hw/hw.h supposedly includes it for convenience. Several other headers
include it just to get VMStateDescription. The previous commit made
that unnecessary.
Include migration/vmstate.h only where it's still needed. Touching it
now recompiles only some 1600 objects.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-16-armbru@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
In my "build everything" tree, changing sysemu/reset.h triggers a
recompile of some 2600 out of 6600 objects (not counting tests and
objects that don't depend on qemu/osdep.h).
The main culprit is hw/hw.h, which supposedly includes it for
convenience.
Include sysemu/reset.h only where it's needed. Touching it now
recompiles less than 200 objects.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20190812052359.30071-9-armbru@redhat.com>