spapr_nvram: Enable migration

The only case when sPAPR NVRAM migrates now is if is backed by a file and
copy-storage migration is performed. In other cases NVRAM does not
migrate regardless whether it is backed by a file or not.

This enables shadow copy of NVRAM in RAM which is read from a file
(if used) and used for reads. Writes to NVRAM are mirrored to the file.

This defines a VMSTATE descriptor for NVRAM device so the memory copy
of NVRAM can migrate and be flushed to a backing file on the destination
if one is specified.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
This commit is contained in:
Alexey Kardashevskiy 2014-10-02 19:56:03 +10:00 committed by Alexander Graf
parent 016f775898
commit f58aa48314

View File

@ -52,7 +52,6 @@ static void rtas_nvram_fetch(PowerPCCPU *cpu, sPAPREnvironment *spapr,
{ {
sPAPRNVRAM *nvram = spapr->nvram; sPAPRNVRAM *nvram = spapr->nvram;
hwaddr offset, buffer, len; hwaddr offset, buffer, len;
int alen;
void *membuf; void *membuf;
if ((nargs != 3) || (nret != 2)) { if ((nargs != 3) || (nret != 2)) {
@ -77,19 +76,14 @@ static void rtas_nvram_fetch(PowerPCCPU *cpu, sPAPREnvironment *spapr,
return; return;
} }
membuf = cpu_physical_memory_map(buffer, &len, 1); assert(nvram->buf);
if (nvram->blk) {
alen = blk_pread(nvram->blk, offset, membuf, len);
} else {
assert(nvram->buf);
memcpy(membuf, nvram->buf + offset, len); membuf = cpu_physical_memory_map(buffer, &len, 1);
alen = len; memcpy(membuf, nvram->buf + offset, len);
}
cpu_physical_memory_unmap(membuf, len, 1, len); cpu_physical_memory_unmap(membuf, len, 1, len);
rtas_st(rets, 0, (alen < len) ? RTAS_OUT_HW_ERROR : RTAS_OUT_SUCCESS); rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, (alen < 0) ? 0 : alen); rtas_st(rets, 1, len);
} }
static void rtas_nvram_store(PowerPCCPU *cpu, sPAPREnvironment *spapr, static void rtas_nvram_store(PowerPCCPU *cpu, sPAPREnvironment *spapr,
@ -123,14 +117,15 @@ static void rtas_nvram_store(PowerPCCPU *cpu, sPAPREnvironment *spapr,
} }
membuf = cpu_physical_memory_map(buffer, &len, 0); membuf = cpu_physical_memory_map(buffer, &len, 0);
alen = len;
if (nvram->blk) { if (nvram->blk) {
alen = blk_pwrite(nvram->blk, offset, membuf, len); alen = blk_pwrite(nvram->blk, offset, membuf, len);
} else {
assert(nvram->buf);
memcpy(nvram->buf + offset, membuf, len);
alen = len;
} }
assert(nvram->buf);
memcpy(nvram->buf + offset, membuf, len);
cpu_physical_memory_unmap(membuf, len, 0, len); cpu_physical_memory_unmap(membuf, len, 0, len);
rtas_st(rets, 0, (alen < len) ? RTAS_OUT_HW_ERROR : RTAS_OUT_SUCCESS); rtas_st(rets, 0, (alen < len) ? RTAS_OUT_HW_ERROR : RTAS_OUT_SUCCESS);
@ -145,15 +140,24 @@ static int spapr_nvram_init(VIOsPAPRDevice *dev)
nvram->size = blk_getlength(nvram->blk); nvram->size = blk_getlength(nvram->blk);
} else { } else {
nvram->size = DEFAULT_NVRAM_SIZE; nvram->size = DEFAULT_NVRAM_SIZE;
nvram->buf = g_malloc0(nvram->size);
} }
nvram->buf = g_malloc0(nvram->size);
if ((nvram->size < MIN_NVRAM_SIZE) || (nvram->size > MAX_NVRAM_SIZE)) { if ((nvram->size < MIN_NVRAM_SIZE) || (nvram->size > MAX_NVRAM_SIZE)) {
fprintf(stderr, "spapr-nvram must be between %d and %d bytes in size\n", fprintf(stderr, "spapr-nvram must be between %d and %d bytes in size\n",
MIN_NVRAM_SIZE, MAX_NVRAM_SIZE); MIN_NVRAM_SIZE, MAX_NVRAM_SIZE);
return -1; return -1;
} }
if (nvram->blk) {
int alen = blk_pread(nvram->blk, 0, nvram->buf, nvram->size);
if (alen != nvram->size) {
return -1;
}
}
spapr_rtas_register(RTAS_NVRAM_FETCH, "nvram-fetch", rtas_nvram_fetch); spapr_rtas_register(RTAS_NVRAM_FETCH, "nvram-fetch", rtas_nvram_fetch);
spapr_rtas_register(RTAS_NVRAM_STORE, "nvram-store", rtas_nvram_store); spapr_rtas_register(RTAS_NVRAM_STORE, "nvram-store", rtas_nvram_store);
@ -167,6 +171,48 @@ static int spapr_nvram_devnode(VIOsPAPRDevice *dev, void *fdt, int node_off)
return fdt_setprop_cell(fdt, node_off, "#bytes", nvram->size); return fdt_setprop_cell(fdt, node_off, "#bytes", nvram->size);
} }
static int spapr_nvram_pre_load(void *opaque)
{
sPAPRNVRAM *nvram = VIO_SPAPR_NVRAM(opaque);
g_free(nvram->buf);
nvram->buf = NULL;
nvram->size = 0;
return 0;
}
static int spapr_nvram_post_load(void *opaque, int version_id)
{
sPAPRNVRAM *nvram = VIO_SPAPR_NVRAM(opaque);
if (nvram->blk) {
int alen = blk_pwrite(nvram->blk, 0, nvram->buf, nvram->size);
if (alen < 0) {
return alen;
}
if (alen != nvram->size) {
return -1;
}
}
return 0;
}
static const VMStateDescription vmstate_spapr_nvram = {
.name = "spapr_nvram",
.version_id = 1,
.minimum_version_id = 1,
.pre_load = spapr_nvram_pre_load,
.post_load = spapr_nvram_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(size, sPAPRNVRAM),
VMSTATE_VBUFFER_ALLOC_UINT32(buf, sPAPRNVRAM, 1, NULL, 0, size),
VMSTATE_END_OF_LIST()
},
};
static Property spapr_nvram_properties[] = { static Property spapr_nvram_properties[] = {
DEFINE_SPAPR_PROPERTIES(sPAPRNVRAM, sdev), DEFINE_SPAPR_PROPERTIES(sPAPRNVRAM, sdev),
DEFINE_PROP_DRIVE("drive", sPAPRNVRAM, blk), DEFINE_PROP_DRIVE("drive", sPAPRNVRAM, blk),
@ -185,6 +231,7 @@ static void spapr_nvram_class_init(ObjectClass *klass, void *data)
k->dt_compatible = "qemu,spapr-nvram"; k->dt_compatible = "qemu,spapr-nvram";
set_bit(DEVICE_CATEGORY_MISC, dc->categories); set_bit(DEVICE_CATEGORY_MISC, dc->categories);
dc->props = spapr_nvram_properties; dc->props = spapr_nvram_properties;
dc->vmsd = &vmstate_spapr_nvram;
} }
static const TypeInfo spapr_nvram_type_info = { static const TypeInfo spapr_nvram_type_info = {