Break out documentation to docs/devel/.

Add support for pattern groups.
 Other misc cleanups for multiple decode functions.
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABAgAGBQJch+V5AAoJEGTfOOivfiFfsFsH/1KW6UWAiieZ1+HPYEp24Ku8
 hCNxlfj0iKe1ZEuC8qp2U27GzePi71IlIJ7p5AuAhiTQBBWz8bPzJJUALm3EliaI
 V4/13fLnTYALnPWoUJclU5frdHBhpIWxFUtnLdB50dSU1cTbFFyS+63JsW3wSSXt
 UqntlhSsAmAQr3ULnKufwDZQJgQoft/8G4YzvMOm/7E0ZeV3B9mARAkn6m/30gLx
 nXgLI2OQrA1ATLeTfzNRup9G+YjLx0nW2LRhAseIWcQAW8PyfJsfW6tJeou93+bf
 fK6BkLMgor74QH37Y3u7KVJGJ04u2Gtu0p2JzBA9MU/0l07WihWPA0eJGnP396I=
 =BxBC
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/rth/tags/pull-dt-20190312' into staging

Break out documentation to docs/devel/.
Add support for pattern groups.
Other misc cleanups for multiple decode functions.

# gpg: Signature made Tue 12 Mar 2019 16:59:37 GMT
# gpg:                using RSA key 64DF38E8AF7E215F
# gpg: Good signature from "Richard Henderson <richard.henderson@linaro.org>" [full]
# Primary key fingerprint: 7A48 1E78 868B 4DB6 A85A  05C0 64DF 38E8 AF7E 215F

* remotes/rth/tags/pull-dt-20190312:
  decodetree: Properly diagnose fields overflowing an insn
  decodetree: Prefix extract function names with decode_function
  decodetree: Allow +- to begin a number initializing a field
  decodetree: Produce clean output for an empty input file
  decodetree: Add --static-decode option
  test/decode: Add tests for PatternGroups
  decodetree: Allow grouping of overlapping patterns
  decodetree: Do not unconditionaly return from Pattern.output_code
  decodetree: Ensure build_tree does not include values outside insnmask
  decodetree: Document the usefulness of argument sets
  decodetree: Move documentation to docs/devel/decodetree.rst
  MAINTAINERS: Add scripts/decodetree.py to the TCG section

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2019-03-13 13:09:38 +00:00
commit f39901d59f
15 changed files with 483 additions and 169 deletions

View File

@ -117,6 +117,8 @@ F: cpus.c
F: exec.c
F: accel/tcg/
F: accel/stubs/tcg-stub.c
F: scripts/decodetree.py
F: docs/devel/decodetree.rst
F: include/exec/cpu*.h
F: include/exec/exec-all.h
F: include/exec/helper*.h

221
docs/devel/decodetree.rst Normal file
View File

@ -0,0 +1,221 @@
========================
Decodetree Specification
========================
A *decodetree* is built from instruction *patterns*. A pattern may
represent a single architectural instruction or a group of same, depending
on what is convenient for further processing.
Each pattern has both *fixedbits* and *fixedmask*, the combination of which
describes the condition under which the pattern is matched::
(insn & fixedmask) == fixedbits
Each pattern may have *fields*, which are extracted from the insn and
passed along to the translator. Examples of such are registers,
immediates, and sub-opcodes.
In support of patterns, one may declare *fields*, *argument sets*, and
*formats*, each of which may be re-used to simplify further definitions.
Fields
======
Syntax::
field_def := '%' identifier ( unnamed_field )+ ( !function=identifier )?
unnamed_field := number ':' ( 's' ) number
For *unnamed_field*, the first number is the least-significant bit position
of the field and the second number is the length of the field. If the 's' is
present, the field is considered signed. If multiple ``unnamed_fields`` are
present, they are concatenated. In this way one can define disjoint fields.
If ``!function`` is specified, the concatenated result is passed through the
named function, taking and returning an integral value.
FIXME: the fields of the structure into which this result will be stored
is restricted to ``int``. Which means that we cannot expand 64-bit items.
Field examples:
+---------------------------+---------------------------------------------+
| Input | Generated code |
+===========================+=============================================+
| %disp 0:s16 | sextract(i, 0, 16) |
+---------------------------+---------------------------------------------+
| %imm9 16:6 10:3 | extract(i, 16, 6) << 3 | extract(i, 10, 3) |
+---------------------------+---------------------------------------------+
| %disp12 0:s1 1:1 2:10 | sextract(i, 0, 1) << 11 | |
| | extract(i, 1, 1) << 10 | |
| | extract(i, 2, 10) |
+---------------------------+---------------------------------------------+
| %shimm8 5:s8 13:1 | expand_shimm8(sextract(i, 5, 8) << 1 | |
| !function=expand_shimm8 | extract(i, 13, 1)) |
+---------------------------+---------------------------------------------+
Argument Sets
=============
Syntax::
args_def := '&' identifier ( args_elt )+ ( !extern )?
args_elt := identifier
Each *args_elt* defines an argument within the argument set.
Each argument set will be rendered as a C structure "arg_$name"
with each of the fields being one of the member arguments.
If ``!extern`` is specified, the backing structure is assumed
to have been already declared, typically via a second decoder.
Argument sets are useful when one wants to define helper functions
for the translator functions that can perform operations on a common
set of arguments. This can ensure, for instance, that the ``AND``
pattern and the ``OR`` pattern put their operands into the same named
structure, so that a common ``gen_logic_insn`` may be able to handle
the operations common between the two.
Argument set examples::
&reg3 ra rb rc
&loadstore reg base offset
Formats
=======
Syntax::
fmt_def := '@' identifier ( fmt_elt )+
fmt_elt := fixedbit_elt | field_elt | field_ref | args_ref
fixedbit_elt := [01.-]+
field_elt := identifier ':' 's'? number
field_ref := '%' identifier | identifier '=' '%' identifier
args_ref := '&' identifier
Defining a format is a handy way to avoid replicating groups of fields
across many instruction patterns.
A *fixedbit_elt* describes a contiguous sequence of bits that must
be 1, 0, or don't care. The difference between '.' and '-'
is that '.' means that the bit will be covered with a field or a
final 0 or 1 from the pattern, and '-' means that the bit is really
ignored by the cpu and will not be specified.
A *field_elt* describes a simple field only given a width; the position of
the field is implied by its position with respect to other *fixedbit_elt*
and *field_elt*.
If any *fixedbit_elt* or *field_elt* appear, then all bits must be defined.
Padding with a *fixedbit_elt* of all '.' is an easy way to accomplish that.
A *field_ref* incorporates a field by reference. This is the only way to
add a complex field to a format. A field may be renamed in the process
via assignment to another identifier. This is intended to allow the
same argument set be used with disjoint named fields.
A single *args_ref* may specify an argument set to use for the format.
The set of fields in the format must be a subset of the arguments in
the argument set. If an argument set is not specified, one will be
inferred from the set of fields.
It is recommended, but not required, that all *field_ref* and *args_ref*
appear at the end of the line, not interleaving with *fixedbit_elf* or
*field_elt*.
Format examples::
@opr ...... ra:5 rb:5 ... 0 ....... rc:5
@opi ...... ra:5 lit:8 1 ....... rc:5
Patterns
========
Syntax::
pat_def := identifier ( pat_elt )+
pat_elt := fixedbit_elt | field_elt | field_ref | args_ref | fmt_ref | const_elt
fmt_ref := '@' identifier
const_elt := identifier '=' number
The *fixedbit_elt* and *field_elt* specifiers are unchanged from formats.
A pattern that does not specify a named format will have one inferred
from a referenced argument set (if present) and the set of fields.
A *const_elt* allows a argument to be set to a constant value. This may
come in handy when fields overlap between patterns and one has to
include the values in the *fixedbit_elt* instead.
The decoder will call a translator function for each pattern matched.
Pattern examples::
addl_r 010000 ..... ..... .... 0000000 ..... @opr
addl_i 010000 ..... ..... .... 0000000 ..... @opi
which will, in part, invoke::
trans_addl_r(ctx, &arg_opr, insn)
and::
trans_addl_i(ctx, &arg_opi, insn)
Pattern Groups
==============
Syntax::
group := '{' ( pat_def | group )+ '}'
A *group* begins with a lone open-brace, with all subsequent lines
indented two spaces, and ending with a lone close-brace. Groups
may be nested, increasing the required indentation of the lines
within the nested group to two spaces per nesting level.
Unlike ungrouped patterns, grouped patterns are allowed to overlap.
Conflicts are resolved by selecting the patterns in order. If all
of the fixedbits for a pattern match, its translate function will
be called. If the translate function returns false, then subsequent
patterns within the group will be matched.
The following example from PA-RISC shows specialization of the *or*
instruction::
{
{
nop 000010 ----- ----- 0000 001001 0 00000
copy 000010 00000 r1:5 0000 001001 0 rt:5
}
or 000010 rt2:5 r1:5 cf:4 001001 0 rt:5
}
When the *cf* field is zero, the instruction has no side effects,
and may be specialized. When the *rt* field is zero, the output
is discarded and so the instruction has no effect. When the *rt2*
field is zero, the operation is ``reg[rt] | 0`` and so encodes
the canonical register copy operation.
The output from the generator might look like::
switch (insn & 0xfc000fe0) {
case 0x08000240:
/* 000010.. ........ ....0010 010..... */
if ((insn & 0x0000f000) == 0x00000000) {
/* 000010.. ........ 00000010 010..... */
if ((insn & 0x0000001f) == 0x00000000) {
/* 000010.. ........ 00000010 01000000 */
extract_decode_Fmt_0(&u.f_decode0, insn);
if (trans_nop(ctx, &u.f_decode0)) return true;
}
if ((insn & 0x03e00000) == 0x00000000) {
/* 00001000 000..... 00000010 010..... */
extract_decode_Fmt_1(&u.f_decode1, insn);
if (trans_copy(ctx, &u.f_decode1)) return true;
}
}
extract_decode_Fmt_2(&u.f_decode2, insn);
if (trans_or(ctx, &u.f_decode2)) return true;
return false;
}

View File

@ -19,4 +19,4 @@ Contents:
migration
stable-process
testing
decodetree

View File

@ -17,139 +17,7 @@
#
# Generate a decoding tree from a specification file.
#
# The tree is built from instruction "patterns". A pattern may represent
# a single architectural instruction or a group of same, depending on what
# is convenient for further processing.
#
# Each pattern has "fixedbits" & "fixedmask", the combination of which
# describes the condition under which the pattern is matched:
#
# (insn & fixedmask) == fixedbits
#
# Each pattern may have "fields", which are extracted from the insn and
# passed along to the translator. Examples of such are registers,
# immediates, and sub-opcodes.
#
# In support of patterns, one may declare fields, argument sets, and
# formats, each of which may be re-used to simplify further definitions.
#
# *** Field syntax:
#
# field_def := '%' identifier ( unnamed_field )+ ( !function=identifier )?
# unnamed_field := number ':' ( 's' ) number
#
# For unnamed_field, the first number is the least-significant bit position of
# the field and the second number is the length of the field. If the 's' is
# present, the field is considered signed. If multiple unnamed_fields are
# present, they are concatenated. In this way one can define disjoint fields.
#
# If !function is specified, the concatenated result is passed through the
# named function, taking and returning an integral value.
#
# FIXME: the fields of the structure into which this result will be stored
# is restricted to "int". Which means that we cannot expand 64-bit items.
#
# Field examples:
#
# %disp 0:s16 -- sextract(i, 0, 16)
# %imm9 16:6 10:3 -- extract(i, 16, 6) << 3 | extract(i, 10, 3)
# %disp12 0:s1 1:1 2:10 -- sextract(i, 0, 1) << 11
# | extract(i, 1, 1) << 10
# | extract(i, 2, 10)
# %shimm8 5:s8 13:1 !function=expand_shimm8
# -- expand_shimm8(sextract(i, 5, 8) << 1
# | extract(i, 13, 1))
#
# *** Argument set syntax:
#
# args_def := '&' identifier ( args_elt )+ ( !extern )?
# args_elt := identifier
#
# Each args_elt defines an argument within the argument set.
# Each argument set will be rendered as a C structure "arg_$name"
# with each of the fields being one of the member arguments.
#
# If !extern is specified, the backing structure is assumed to
# have been already declared, typically via a second decoder.
#
# Argument set examples:
#
# &reg3 ra rb rc
# &loadstore reg base offset
#
# *** Format syntax:
#
# fmt_def := '@' identifier ( fmt_elt )+
# fmt_elt := fixedbit_elt | field_elt | field_ref | args_ref
# fixedbit_elt := [01.-]+
# field_elt := identifier ':' 's'? number
# field_ref := '%' identifier | identifier '=' '%' identifier
# args_ref := '&' identifier
#
# Defining a format is a handy way to avoid replicating groups of fields
# across many instruction patterns.
#
# A fixedbit_elt describes a contiguous sequence of bits that must
# be 1, 0, [.-] for don't care. The difference between '.' and '-'
# is that '.' means that the bit will be covered with a field or a
# final [01] from the pattern, and '-' means that the bit is really
# ignored by the cpu and will not be specified.
#
# A field_elt describes a simple field only given a width; the position of
# the field is implied by its position with respect to other fixedbit_elt
# and field_elt.
#
# If any fixedbit_elt or field_elt appear then all bits must be defined.
# Padding with a fixedbit_elt of all '.' is an easy way to accomplish that.
#
# A field_ref incorporates a field by reference. This is the only way to
# add a complex field to a format. A field may be renamed in the process
# via assignment to another identifier. This is intended to allow the
# same argument set be used with disjoint named fields.
#
# A single args_ref may specify an argument set to use for the format.
# The set of fields in the format must be a subset of the arguments in
# the argument set. If an argument set is not specified, one will be
# inferred from the set of fields.
#
# It is recommended, but not required, that all field_ref and args_ref
# appear at the end of the line, not interleaving with fixedbit_elf or
# field_elt.
#
# Format examples:
#
# @opr ...... ra:5 rb:5 ... 0 ....... rc:5
# @opi ...... ra:5 lit:8 1 ....... rc:5
#
# *** Pattern syntax:
#
# pat_def := identifier ( pat_elt )+
# pat_elt := fixedbit_elt | field_elt | field_ref
# | args_ref | fmt_ref | const_elt
# fmt_ref := '@' identifier
# const_elt := identifier '=' number
#
# The fixedbit_elt and field_elt specifiers are unchanged from formats.
# A pattern that does not specify a named format will have one inferred
# from a referenced argument set (if present) and the set of fields.
#
# A const_elt allows a argument to be set to a constant value. This may
# come in handy when fields overlap between patterns and one has to
# include the values in the fixedbit_elt instead.
#
# The decoder will call a translator function for each pattern matched.
#
# Pattern examples:
#
# addl_r 010000 ..... ..... .... 0000000 ..... @opr
# addl_i 010000 ..... ..... .... 0000000 ..... @opi
#
# which will, in part, invoke
#
# trans_addl_r(ctx, &arg_opr, insn)
# and
# trans_addl_i(ctx, &arg_opi, insn)
# See the syntax and semantics in docs/devel/decodetree.rst.
#
import os
@ -163,6 +31,7 @@ fields = {}
arguments = {}
formats = {}
patterns = []
allpatterns = []
translate_prefix = 'trans'
translate_scope = 'static '
@ -432,13 +301,7 @@ class General:
self.fields = flds
def __str__(self):
r = self.name
if self.base:
r = r + ' ' + self.base.name
else:
r = r + ' ' + str(self.fields)
r = r + ' ' + str_match_bits(self.fixedbits, self.fixedmask)
return r
return self.name + ' ' + str_match_bits(self.fixedbits, self.fixedmask)
def str1(self, i):
return str_indent(i) + self.__str__()
@ -449,7 +312,8 @@ class Format(General):
"""Class representing an instruction format"""
def extract_name(self):
return 'extract_' + self.name
global decode_function
return decode_function + '_extract_' + self.name
def output_extract(self):
output('static void ', self.extract_name(), '(',
@ -480,11 +344,52 @@ class Pattern(General):
output(ind, self.base.extract_name(), '(&u.f_', arg, ', insn);\n')
for n, f in self.fields.items():
output(ind, 'u.f_', arg, '.', n, ' = ', f.str_extract(), ';\n')
output(ind, 'return ', translate_prefix, '_', self.name,
'(ctx, &u.f_', arg, ');\n')
output(ind, 'if (', translate_prefix, '_', self.name,
'(ctx, &u.f_', arg, ')) return true;\n')
# end Pattern
class MultiPattern(General):
"""Class representing an overlapping set of instruction patterns"""
def __init__(self, lineno, pats, fixb, fixm, udfm):
self.file = input_file
self.lineno = lineno
self.pats = pats
self.base = None
self.fixedbits = fixb
self.fixedmask = fixm
self.undefmask = udfm
def __str__(self):
r = "{"
for p in self.pats:
r = r + ' ' + str(p)
return r + "}"
def output_decl(self):
for p in self.pats:
p.output_decl()
def output_code(self, i, extracted, outerbits, outermask):
global translate_prefix
ind = str_indent(i)
for p in self.pats:
if outermask != p.fixedmask:
innermask = p.fixedmask & ~outermask
innerbits = p.fixedbits & ~outermask
output(ind, 'if ((insn & ',
'0x{0:08x}) == 0x{1:08x}'.format(innermask, innerbits),
') {\n')
output(ind, ' /* ',
str_match_bits(p.fixedbits, p.fixedmask), ' */\n')
p.output_code(i + 4, extracted, p.fixedbits, p.fixedmask)
output(ind, '}\n')
else:
p.output_code(i, extracted, p.fixedbits, p.fixedmask)
#end MultiPattern
def parse_field(lineno, name, toks):
"""Parse one instruction field from TOKS at LINENO"""
global fields
@ -637,6 +542,7 @@ def parse_generic(lineno, is_format, name, toks):
global arguments
global formats
global patterns
global allpatterns
global re_ident
global insnwidth
global insnmask
@ -684,7 +590,7 @@ def parse_generic(lineno, is_format, name, toks):
continue
# 'Foo=number' sets an argument field to a constant value
if re_fullmatch(re_ident + '=[0-9]+', t):
if re_fullmatch(re_ident + '=[+-]?[0-9]+', t):
(fname, value) = t.split('=')
value = int(value)
flds = add_field(lineno, flds, fname, ConstField(value))
@ -716,6 +622,8 @@ def parse_generic(lineno, is_format, name, toks):
sign = True
flen = flen[1:]
shift = int(flen, 10)
if shift + width > insnwidth:
error(lineno, 'field {0} exceeds insnwidth'.format(fname))
f = Field(sign, insnwidth - width - shift, shift)
flds = add_field(lineno, flds, fname, f)
fixedbits <<= shift
@ -781,6 +689,7 @@ def parse_generic(lineno, is_format, name, toks):
pat = Pattern(name, lineno, fmt, fixedbits, fixedmask,
undefmask, fieldmask, flds)
patterns.append(pat)
allpatterns.append(pat)
# Validate the masks that we have assembled.
if fieldmask & fixedmask:
@ -799,17 +708,66 @@ def parse_generic(lineno, is_format, name, toks):
.format(allbits ^ insnmask))
# end parse_general
def build_multi_pattern(lineno, pats):
"""Validate the Patterns going into a MultiPattern."""
global patterns
global insnmask
if len(pats) < 2:
error(lineno, 'less than two patterns within braces')
fixedmask = insnmask
undefmask = insnmask
# Collect fixed/undefmask for all of the children.
# Move the defining lineno back to that of the first child.
for p in pats:
fixedmask &= p.fixedmask
undefmask &= p.undefmask
if p.lineno < lineno:
lineno = p.lineno
repeat = True
while repeat:
if fixedmask == 0:
error(lineno, 'no overlap in patterns within braces')
fixedbits = None
for p in pats:
thisbits = p.fixedbits & fixedmask
if fixedbits is None:
fixedbits = thisbits
elif fixedbits != thisbits:
fixedmask &= ~(fixedbits ^ thisbits)
break
else:
repeat = False
mp = MultiPattern(lineno, pats, fixedbits, fixedmask, undefmask)
patterns.append(mp)
# end build_multi_pattern
def parse_file(f):
"""Parse all of the patterns within a file"""
global patterns
# Read all of the lines of the file. Concatenate lines
# ending in backslash; discard empty lines and comments.
toks = []
lineno = 0
nesting = 0
saved_pats = []
for line in f:
lineno += 1
# Expand and strip spaces, to find indent.
line = line.rstrip()
line = line.expandtabs()
len1 = len(line)
line = line.lstrip()
len2 = len(line)
# Discard comments
end = line.find('#')
if end >= 0:
@ -819,10 +777,18 @@ def parse_file(f):
if len(toks) != 0:
# Next line after continuation
toks.extend(t)
elif len(t) == 0:
# Empty line
continue
else:
# Allow completely blank lines.
if len1 == 0:
continue
indent = len1 - len2
# Empty line due to comment.
if len(t) == 0:
# Indentation must be correct, even for comment lines.
if indent != nesting:
error(lineno, 'indentation ', indent, ' != ', nesting)
continue
start_lineno = lineno
toks = t
# Continuation?
@ -830,21 +796,47 @@ def parse_file(f):
toks.pop()
continue
if len(toks) < 2:
error(lineno, 'short line')
name = toks[0]
del toks[0]
# End nesting?
if name == '}':
if nesting == 0:
error(start_lineno, 'mismatched close brace')
if len(toks) != 0:
error(start_lineno, 'extra tokens after close brace')
nesting -= 2
if indent != nesting:
error(start_lineno, 'indentation ', indent, ' != ', nesting)
pats = patterns
patterns = saved_pats.pop()
build_multi_pattern(lineno, pats)
toks = []
continue
# Everything else should have current indentation.
if indent != nesting:
error(start_lineno, 'indentation ', indent, ' != ', nesting)
# Start nesting?
if name == '{':
if len(toks) != 0:
error(start_lineno, 'extra tokens after open brace')
saved_pats.append(patterns)
patterns = []
nesting += 2
toks = []
continue
# Determine the type of object needing to be parsed.
if name[0] == '%':
parse_field(lineno, name[1:], toks)
parse_field(start_lineno, name[1:], toks)
elif name[0] == '&':
parse_arguments(lineno, name[1:], toks)
parse_arguments(start_lineno, name[1:], toks)
elif name[0] == '@':
parse_generic(lineno, True, name[1:], toks)
parse_generic(start_lineno, True, name[1:], toks)
else:
parse_generic(lineno, False, name, toks)
parse_generic(start_lineno, False, name, toks)
toks = []
# end parse_file
@ -909,23 +901,22 @@ class Tree:
output(ind, ' /* ',
str_match_bits(innerbits, innermask), ' */\n')
s.output_code(i + 4, extracted, innerbits, innermask)
output(ind, ' return false;\n')
output(ind, '}\n')
output(ind, 'return false;\n')
# end Tree
def build_tree(pats, outerbits, outermask):
# Find the intersection of all remaining fixedmask.
innermask = ~outermask
innermask = ~outermask & insnmask
for i in pats:
innermask &= i.fixedmask
if innermask == 0:
pnames = []
text = 'overlapping patterns:'
for p in pats:
pnames.append(p.name + ':' + p.file + ':' + str(p.lineno))
error_with_file(pats[0].file, pats[0].lineno,
'overlapping patterns:', pnames)
text += '\n' + p.file + ':' + str(p.lineno) + ': ' + str(p)
error_with_file(pats[0].file, pats[0].lineno, text)
fullmask = outermask | innermask
@ -978,6 +969,7 @@ def main():
global arguments
global formats
global patterns
global allpatterns
global translate_scope
global translate_prefix
global output_fd
@ -990,7 +982,8 @@ def main():
decode_scope = 'static '
long_opts = ['decode=', 'translate=', 'output=', 'insnwidth=']
long_opts = ['decode=', 'translate=', 'output=', 'insnwidth=',
'static-decode=']
try:
(opts, args) = getopt.getopt(sys.argv[1:], 'o:w:', long_opts)
except getopt.GetoptError as err:
@ -1001,6 +994,8 @@ def main():
elif o == '--decode':
decode_function = a
decode_scope = ''
elif o == '--static-decode':
decode_function = a
elif o == '--translate':
translate_prefix = a
translate_scope = ''
@ -1039,7 +1034,7 @@ def main():
# Make sure that the argument sets are the same, and declare the
# function only once.
out_pats = {}
for i in patterns:
for i in allpatterns:
if i.name in out_pats:
p = out_pats[i.name]
if i.base.base != p.base.base:
@ -1057,14 +1052,16 @@ def main():
'(DisasContext *ctx, ', insntype, ' insn)\n{\n')
i4 = str_indent(4)
if len(allpatterns) != 0:
output(i4, 'union {\n')
for n in sorted(arguments.keys()):
f = arguments[n]
output(i4, i4, f.struct_name(), ' f_', f.name, ';\n')
output(i4, '} u;\n\n')
t.output_code(4, False, 0, 0)
output(i4, 'return false;\n')
output('}\n')
if output_file:

View File

@ -15,4 +15,10 @@ for i in err_*.decode; do
fi
done
for i in succ_*.decode; do
if ! $PYTHON $DECODETREE $i > /dev/null 2> /dev/null; then
echo FAIL:$i 1>&2
fi
done
exit $E

View File

@ -0,0 +1,6 @@
# This work is licensed under the terms of the GNU LGPL, version 2 or later.
# See the COPYING.LIB file in the top-level directory.
# empty groups are not allowed
{
}

View File

@ -0,0 +1,10 @@
# This work is licensed under the terms of the GNU LGPL, version 2 or later.
# See the COPYING.LIB file in the top-level directory.
%sub1 0:8
# Make sure that indentation is enforced
{
top 00000000 00000000 00000000 00000000
sub1 00000000 00000000 00000000 ........ %sub1
}

View File

@ -0,0 +1,11 @@
# This work is licensed under the terms of the GNU LGPL, version 2 or later.
# See the COPYING.LIB file in the top-level directory.
%sub1 0:8
# Make sure that indentation is enforced
{
top 00000000 00000000 00000000 00000000
sub1 00000000 00000000 00000000 ........ %sub1
# comments are suposed to be indented
}

View File

@ -0,0 +1,13 @@
# This work is licensed under the terms of the GNU LGPL, version 2 or later.
# See the COPYING.LIB file in the top-level directory.
%sub1 0:8
%sub2 8:8
%sub3 16:8
%sub4 24:8
# Groups with no overlap are supposed to fail
{
top 00000000 00000000 00000000 00000000
sub4 ........ ........ ........ ........ %sub1 %sub2 %sub3 %sub4
}

View File

@ -0,0 +1,6 @@
one 00000000000000000000000000000000
{
two 0000000000000000000000000000000 s:1
three 000000000000000000000000000000 s:1 0
}

View File

@ -0,0 +1,5 @@
# This work is licensed under the terms of the GNU LGPL, version 2 or later.
# See the COPYING.LIB file in the top-level directory.
# Diagnose too many bits (33 of 32)
one 000000000000000000000000000000000

View File

@ -0,0 +1,5 @@
# This work is licensed under the terms of the GNU LGPL, version 2 or later.
# See the COPYING.LIB file in the top-level directory.
# Diagnose too few bits (31 of 32)
one 0000000000000000000000000000000

View File

@ -0,0 +1,5 @@
# This work is licensed under the terms of the GNU LGPL, version 2 or later.
# See the COPYING.LIB file in the top-level directory.
# Diagnose too many bits (33 of 32)
one 0 s:32

View File

@ -0,0 +1,5 @@
# This work is licensed under the terms of the GNU LGPL, version 2 or later.
# See the COPYING.LIB file in the top-level directory.
# Diagnose too few bits (31 of 32)
one 0 s:30

View File

@ -0,0 +1,22 @@
# This work is licensed under the terms of the GNU LGPL, version 2 or later.
# See the COPYING.LIB file in the top-level directory.
%sub1 0:8
%sub2 8:8
%sub3 16:8
%sub4 24:7
# Make sure deep netsting works, as few targets will actually exercise it
{
top 00000000 00000000 00000000 00000000
{
sub1 00000000 00000000 00000000 ........ %sub1
{
sub2 00000000 00000000 ........ ........ %sub1 %sub2
{
sub3 00000000 ........ ........ ........ %sub1 %sub2 %sub3
sub4 0....... ........ ........ ........ %sub1 %sub2 %sub3 %sub4
}
}
}
}