target/ppc: Use env->pnc_cyc_cnt

Use the cached pmc_cyc_cnt value in pmu_update_cycles
and pmc_update_overflow_timer.  This leaves pmc_get_event
and pmc_is_inactive unused, so remove them.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20220103224746.167831-4-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This commit is contained in:
Richard Henderson 2022-01-04 07:55:35 +01:00 committed by Cédric Le Goater
parent ffae5616c3
commit eec4dfdadb

View File

@ -24,19 +24,6 @@
#define PMC_COUNTER_NEGATIVE_VAL 0x80000000UL #define PMC_COUNTER_NEGATIVE_VAL 0x80000000UL
static bool pmc_is_inactive(CPUPPCState *env, int sprn)
{
if (env->spr[SPR_POWER_MMCR0] & MMCR0_FC) {
return true;
}
if (sprn < SPR_POWER_PMC5) {
return env->spr[SPR_POWER_MMCR0] & MMCR0_FC14;
}
return env->spr[SPR_POWER_MMCR0] & MMCR0_FC56;
}
static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn) static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
{ {
if (sprn == SPR_POWER_PMC1) { if (sprn == SPR_POWER_PMC1) {
@ -46,80 +33,6 @@ static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE; return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE;
} }
/*
* For PMCs 1-4, IBM POWER chips has support for an implementation
* dependent event, 0x1E, that enables cycle counting. The Linux kernel
* makes extensive use of 0x1E, so let's also support it.
*
* Likewise, event 0x2 is an implementation-dependent event that IBM
* POWER chips implement (at least since POWER8) that is equivalent to
* PM_INST_CMPL. Let's support this event on PMCs 1-4 as well.
*/
static PMUEventType pmc_get_event(CPUPPCState *env, int sprn)
{
uint8_t mmcr1_evt_extr[] = { MMCR1_PMC1EVT_EXTR, MMCR1_PMC2EVT_EXTR,
MMCR1_PMC3EVT_EXTR, MMCR1_PMC4EVT_EXTR };
PMUEventType evt_type = PMU_EVENT_INVALID;
uint8_t pmcsel;
int i;
if (pmc_is_inactive(env, sprn)) {
return PMU_EVENT_INACTIVE;
}
if (sprn == SPR_POWER_PMC5) {
return PMU_EVENT_INSTRUCTIONS;
}
if (sprn == SPR_POWER_PMC6) {
return PMU_EVENT_CYCLES;
}
i = sprn - SPR_POWER_PMC1;
pmcsel = extract64(env->spr[SPR_POWER_MMCR1], mmcr1_evt_extr[i],
MMCR1_EVT_SIZE);
switch (pmcsel) {
case 0x2:
evt_type = PMU_EVENT_INSTRUCTIONS;
break;
case 0x1E:
evt_type = PMU_EVENT_CYCLES;
break;
case 0xF0:
/*
* PMC1SEL = 0xF0 is the architected PowerISA v3.1
* event that counts cycles using PMC1.
*/
if (sprn == SPR_POWER_PMC1) {
evt_type = PMU_EVENT_CYCLES;
}
break;
case 0xFA:
/*
* PMC4SEL = 0xFA is the "instructions completed
* with run latch set" event.
*/
if (sprn == SPR_POWER_PMC4) {
evt_type = PMU_EVENT_INSN_RUN_LATCH;
}
break;
case 0xFE:
/*
* PMC1SEL = 0xFE is the architected PowerISA v3.1
* event to sample instructions using PMC1.
*/
if (sprn == SPR_POWER_PMC1) {
evt_type = PMU_EVENT_INSTRUCTIONS;
}
break;
default:
break;
}
return evt_type;
}
void pmu_update_summaries(CPUPPCState *env) void pmu_update_summaries(CPUPPCState *env)
{ {
target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0]; target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
@ -238,18 +151,16 @@ static void pmu_update_cycles(CPUPPCState *env)
{ {
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t time_delta = now - env->pmu_base_time; uint64_t time_delta = now - env->pmu_base_time;
int sprn; int sprn, cyc_cnt = env->pmc_cyc_cnt;
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES) { if (cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) {
continue; /*
* The pseries and powernv clock runs at 1Ghz, meaning
* that 1 nanosec equals 1 cycle.
*/
env->spr[sprn] += time_delta;
} }
/*
* The pseries and powernv clock runs at 1Ghz, meaning
* that 1 nanosec equals 1 cycle.
*/
env->spr[sprn] += time_delta;
} }
/* Update base_time for future calculations */ /* Update base_time for future calculations */
@ -278,7 +189,7 @@ static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
return; return;
} }
if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES || if (!(env->pmc_cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) ||
!pmc_has_overflow_enabled(env, sprn)) { !pmc_has_overflow_enabled(env, sprn)) {
/* Overflow timer is not needed for this counter */ /* Overflow timer is not needed for this counter */
timer_del(pmc_overflow_timer); timer_del(pmc_overflow_timer);
@ -286,7 +197,7 @@ static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
} }
if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) { if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) {
timeout = 0; timeout = 0;
} else { } else {
timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn]; timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn];
} }