memory: split address_space_read and address_space_write
Rather than dispatching on is_write for every iteration, make address_space_rw call one of the two functions. The amount of duplicate logic is pretty small, and memory_access_is_direct can be tweaked so that it inlines better in the callers. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
parent
612263cf33
commit
eb7eeb8862
208
exec.c
208
exec.c
@ -392,11 +392,10 @@ address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *x
|
||||
|
||||
static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
|
||||
{
|
||||
if (memory_region_is_ram(mr)) {
|
||||
return !(is_write && mr->readonly);
|
||||
}
|
||||
if (memory_region_is_romd(mr)) {
|
||||
return !is_write;
|
||||
if (is_write) {
|
||||
return memory_region_is_ram(mr) && !mr->readonly;
|
||||
} else {
|
||||
return memory_region_is_ram(mr) || memory_region_is_romd(mr);
|
||||
}
|
||||
|
||||
return false;
|
||||
@ -2469,8 +2468,8 @@ static bool prepare_mmio_access(MemoryRegion *mr)
|
||||
return release_lock;
|
||||
}
|
||||
|
||||
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
|
||||
uint8_t *buf, int len, bool is_write)
|
||||
MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
|
||||
const uint8_t *buf, int len)
|
||||
{
|
||||
hwaddr l;
|
||||
uint8_t *ptr;
|
||||
@ -2483,87 +2482,47 @@ MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
|
||||
rcu_read_lock();
|
||||
while (len > 0) {
|
||||
l = len;
|
||||
mr = address_space_translate(as, addr, &addr1, &l, is_write);
|
||||
mr = address_space_translate(as, addr, &addr1, &l, true);
|
||||
|
||||
if (is_write) {
|
||||
if (!memory_access_is_direct(mr, is_write)) {
|
||||
release_lock |= prepare_mmio_access(mr);
|
||||
l = memory_access_size(mr, l, addr1);
|
||||
/* XXX: could force current_cpu to NULL to avoid
|
||||
potential bugs */
|
||||
switch (l) {
|
||||
case 8:
|
||||
/* 64 bit write access */
|
||||
val = ldq_p(buf);
|
||||
result |= memory_region_dispatch_write(mr, addr1, val, 8,
|
||||
attrs);
|
||||
break;
|
||||
case 4:
|
||||
/* 32 bit write access */
|
||||
val = ldl_p(buf);
|
||||
result |= memory_region_dispatch_write(mr, addr1, val, 4,
|
||||
attrs);
|
||||
break;
|
||||
case 2:
|
||||
/* 16 bit write access */
|
||||
val = lduw_p(buf);
|
||||
result |= memory_region_dispatch_write(mr, addr1, val, 2,
|
||||
attrs);
|
||||
break;
|
||||
case 1:
|
||||
/* 8 bit write access */
|
||||
val = ldub_p(buf);
|
||||
result |= memory_region_dispatch_write(mr, addr1, val, 1,
|
||||
attrs);
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
} else {
|
||||
addr1 += memory_region_get_ram_addr(mr);
|
||||
/* RAM case */
|
||||
ptr = qemu_get_ram_ptr(addr1);
|
||||
memcpy(ptr, buf, l);
|
||||
invalidate_and_set_dirty(mr, addr1, l);
|
||||
if (!memory_access_is_direct(mr, true)) {
|
||||
release_lock |= prepare_mmio_access(mr);
|
||||
l = memory_access_size(mr, l, addr1);
|
||||
/* XXX: could force current_cpu to NULL to avoid
|
||||
potential bugs */
|
||||
switch (l) {
|
||||
case 8:
|
||||
/* 64 bit write access */
|
||||
val = ldq_p(buf);
|
||||
result |= memory_region_dispatch_write(mr, addr1, val, 8,
|
||||
attrs);
|
||||
break;
|
||||
case 4:
|
||||
/* 32 bit write access */
|
||||
val = ldl_p(buf);
|
||||
result |= memory_region_dispatch_write(mr, addr1, val, 4,
|
||||
attrs);
|
||||
break;
|
||||
case 2:
|
||||
/* 16 bit write access */
|
||||
val = lduw_p(buf);
|
||||
result |= memory_region_dispatch_write(mr, addr1, val, 2,
|
||||
attrs);
|
||||
break;
|
||||
case 1:
|
||||
/* 8 bit write access */
|
||||
val = ldub_p(buf);
|
||||
result |= memory_region_dispatch_write(mr, addr1, val, 1,
|
||||
attrs);
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
} else {
|
||||
if (!memory_access_is_direct(mr, is_write)) {
|
||||
/* I/O case */
|
||||
release_lock |= prepare_mmio_access(mr);
|
||||
l = memory_access_size(mr, l, addr1);
|
||||
switch (l) {
|
||||
case 8:
|
||||
/* 64 bit read access */
|
||||
result |= memory_region_dispatch_read(mr, addr1, &val, 8,
|
||||
attrs);
|
||||
stq_p(buf, val);
|
||||
break;
|
||||
case 4:
|
||||
/* 32 bit read access */
|
||||
result |= memory_region_dispatch_read(mr, addr1, &val, 4,
|
||||
attrs);
|
||||
stl_p(buf, val);
|
||||
break;
|
||||
case 2:
|
||||
/* 16 bit read access */
|
||||
result |= memory_region_dispatch_read(mr, addr1, &val, 2,
|
||||
attrs);
|
||||
stw_p(buf, val);
|
||||
break;
|
||||
case 1:
|
||||
/* 8 bit read access */
|
||||
result |= memory_region_dispatch_read(mr, addr1, &val, 1,
|
||||
attrs);
|
||||
stb_p(buf, val);
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
} else {
|
||||
/* RAM case */
|
||||
ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
|
||||
memcpy(buf, ptr, l);
|
||||
}
|
||||
addr1 += memory_region_get_ram_addr(mr);
|
||||
/* RAM case */
|
||||
ptr = qemu_get_ram_ptr(addr1);
|
||||
memcpy(ptr, buf, l);
|
||||
invalidate_and_set_dirty(mr, addr1, l);
|
||||
}
|
||||
|
||||
if (release_lock) {
|
||||
@ -2580,18 +2539,83 @@ MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
|
||||
return result;
|
||||
}
|
||||
|
||||
MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
|
||||
const uint8_t *buf, int len)
|
||||
{
|
||||
return address_space_rw(as, addr, attrs, (uint8_t *)buf, len, true);
|
||||
}
|
||||
|
||||
MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
|
||||
uint8_t *buf, int len)
|
||||
{
|
||||
return address_space_rw(as, addr, attrs, buf, len, false);
|
||||
hwaddr l;
|
||||
uint8_t *ptr;
|
||||
uint64_t val;
|
||||
hwaddr addr1;
|
||||
MemoryRegion *mr;
|
||||
MemTxResult result = MEMTX_OK;
|
||||
bool release_lock = false;
|
||||
|
||||
rcu_read_lock();
|
||||
while (len > 0) {
|
||||
l = len;
|
||||
mr = address_space_translate(as, addr, &addr1, &l, false);
|
||||
|
||||
if (!memory_access_is_direct(mr, false)) {
|
||||
/* I/O case */
|
||||
release_lock |= prepare_mmio_access(mr);
|
||||
l = memory_access_size(mr, l, addr1);
|
||||
switch (l) {
|
||||
case 8:
|
||||
/* 64 bit read access */
|
||||
result |= memory_region_dispatch_read(mr, addr1, &val, 8,
|
||||
attrs);
|
||||
stq_p(buf, val);
|
||||
break;
|
||||
case 4:
|
||||
/* 32 bit read access */
|
||||
result |= memory_region_dispatch_read(mr, addr1, &val, 4,
|
||||
attrs);
|
||||
stl_p(buf, val);
|
||||
break;
|
||||
case 2:
|
||||
/* 16 bit read access */
|
||||
result |= memory_region_dispatch_read(mr, addr1, &val, 2,
|
||||
attrs);
|
||||
stw_p(buf, val);
|
||||
break;
|
||||
case 1:
|
||||
/* 8 bit read access */
|
||||
result |= memory_region_dispatch_read(mr, addr1, &val, 1,
|
||||
attrs);
|
||||
stb_p(buf, val);
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
} else {
|
||||
/* RAM case */
|
||||
ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
|
||||
memcpy(buf, ptr, l);
|
||||
}
|
||||
|
||||
if (release_lock) {
|
||||
qemu_mutex_unlock_iothread();
|
||||
release_lock = false;
|
||||
}
|
||||
|
||||
len -= l;
|
||||
buf += l;
|
||||
addr += l;
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
|
||||
uint8_t *buf, int len, bool is_write)
|
||||
{
|
||||
if (is_write) {
|
||||
return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
|
||||
} else {
|
||||
return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
|
||||
}
|
||||
}
|
||||
|
||||
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
|
||||
int len, int is_write)
|
||||
|
Loading…
Reference in New Issue
Block a user