memory: split address_space_read and address_space_write

Rather than dispatching on is_write for every iteration, make
address_space_rw call one of the two functions.  The amount of
duplicate logic is pretty small, and memory_access_is_direct can
be tweaked so that it inlines better in the callers.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Paolo Bonzini 2015-12-09 10:06:31 +01:00
parent 612263cf33
commit eb7eeb8862

208
exec.c
View File

@ -392,11 +392,10 @@ address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *x
static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
{
if (memory_region_is_ram(mr)) {
return !(is_write && mr->readonly);
}
if (memory_region_is_romd(mr)) {
return !is_write;
if (is_write) {
return memory_region_is_ram(mr) && !mr->readonly;
} else {
return memory_region_is_ram(mr) || memory_region_is_romd(mr);
}
return false;
@ -2469,8 +2468,8 @@ static bool prepare_mmio_access(MemoryRegion *mr)
return release_lock;
}
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
uint8_t *buf, int len, bool is_write)
MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
const uint8_t *buf, int len)
{
hwaddr l;
uint8_t *ptr;
@ -2483,87 +2482,47 @@ MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
rcu_read_lock();
while (len > 0) {
l = len;
mr = address_space_translate(as, addr, &addr1, &l, is_write);
mr = address_space_translate(as, addr, &addr1, &l, true);
if (is_write) {
if (!memory_access_is_direct(mr, is_write)) {
release_lock |= prepare_mmio_access(mr);
l = memory_access_size(mr, l, addr1);
/* XXX: could force current_cpu to NULL to avoid
potential bugs */
switch (l) {
case 8:
/* 64 bit write access */
val = ldq_p(buf);
result |= memory_region_dispatch_write(mr, addr1, val, 8,
attrs);
break;
case 4:
/* 32 bit write access */
val = ldl_p(buf);
result |= memory_region_dispatch_write(mr, addr1, val, 4,
attrs);
break;
case 2:
/* 16 bit write access */
val = lduw_p(buf);
result |= memory_region_dispatch_write(mr, addr1, val, 2,
attrs);
break;
case 1:
/* 8 bit write access */
val = ldub_p(buf);
result |= memory_region_dispatch_write(mr, addr1, val, 1,
attrs);
break;
default:
abort();
}
} else {
addr1 += memory_region_get_ram_addr(mr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
memcpy(ptr, buf, l);
invalidate_and_set_dirty(mr, addr1, l);
if (!memory_access_is_direct(mr, true)) {
release_lock |= prepare_mmio_access(mr);
l = memory_access_size(mr, l, addr1);
/* XXX: could force current_cpu to NULL to avoid
potential bugs */
switch (l) {
case 8:
/* 64 bit write access */
val = ldq_p(buf);
result |= memory_region_dispatch_write(mr, addr1, val, 8,
attrs);
break;
case 4:
/* 32 bit write access */
val = ldl_p(buf);
result |= memory_region_dispatch_write(mr, addr1, val, 4,
attrs);
break;
case 2:
/* 16 bit write access */
val = lduw_p(buf);
result |= memory_region_dispatch_write(mr, addr1, val, 2,
attrs);
break;
case 1:
/* 8 bit write access */
val = ldub_p(buf);
result |= memory_region_dispatch_write(mr, addr1, val, 1,
attrs);
break;
default:
abort();
}
} else {
if (!memory_access_is_direct(mr, is_write)) {
/* I/O case */
release_lock |= prepare_mmio_access(mr);
l = memory_access_size(mr, l, addr1);
switch (l) {
case 8:
/* 64 bit read access */
result |= memory_region_dispatch_read(mr, addr1, &val, 8,
attrs);
stq_p(buf, val);
break;
case 4:
/* 32 bit read access */
result |= memory_region_dispatch_read(mr, addr1, &val, 4,
attrs);
stl_p(buf, val);
break;
case 2:
/* 16 bit read access */
result |= memory_region_dispatch_read(mr, addr1, &val, 2,
attrs);
stw_p(buf, val);
break;
case 1:
/* 8 bit read access */
result |= memory_region_dispatch_read(mr, addr1, &val, 1,
attrs);
stb_p(buf, val);
break;
default:
abort();
}
} else {
/* RAM case */
ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
memcpy(buf, ptr, l);
}
addr1 += memory_region_get_ram_addr(mr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
memcpy(ptr, buf, l);
invalidate_and_set_dirty(mr, addr1, l);
}
if (release_lock) {
@ -2580,18 +2539,83 @@ MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
return result;
}
MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
const uint8_t *buf, int len)
{
return address_space_rw(as, addr, attrs, (uint8_t *)buf, len, true);
}
MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
uint8_t *buf, int len)
{
return address_space_rw(as, addr, attrs, buf, len, false);
hwaddr l;
uint8_t *ptr;
uint64_t val;
hwaddr addr1;
MemoryRegion *mr;
MemTxResult result = MEMTX_OK;
bool release_lock = false;
rcu_read_lock();
while (len > 0) {
l = len;
mr = address_space_translate(as, addr, &addr1, &l, false);
if (!memory_access_is_direct(mr, false)) {
/* I/O case */
release_lock |= prepare_mmio_access(mr);
l = memory_access_size(mr, l, addr1);
switch (l) {
case 8:
/* 64 bit read access */
result |= memory_region_dispatch_read(mr, addr1, &val, 8,
attrs);
stq_p(buf, val);
break;
case 4:
/* 32 bit read access */
result |= memory_region_dispatch_read(mr, addr1, &val, 4,
attrs);
stl_p(buf, val);
break;
case 2:
/* 16 bit read access */
result |= memory_region_dispatch_read(mr, addr1, &val, 2,
attrs);
stw_p(buf, val);
break;
case 1:
/* 8 bit read access */
result |= memory_region_dispatch_read(mr, addr1, &val, 1,
attrs);
stb_p(buf, val);
break;
default:
abort();
}
} else {
/* RAM case */
ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
memcpy(buf, ptr, l);
}
if (release_lock) {
qemu_mutex_unlock_iothread();
release_lock = false;
}
len -= l;
buf += l;
addr += l;
}
rcu_read_unlock();
return result;
}
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
uint8_t *buf, int len, bool is_write)
{
if (is_write) {
return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
} else {
return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
}
}
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
int len, int is_write)