full system SPARC emulation (Blue Swirl)

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1083 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
bellard 2004-09-30 21:55:55 +00:00
parent 525d67bcc8
commit e8af50a30e
8 changed files with 1847 additions and 59 deletions

View File

@ -9,8 +9,10 @@
/* trap definitions */
#define TT_ILL_INSN 0x02
#define TT_PRIV_INSN 0x03
#define TT_WIN_OVF 0x05
#define TT_WIN_UNF 0x06
#define TT_FP_EXCP 0x08
#define TT_DIV_ZERO 0x2a
#define TT_TRAP 0x80
@ -18,27 +20,101 @@
#define PSR_ZERO (1<<22)
#define PSR_OVF (1<<21)
#define PSR_CARRY (1<<20)
#define PSR_ICC (PSR_NEG|PSR_ZERO|PSR_OVF|PSR_CARRY)
#define PSR_S (1<<7)
#define PSR_PS (1<<6)
#define PSR_ET (1<<5)
#define PSR_CWP 0x1f
/* Fake impl 0, version 4 */
#define GET_PSR(env) ((0<<28) | (4<<24) | env->psr | (env->psrs? PSR_S : 0) | (env->psrs? PSR_PS : 0) |(env->psret? PSR_ET : 0) | env->cwp)
/* Trap base register */
#define TBR_BASE_MASK 0xfffff000
/* Fcc */
#define FSR_RD1 (1<<31)
#define FSR_RD0 (1<<30)
#define FSR_RD_MASK (FSR_RD1 | FSR_RD0)
#define FSR_RD_NEAREST 0
#define FSR_RD_ZERO FSR_RD0
#define FSR_RD_POS FSR_RD1
#define FSR_RD_NEG (FSR_RD1 | FSR_RD0)
#define FSR_NVM (1<<27)
#define FSR_OFM (1<<26)
#define FSR_UFM (1<<25)
#define FSR_DZM (1<<24)
#define FSR_NXM (1<<23)
#define FSR_TEM_MASK (FSR_NVM | FSR_OFM | FSR_UFM | FSR_DZM | FSR_NXM)
#define FSR_NVA (1<<9)
#define FSR_OFA (1<<8)
#define FSR_UFA (1<<7)
#define FSR_DZA (1<<6)
#define FSR_NXA (1<<5)
#define FSR_AEXC_MASK (FSR_NVA | FSR_OFA | FSR_UFA | FSR_DZA | FSR_NXA)
#define FSR_NVC (1<<4)
#define FSR_OFC (1<<3)
#define FSR_UFC (1<<2)
#define FSR_DZC (1<<1)
#define FSR_NXC (1<<0)
#define FSR_CEXC_MASK (FSR_NVC | FSR_OFC | FSR_UFC | FSR_DZC | FSR_NXC)
#define FSR_FTT2 (1<<16)
#define FSR_FTT1 (1<<15)
#define FSR_FTT0 (1<<14)
#define FSR_FTT_MASK (FSR_FTT2 | FSR_FTT1 | FSR_FTT0)
#define FSR_FCC1 (1<<11)
#define FSR_FCC0 (1<<10)
/* MMU */
#define MMU_E (1<<0)
#define MMU_NF (1<<1)
#define PTE_ENTRYTYPE_MASK 3
#define PTE_ACCESS_MASK 0x1c
#define PTE_ACCESS_SHIFT 2
#define PTE_ADDR_MASK 0xffffff00
#define PG_ACCESSED_BIT 5
#define PG_MODIFIED_BIT 6
#define PG_CACHE_BIT 7
#define PG_ACCESSED_MASK (1 << PG_ACCESSED_BIT)
#define PG_MODIFIED_MASK (1 << PG_MODIFIED_BIT)
#define PG_CACHE_MASK (1 << PG_CACHE_BIT)
#define ACCESS_DATA 0
#define ACCESS_CODE 1
#define ACCESS_MMU 2
#define NWINDOWS 32
typedef struct CPUSPARCState {
uint32_t gregs[8]; /* general registers */
uint32_t *regwptr; /* pointer to current register window */
double *regfptr; /* floating point registers */
float fpr[32]; /* floating point registers */
uint32_t pc; /* program counter */
uint32_t npc; /* next program counter */
uint32_t sp; /* stack pointer */
uint32_t y; /* multiply/divide register */
uint32_t psr; /* processor state register */
uint32_t fsr; /* FPU state register */
uint32_t T2;
uint32_t cwp; /* index of current register window (extracted
from PSR) */
uint32_t wim; /* window invalid mask */
uint32_t tbr; /* trap base register */
int psrs; /* supervisor mode (extracted from PSR) */
int psrps; /* previous supervisor mode */
int psret; /* enable traps */
jmp_buf jmp_env;
int user_mode_only;
int exception_index;
int interrupt_index;
int interrupt_request;
uint32_t exception_next_pc;
struct TranslationBlock *current_tb;
void *opaque;
/* NOTE: we allow 8 more registers to handle wrapping */
@ -51,6 +127,22 @@ typedef struct CPUSPARCState {
written */
unsigned long mem_write_vaddr; /* target virtual addr at which the
memory was written */
/* 0 = kernel, 1 = user (may have 2 = kernel code, 3 = user code ?) */
CPUTLBEntry tlb_read[2][CPU_TLB_SIZE];
CPUTLBEntry tlb_write[2][CPU_TLB_SIZE];
int error_code;
int access_type;
/* MMU regs */
uint32_t mmuregs[16];
/* temporary float registers */
float ft0, ft1, ft2;
double dt0, dt1, dt2;
/* ice debug support */
uint32_t breakpoints[MAX_BREAKPOINTS];
int nb_breakpoints;
int singlestep_enabled; /* XXX: should use CPU single step mode instead */
} CPUSPARCState;
CPUSPARCState *cpu_sparc_init(void);
@ -61,7 +153,7 @@ struct siginfo;
int cpu_sparc_signal_handler(int hostsignum, struct siginfo *info, void *puc);
void cpu_sparc_dump_state(CPUSPARCState *env, FILE *f, int flags);
#define TARGET_PAGE_BITS 13
#define TARGET_PAGE_BITS 12 /* 4k */
#include "cpu-all.h"
#endif

View File

@ -6,6 +6,12 @@ register struct CPUSPARCState *env asm(AREG0);
register uint32_t T0 asm(AREG1);
register uint32_t T1 asm(AREG2);
register uint32_t T2 asm(AREG3);
#define FT0 (env->ft0)
#define FT1 (env->ft1)
#define FT2 (env->ft2)
#define DT0 (env->dt0)
#define DT1 (env->dt1)
#define DT2 (env->dt2)
#include "cpu.h"
#include "exec-all.h"
@ -14,4 +20,88 @@ void cpu_lock(void);
void cpu_unlock(void);
void cpu_loop_exit(void);
void helper_flush(target_ulong addr);
void helper_ld_asi(int asi, int size, int sign);
void helper_st_asi(int asi, int size, int sign);
void helper_rett(void);
void helper_stfsr(void);
void set_cwp(int new_cwp);
void do_fabss(void);
void do_fsqrts(void);
void do_fsqrtd(void);
void do_fcmps(void);
void do_fcmpd(void);
void do_interrupt(int intno, int is_int, int error_code,
unsigned int next_eip, int is_hw);
void raise_exception_err(int exception_index, int error_code);
void raise_exception(int tt);
void memcpy32(uint32_t *dst, const uint32_t *src);
/* XXX: move that to a generic header */
#if !defined(CONFIG_USER_ONLY)
#define ldul_user ldl_user
#define ldul_kernel ldl_kernel
#define ACCESS_TYPE 0
#define MEMSUFFIX _kernel
#define DATA_SIZE 1
#include "softmmu_header.h"
#define DATA_SIZE 2
#include "softmmu_header.h"
#define DATA_SIZE 4
#include "softmmu_header.h"
#define DATA_SIZE 8
#include "softmmu_header.h"
#undef ACCESS_TYPE
#undef MEMSUFFIX
#define ACCESS_TYPE 1
#define MEMSUFFIX _user
#define DATA_SIZE 1
#include "softmmu_header.h"
#define DATA_SIZE 2
#include "softmmu_header.h"
#define DATA_SIZE 4
#include "softmmu_header.h"
#define DATA_SIZE 8
#include "softmmu_header.h"
#undef ACCESS_TYPE
#undef MEMSUFFIX
/* these access are slower, they must be as rare as possible */
#define ACCESS_TYPE 2
#define MEMSUFFIX _data
#define DATA_SIZE 1
#include "softmmu_header.h"
#define DATA_SIZE 2
#include "softmmu_header.h"
#define DATA_SIZE 4
#include "softmmu_header.h"
#define DATA_SIZE 8
#include "softmmu_header.h"
#undef ACCESS_TYPE
#undef MEMSUFFIX
#define ldub(p) ldub_data(p)
#define ldsb(p) ldsb_data(p)
#define lduw(p) lduw_data(p)
#define ldsw(p) ldsw_data(p)
#define ldl(p) ldl_data(p)
#define ldq(p) ldq_data(p)
#define stb(p, v) stb_data(p, v)
#define stw(p, v) stw_data(p, v)
#define stl(p, v) stl_data(p, v)
#define stq(p, v) stq_data(p, v)
#endif /* !defined(CONFIG_USER_ONLY) */
#endif

121
target-sparc/fop_template.h Normal file
View File

@ -0,0 +1,121 @@
/*
* SPARC micro operations (templates for various register related
* operations)
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* floating point registers moves */
void OPPROTO glue(op_load_fpr_FT0_fpr, REGNAME)(void)
{
FT0 = REG;
}
void OPPROTO glue(op_store_FT0_fpr_fpr, REGNAME)(void)
{
REG = FT0;
}
void OPPROTO glue(op_load_fpr_FT1_fpr, REGNAME)(void)
{
FT1 = REG;
}
void OPPROTO glue(op_store_FT1_fpr_fpr, REGNAME)(void)
{
REG = FT1;
}
void OPPROTO glue(op_load_fpr_FT2_fpr, REGNAME)(void)
{
FT2 = REG;
}
void OPPROTO glue(op_store_FT2_fpr_fpr, REGNAME)(void)
{
REG = FT2;
}
/* double floating point registers moves */
#if 0
#define CPU_DOUBLE_U_DEF
typedef union {
double d;
struct {
uint32_t lower;
uint32_t upper;
} l;
uint64_t ll;
} CPU_DoubleU;
#endif /* CPU_DOUBLE_U_DEF */
void OPPROTO glue(op_load_fpr_DT0_fpr, REGNAME)(void)
{
CPU_DoubleU u;
uint32_t *p = (uint32_t *)&REG;
u.l.lower = *(p +1);
u.l.upper = *p;
DT0 = u.d;
}
void OPPROTO glue(op_store_DT0_fpr_fpr, REGNAME)(void)
{
CPU_DoubleU u;
uint32_t *p = (uint32_t *)&REG;
u.d = DT0;
*(p +1) = u.l.lower;
*p = u.l.upper;
}
void OPPROTO glue(op_load_fpr_DT1_fpr, REGNAME)(void)
{
CPU_DoubleU u;
uint32_t *p = (uint32_t *)&REG;
u.l.lower = *(p +1);
u.l.upper = *p;
DT1 = u.d;
}
void OPPROTO glue(op_store_DT1_fpr_fpr, REGNAME)(void)
{
CPU_DoubleU u;
uint32_t *p = (uint32_t *)&REG;
u.d = DT1;
*(p +1) = u.l.lower;
*p = u.l.upper;
}
void OPPROTO glue(op_load_fpr_DT2_fpr, REGNAME)(void)
{
CPU_DoubleU u;
uint32_t *p = (uint32_t *)&REG;
u.l.lower = *(p +1);
u.l.upper = *p;
DT2 = u.d;
}
void OPPROTO glue(op_store_DT2_fpr_fpr, REGNAME)(void)
{
CPU_DoubleU u;
uint32_t *p = (uint32_t *)&REG;
u.d = DT2;
*(p +1) = u.l.lower;
*p = u.l.upper;
}
#undef REG
#undef REGNAME

346
target-sparc/helper.c Normal file
View File

@ -0,0 +1,346 @@
/*
* sparc helpers
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec.h"
#define DEBUG_PCALL
#if 0
#define raise_exception_err(a, b)\
do {\
fprintf(logfile, "raise_exception line=%d\n", __LINE__);\
(raise_exception_err)(a, b);\
} while (0)
#endif
/* Sparc MMU emulation */
int cpu_sparc_handle_mmu_fault (CPUState *env, uint32_t address, int rw,
int is_user, int is_softmmu);
/* thread support */
spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
void cpu_lock(void)
{
spin_lock(&global_cpu_lock);
}
void cpu_unlock(void)
{
spin_unlock(&global_cpu_lock);
}
#if 0
void cpu_loop_exit(void)
{
/* NOTE: the register at this point must be saved by hand because
longjmp restore them */
longjmp(env->jmp_env, 1);
}
#endif
#if !defined(CONFIG_USER_ONLY)
#define MMUSUFFIX _mmu
#define GETPC() (__builtin_return_address(0))
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(unsigned long addr, int is_write, int is_user, void *retaddr)
{
TranslationBlock *tb;
int ret;
unsigned long pc;
CPUState *saved_env;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, is_user, 1);
if (ret) {
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long)retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, NULL);
}
}
raise_exception_err(ret, env->error_code);
}
env = saved_env;
}
#endif
static const int access_table[8][8] = {
{ 0, 0, 0, 0, 2, 0, 3, 3 },
{ 0, 0, 0, 0, 2, 0, 0, 0 },
{ 2, 2, 0, 0, 0, 2, 3, 3 },
{ 2, 2, 0, 0, 0, 2, 0, 0 },
{ 2, 0, 2, 0, 2, 2, 3, 3 },
{ 2, 0, 2, 0, 2, 0, 2, 0 },
{ 2, 2, 2, 0, 2, 2, 3, 3 },
{ 2, 2, 2, 0, 2, 2, 2, 0 }
};
/* 1 = write OK */
static const int rw_table[2][8] = {
{ 0, 1, 0, 1, 0, 1, 0, 1 },
{ 0, 1, 0, 1, 0, 0, 0, 0 }
};
/* Perform address translation */
int cpu_sparc_handle_mmu_fault (CPUState *env, uint32_t address, int rw,
int is_user, int is_softmmu)
{
int exception = 0;
int access_type, access_perms = 0, access_index = 0;
uint8_t *pde_ptr;
uint32_t pde, virt_addr;
int error_code = 0, is_dirty, prot, ret = 0;
unsigned long paddr, vaddr, page_offset;
access_type = env->access_type;
if (env->user_mode_only) {
/* user mode only emulation */
ret = -2;
goto do_fault;
}
virt_addr = address & TARGET_PAGE_MASK;
if ((env->mmuregs[0] & MMU_E) == 0) { /* MMU disabled */
paddr = address;
page_offset = address & (TARGET_PAGE_SIZE - 1);
prot = PAGE_READ | PAGE_WRITE;
goto do_mapping;
}
/* SPARC reference MMU table walk: Context table->L1->L2->PTE */
/* Context base + context number */
pde_ptr = phys_ram_base + (env->mmuregs[1] << 4) + (env->mmuregs[2] << 4);
env->access_type = ACCESS_MMU;
pde = ldl_raw(pde_ptr);
/* Ctx pde */
switch (pde & PTE_ENTRYTYPE_MASK) {
case 0: /* Invalid */
error_code = 1;
goto do_fault;
case 2: /* PTE, maybe should not happen? */
case 3: /* Reserved */
error_code = 4;
goto do_fault;
case 1: /* L1 PDE */
pde_ptr = phys_ram_base + ((address >> 22) & ~3) + ((pde & ~3) << 4);
pde = ldl_raw(pde_ptr);
switch (pde & PTE_ENTRYTYPE_MASK) {
case 0: /* Invalid */
error_code = 1;
goto do_fault;
case 3: /* Reserved */
error_code = 4;
goto do_fault;
case 1: /* L2 PDE */
pde_ptr = phys_ram_base + ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
pde = ldl_raw(pde_ptr);
switch (pde & PTE_ENTRYTYPE_MASK) {
case 0: /* Invalid */
error_code = 1;
goto do_fault;
case 3: /* Reserved */
error_code = 4;
goto do_fault;
case 1: /* L3 PDE */
pde_ptr = phys_ram_base + ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
pde = ldl_raw(pde_ptr);
switch (pde & PTE_ENTRYTYPE_MASK) {
case 0: /* Invalid */
error_code = 1;
goto do_fault;
case 1: /* PDE, should not happen */
case 3: /* Reserved */
error_code = 4;
goto do_fault;
case 2: /* L3 PTE */
virt_addr = address & TARGET_PAGE_MASK;
page_offset = (address & TARGET_PAGE_MASK) & (TARGET_PAGE_SIZE - 1);
}
break;
case 2: /* L2 PTE */
virt_addr = address & ~0x3ffff;
page_offset = address & 0x3ffff;
}
break;
case 2: /* L1 PTE */
virt_addr = address & ~0xffffff;
page_offset = address & 0xffffff;
}
}
/* update page modified and dirty bits */
is_dirty = rw && !(pde & PG_MODIFIED_MASK);
if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
pde |= PG_ACCESSED_MASK;
if (is_dirty)
pde |= PG_MODIFIED_MASK;
stl_raw(pde_ptr, pde);
}
/* check access */
access_index = (rw << 2) | ((access_type == ACCESS_CODE)? 2 : 0) | (is_user? 0 : 1);
access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
error_code = access_table[access_index][access_perms];
if (error_code)
goto do_fault;
/* the page can be put in the TLB */
prot = PAGE_READ;
if (pde & PG_MODIFIED_MASK) {
/* only set write access if already dirty... otherwise wait
for dirty access */
if (rw_table[is_user][access_perms])
prot |= PAGE_WRITE;
}
/* Even if large ptes, we map only one 4KB page in the cache to
avoid filling it too fast */
virt_addr = address & TARGET_PAGE_MASK;
paddr = ((pde & PTE_ADDR_MASK) << 4) + page_offset;
do_mapping:
env->access_type = access_type;
vaddr = virt_addr + ((address & TARGET_PAGE_MASK) & (TARGET_PAGE_SIZE - 1));
ret = tlb_set_page(env, vaddr, paddr, prot, is_user, is_softmmu);
return ret;
do_fault:
env->access_type = access_type;
if (env->mmuregs[3]) /* Fault status register */
env->mmuregs[3] = 1; /* overflow (not read before another fault) */
env->mmuregs[3] |= (access_index << 5) | (error_code << 2) | 2;
env->mmuregs[4] = address; /* Fault address register */
if (env->mmuregs[0] & MMU_NF) // No fault
return 0;
env->exception_index = exception;
env->error_code = error_code;
return error_code;
}
void memcpy32(uint32_t *dst, const uint32_t *src)
{
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
}
void set_cwp(int new_cwp)
{
/* put the modified wrap registers at their proper location */
if (env->cwp == (NWINDOWS - 1))
memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
env->cwp = new_cwp;
/* put the wrap registers at their temporary location */
if (new_cwp == (NWINDOWS - 1))
memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
env->regwptr = env->regbase + (new_cwp * 16);
}
/*
* Begin execution of an interruption. is_int is TRUE if coming from
* the int instruction. next_eip is the EIP value AFTER the interrupt
* instruction. It is only relevant if is_int is TRUE.
*/
void do_interrupt(int intno, int is_int, int error_code,
unsigned int next_eip, int is_hw)
{
int cwp;
#ifdef DEBUG_PCALL
if (loglevel & CPU_LOG_INT) {
static int count;
fprintf(logfile, "%6d: v=%02x e=%04x i=%d pc=%08x npc=%08x SP=%08x\n",
count, intno, error_code, is_int,
env->pc,
env->npc, env->gregs[7]);
#if 0
cpu_sparc_dump_state(env, logfile, 0);
{
int i;
uint8_t *ptr;
fprintf(logfile, " code=");
ptr = env->pc;
for(i = 0; i < 16; i++) {
fprintf(logfile, " %02x", ldub(ptr + i));
}
fprintf(logfile, "\n");
}
#endif
count++;
}
#endif
env->psret = 0;
cwp = (env->cwp - 1) & (NWINDOWS - 1);
set_cwp(cwp);
env->regwptr[9] = env->pc;
env->regwptr[10] = env->npc;
env->psrps = env->psrs;
env->psrs = 1;
env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
env->pc = env->tbr;
env->npc = env->pc + 4;
env->exception_index = 0;
}
void raise_exception_err(int exception_index, int error_code)
{
raise_exception(exception_index);
}

View File

@ -117,9 +117,108 @@
#define REGNAME o7
#define REG (env->regwptr[7])
#include "op_template.h"
#define REGNAME f0
#define REG (env->fpr[0])
#include "fop_template.h"
#define REGNAME f1
#define REG (env->fpr[1])
#include "fop_template.h"
#define REGNAME f2
#define REG (env->fpr[2])
#include "fop_template.h"
#define REGNAME f3
#define REG (env->fpr[3])
#include "fop_template.h"
#define REGNAME f4
#define REG (env->fpr[4])
#include "fop_template.h"
#define REGNAME f5
#define REG (env->fpr[5])
#include "fop_template.h"
#define REGNAME f6
#define REG (env->fpr[6])
#include "fop_template.h"
#define REGNAME f7
#define REG (env->fpr[7])
#include "fop_template.h"
#define REGNAME f8
#define REG (env->fpr[8])
#include "fop_template.h"
#define REGNAME f9
#define REG (env->fpr[9])
#include "fop_template.h"
#define REGNAME f10
#define REG (env->fpr[10])
#include "fop_template.h"
#define REGNAME f11
#define REG (env->fpr[11])
#include "fop_template.h"
#define REGNAME f12
#define REG (env->fpr[12])
#include "fop_template.h"
#define REGNAME f13
#define REG (env->fpr[13])
#include "fop_template.h"
#define REGNAME f14
#define REG (env->fpr[14])
#include "fop_template.h"
#define REGNAME f15
#define REG (env->fpr[15])
#include "fop_template.h"
#define REGNAME f16
#define REG (env->fpr[16])
#include "fop_template.h"
#define REGNAME f17
#define REG (env->fpr[17])
#include "fop_template.h"
#define REGNAME f18
#define REG (env->fpr[18])
#include "fop_template.h"
#define REGNAME f19
#define REG (env->fpr[19])
#include "fop_template.h"
#define REGNAME f20
#define REG (env->fpr[20])
#include "fop_template.h"
#define REGNAME f21
#define REG (env->fpr[21])
#include "fop_template.h"
#define REGNAME f22
#define REG (env->fpr[22])
#include "fop_template.h"
#define REGNAME f23
#define REG (env->fpr[23])
#include "fop_template.h"
#define REGNAME f24
#define REG (env->fpr[24])
#include "fop_template.h"
#define REGNAME f25
#define REG (env->fpr[25])
#include "fop_template.h"
#define REGNAME f26
#define REG (env->fpr[26])
#include "fop_template.h"
#define REGNAME f27
#define REG (env->fpr[27])
#include "fop_template.h"
#define REGNAME f28
#define REG (env->fpr[28])
#include "fop_template.h"
#define REGNAME f29
#define REG (env->fpr[29])
#include "fop_template.h"
#define REGNAME f30
#define REG (env->fpr[30])
#include "fop_template.h"
#define REGNAME f31
#define REG (env->fpr[31])
#include "fop_template.h"
#define EIP (env->pc)
#define FLAG_SET(x) (env->psr&x)?1:0
#define FFLAG_SET(x) ((env->fsr&x)?1:0)
void OPPROTO op_movl_T0_0(void)
{
@ -375,6 +474,7 @@ void OPPROTO op_sra(void)
T0 = ((int32_t) T0) >> T1;
}
#if 0
void OPPROTO op_st(void)
{
stl((void *) T0, T1);
@ -440,6 +540,51 @@ void OPPROTO op_ldd(void)
T0 = ldl((void *) (T0 + 4));
}
void OPPROTO op_stf(void)
{
stfl((void *) T0, FT0);
}
void OPPROTO op_stdf(void)
{
stfq((void *) T0, DT0);
}
void OPPROTO op_ldf(void)
{
FT0 = ldfl((void *) T0);
}
void OPPROTO op_lddf(void)
{
DT0 = ldfq((void *) T0);
}
#else
/* Load and store */
#define MEMSUFFIX _raw
#include "op_mem.h"
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_mem.h"
#define MEMSUFFIX _kernel
#include "op_mem.h"
#endif
#endif
void OPPROTO op_ldfsr(void)
{
env->fsr = *((uint32_t *) &FT0);
FORCE_RET();
}
void OPPROTO op_stfsr(void)
{
*((uint32_t *) &FT0) = env->fsr;
helper_stfsr();
FORCE_RET();
}
void OPPROTO op_wry(void)
{
env->y = T0;
@ -450,36 +595,56 @@ void OPPROTO op_rdy(void)
T0 = env->y;
}
void OPPROTO op_rdwim(void)
{
T0 = env->wim;
}
void OPPROTO op_wrwim(void)
{
env->wim = T0;
FORCE_RET();
}
void OPPROTO op_rdpsr(void)
{
T0 = GET_PSR(env);
FORCE_RET();
}
void OPPROTO op_wrpsr(void)
{
env->psr = T0 & ~PSR_ICC;
env->psrs = (T0 & PSR_S)? 1 : 0;
env->psrps = (T0 & PSR_PS)? 1 : 0;
env->psret = (T0 & PSR_ET)? 1 : 0;
env->cwp = (T0 & PSR_CWP);
FORCE_RET();
}
void OPPROTO op_rdtbr(void)
{
T0 = env->tbr;
}
void OPPROTO op_wrtbr(void)
{
env->tbr = T0;
FORCE_RET();
}
void OPPROTO op_rett(void)
{
helper_rett();
FORCE_RET();
}
void raise_exception(int tt)
{
env->exception_index = tt;
cpu_loop_exit();
}
void memcpy32(uint32_t *dst, const uint32_t *src)
{
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
}
static inline void set_cwp(int new_cwp)
{
/* put the modified wrap registers at their proper location */
if (env->cwp == (NWINDOWS - 1))
memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
env->cwp = new_cwp;
/* put the wrap registers at their temporary location */
if (new_cwp == (NWINDOWS - 1))
memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
env->regwptr = env->regbase + (new_cwp * 16);
}
/* XXX: use another pointer for %iN registers to avoid slow wrapping
handling ? */
void OPPROTO op_save(void)
@ -525,6 +690,12 @@ void OPPROTO op_trapcc_T0(void)
FORCE_RET();
}
void OPPROTO op_debug(void)
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
void OPPROTO op_exit_tb(void)
{
EXIT_TB();
@ -612,6 +783,92 @@ void OPPROTO op_eval_bvc(void)
T2 = !(env->psr & PSR_OVF);
}
/* FCC1:FCC0: 0 =, 1 <, 2 >, 3 u */
void OPPROTO op_eval_fbne(void)
{
// !0
T2 = (env->fsr & (FSR_FCC1 | FSR_FCC0)); /* L or G or U */
}
void OPPROTO op_eval_fblg(void)
{
// 1 or 2
T2 = FFLAG_SET(FSR_FCC0) ^ FFLAG_SET(FSR_FCC1);
}
void OPPROTO op_eval_fbul(void)
{
// 1 or 3
T2 = FFLAG_SET(FSR_FCC0);
}
void OPPROTO op_eval_fbl(void)
{
// 1
T2 = FFLAG_SET(FSR_FCC0) & !FFLAG_SET(FSR_FCC1);
}
void OPPROTO op_eval_fbug(void)
{
// 2 or 3
T2 = FFLAG_SET(FSR_FCC1);
}
void OPPROTO op_eval_fbg(void)
{
// 2
T2 = !FFLAG_SET(FSR_FCC0) & FFLAG_SET(FSR_FCC1);
}
void OPPROTO op_eval_fbu(void)
{
// 3
T2 = FFLAG_SET(FSR_FCC0) & FFLAG_SET(FSR_FCC1);
}
void OPPROTO op_eval_fbe(void)
{
// 0
T2 = !FFLAG_SET(FSR_FCC0) & !FFLAG_SET(FSR_FCC1);
}
void OPPROTO op_eval_fbue(void)
{
// 0 or 3
T2 = !(FFLAG_SET(FSR_FCC1) ^ FFLAG_SET(FSR_FCC0));
}
void OPPROTO op_eval_fbge(void)
{
// 0 or 2
T2 = !FFLAG_SET(FSR_FCC0);
}
void OPPROTO op_eval_fbuge(void)
{
// !1
T2 = !(FFLAG_SET(FSR_FCC0) & !FFLAG_SET(FSR_FCC1));
}
void OPPROTO op_eval_fble(void)
{
// 0 or 1
T2 = !FFLAG_SET(FSR_FCC1);
}
void OPPROTO op_eval_fbule(void)
{
// !2
T2 = !(!FFLAG_SET(FSR_FCC0) & FFLAG_SET(FSR_FCC1));
}
void OPPROTO op_eval_fbo(void)
{
// !3
T2 = !(FFLAG_SET(FSR_FCC0) & FFLAG_SET(FSR_FCC1));
}
void OPPROTO op_movl_T2_0(void)
{
T2 = 0;
@ -687,3 +944,119 @@ void OPPROTO op_flush_T0(void)
{
helper_flush(T0);
}
void OPPROTO op_fnegs(void)
{
FT0 = -FT1;
}
void OPPROTO op_fabss(void)
{
do_fabss();
}
void OPPROTO op_fsqrts(void)
{
do_fsqrts();
}
void OPPROTO op_fsqrtd(void)
{
do_fsqrtd();
}
void OPPROTO op_fmuls(void)
{
FT0 *= FT1;
}
void OPPROTO op_fmuld(void)
{
DT0 *= DT1;
}
void OPPROTO op_fsmuld(void)
{
DT0 = FT0 * FT1;
}
void OPPROTO op_fadds(void)
{
FT0 += FT1;
}
void OPPROTO op_faddd(void)
{
DT0 += DT1;
}
void OPPROTO op_fsubs(void)
{
FT0 -= FT1;
}
void OPPROTO op_fsubd(void)
{
DT0 -= DT1;
}
void OPPROTO op_fdivs(void)
{
FT0 /= FT1;
}
void OPPROTO op_fdivd(void)
{
DT0 /= DT1;
}
void OPPROTO op_fcmps(void)
{
do_fcmps();
}
void OPPROTO op_fcmpd(void)
{
do_fcmpd();
}
void OPPROTO op_fitos(void)
{
FT0 = (float) *((int32_t *)&FT1);
}
void OPPROTO op_fdtos(void)
{
FT0 = (float) DT1;
}
void OPPROTO op_fitod(void)
{
DT0 = (double) *((int32_t *)&FT1);
}
void OPPROTO op_fstod(void)
{
DT0 = (double) FT1;
}
void OPPROTO op_fstoi(void)
{
*((int32_t *)&FT0) = (int32_t) FT1;
}
void OPPROTO op_fdtoi(void)
{
*((int32_t *)&FT0) = (int32_t) DT1;
}
void OPPROTO op_ld_asi()
{
helper_ld_asi(PARAM1, PARAM2, PARAM3);
}
void OPPROTO op_st_asi()
{
helper_st_asi(PARAM1, PARAM2, PARAM3);
}

135
target-sparc/op_helper.c Normal file
View File

@ -0,0 +1,135 @@
#include <math.h>
#include <fenv.h>
#include "exec.h"
void OPPROTO do_fabss(void)
{
FT0 = fabsf(FT1);
}
void OPPROTO do_fsqrts(void)
{
FT0 = sqrtf(FT1);
}
void OPPROTO do_fsqrtd(void)
{
DT0 = sqrt(DT1);
}
void OPPROTO do_fcmps (void)
{
if (isnan(FT0) || isnan(FT1)) {
T0 = FSR_FCC1 | FSR_FCC0;
} else if (FT0 < FT1) {
T0 = FSR_FCC0;
} else if (FT0 > FT1) {
T0 = FSR_FCC1;
} else {
T0 = 0;
}
env->fsr = T0;
}
void OPPROTO do_fcmpd (void)
{
if (isnan(DT0) || isnan(DT1)) {
T0 = FSR_FCC1 | FSR_FCC0;
} else if (DT0 < DT1) {
T0 = FSR_FCC0;
} else if (DT0 > DT1) {
T0 = FSR_FCC1;
} else {
T0 = 0;
}
env->fsr = T0;
}
void OPPROTO helper_ld_asi(int asi, int size, int sign)
{
switch(asi) {
case 3: /* MMU probe */
T1 = 0;
return;
case 4: /* read MMU regs */
{
int temp, reg = (T0 >> 8) & 0xf;
temp = env->mmuregs[reg];
if (reg == 3 || reg == 4) /* Fault status, addr cleared on read*/
env->mmuregs[reg] = 0;
T1 = temp;
}
return;
case 0x20 ... 0x2f: /* MMU passthrough */
{
int temp;
cpu_physical_memory_read(T0, (void *) &temp, size);
bswap32s(&temp);
T1 = temp;
}
return;
default:
T1 = 0;
return;
}
}
void OPPROTO helper_st_asi(int asi, int size, int sign)
{
switch(asi) {
case 3: /* MMU flush */
return;
case 4: /* write MMU regs */
{
int reg = (T0 >> 8) & 0xf;
if (reg == 0) {
env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
} else
env->mmuregs[reg] = T1;
return;
}
case 0x20 ... 0x2f: /* MMU passthrough */
{
int temp = T1;
bswap32s(&temp);
cpu_physical_memory_write(T0, (void *) &temp, size);
}
return;
default:
return;
}
}
void OPPROTO helper_rett()
{
int cwp;
env->psret = 1;
cwp = (env->cwp + 1) & (NWINDOWS - 1);
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_UNF);
}
set_cwp(cwp);
env->psrs = env->psrps;
}
void helper_stfsr(void)
{
switch (env->fsr & FSR_RD_MASK) {
case FSR_RD_NEAREST:
fesetround(FE_TONEAREST);
break;
case FSR_RD_ZERO:
fesetround(FE_TOWARDZERO);
break;
case FSR_RD_POS:
fesetround(FE_UPWARD);
break;
case FSR_RD_NEG:
fesetround(FE_DOWNWARD);
break;
}
}

71
target-sparc/op_mem.h Normal file
View File

@ -0,0 +1,71 @@
/*** Integer load ***/
#define SPARC_LD_OP(name, qp) \
void OPPROTO glue(glue(op_, name), MEMSUFFIX)(void) \
{ \
T1 = glue(qp, MEMSUFFIX)((void *)T0); \
}
#define SPARC_ST_OP(name, op) \
void OPPROTO glue(glue(op_, name), MEMSUFFIX)(void) \
{ \
glue(op, MEMSUFFIX)((void *)T0, T1); \
}
SPARC_LD_OP(ld, ldl);
SPARC_LD_OP(ldub, ldub);
SPARC_LD_OP(lduh, lduw);
SPARC_LD_OP(ldsb, ldsb);
SPARC_LD_OP(ldsh, ldsw);
/*** Integer store ***/
SPARC_ST_OP(st, stl);
SPARC_ST_OP(stb, stb);
SPARC_ST_OP(sth, stw);
void OPPROTO glue(op_std, MEMSUFFIX)(void)
{
glue(stl, MEMSUFFIX)((void *) T0, T1);
glue(stl, MEMSUFFIX)((void *) (T0 + 4), T2);
}
void OPPROTO glue(op_ldstub, MEMSUFFIX)(void)
{
T1 = glue(ldub, MEMSUFFIX)((void *) T0);
glue(stb, MEMSUFFIX)((void *) T0, 0xff); /* XXX: Should be Atomically */
}
void OPPROTO glue(op_swap, MEMSUFFIX)(void)
{
unsigned int tmp = glue(ldl, MEMSUFFIX)((void *) T0);
glue(stl, MEMSUFFIX)((void *) T0, T1); /* XXX: Should be Atomically */
T1 = tmp;
}
void OPPROTO glue(op_ldd, MEMSUFFIX)(void)
{
T1 = glue(ldl, MEMSUFFIX)((void *) T0);
T0 = glue(ldl, MEMSUFFIX)((void *) (T0 + 4));
}
/*** Floating-point store ***/
void OPPROTO glue(op_stf, MEMSUFFIX) (void)
{
glue(stfl, MEMSUFFIX)((void *) T0, FT0);
}
void OPPROTO glue(op_stdf, MEMSUFFIX) (void)
{
glue(stfq, MEMSUFFIX)((void *) T0, DT0);
}
/*** Floating-point load ***/
void OPPROTO glue(op_ldf, MEMSUFFIX) (void)
{
FT0 = glue(ldfl, MEMSUFFIX)((void *) T0);
}
void OPPROTO glue(op_lddf, MEMSUFFIX) (void)
{
DT0 = glue(ldfq, MEMSUFFIX)((void *) T0);
}
#undef MEMSUFFIX

View File

@ -51,6 +51,7 @@ typedef struct DisasContext {
target_ulong npc; /* next PC: integer or DYNAMIC_PC or JUMP_PC */
target_ulong jump_pc[2]; /* used when JUMP_PC pc value is used */
int is_br;
int mem_idx;
struct TranslationBlock *tb;
} DisasContext;
@ -257,6 +258,96 @@ static GenOpFunc1 *gen_op_movl_TN_im[3] = {
gen_op_movl_T2_im
};
#define GEN32(func, NAME) \
static GenOpFunc *NAME ## _table [32] = { \
NAME ## 0, NAME ## 1, NAME ## 2, NAME ## 3, \
NAME ## 4, NAME ## 5, NAME ## 6, NAME ## 7, \
NAME ## 8, NAME ## 9, NAME ## 10, NAME ## 11, \
NAME ## 12, NAME ## 13, NAME ## 14, NAME ## 15, \
NAME ## 16, NAME ## 17, NAME ## 18, NAME ## 19, \
NAME ## 20, NAME ## 21, NAME ## 22, NAME ## 23, \
NAME ## 24, NAME ## 25, NAME ## 26, NAME ## 27, \
NAME ## 28, NAME ## 29, NAME ## 30, NAME ## 31, \
}; \
static inline void func(int n) \
{ \
NAME ## _table[n](); \
}
/* floating point registers moves */
GEN32(gen_op_load_fpr_FT0, gen_op_load_fpr_FT0_fprf);
GEN32(gen_op_load_fpr_FT1, gen_op_load_fpr_FT1_fprf);
GEN32(gen_op_load_fpr_FT2, gen_op_load_fpr_FT2_fprf);
GEN32(gen_op_store_FT0_fpr, gen_op_store_FT0_fpr_fprf);
GEN32(gen_op_store_FT1_fpr, gen_op_store_FT1_fpr_fprf);
GEN32(gen_op_store_FT2_fpr, gen_op_store_FT2_fpr_fprf);
GEN32(gen_op_load_fpr_DT0, gen_op_load_fpr_DT0_fprf);
GEN32(gen_op_load_fpr_DT1, gen_op_load_fpr_DT1_fprf);
GEN32(gen_op_load_fpr_DT2, gen_op_load_fpr_DT2_fprf);
GEN32(gen_op_store_DT0_fpr, gen_op_store_DT0_fpr_fprf);
GEN32(gen_op_store_DT1_fpr, gen_op_store_DT1_fpr_fprf);
GEN32(gen_op_store_DT2_fpr, gen_op_store_DT2_fpr_fprf);
#if defined(CONFIG_USER_ONLY)
#define gen_op_ldst(name) gen_op_##name##_raw()
#define OP_LD_TABLE(width)
#define supervisor(dc) 0
#else
#define gen_op_ldst(name) (*gen_op_##name[dc->mem_idx])()
#define OP_LD_TABLE(width) \
static GenOpFunc *gen_op_##width[] = { \
&gen_op_##width##_user, \
&gen_op_##width##_kernel, \
}; \
\
static void gen_op_##width##a(int insn, int is_ld, int size, int sign) \
{ \
int asi; \
\
asi = GET_FIELD(insn, 19, 26); \
switch (asi) { \
case 10: /* User data access */ \
gen_op_##width##_user(); \
break; \
case 11: /* Supervisor data access */ \
gen_op_##width##_kernel(); \
break; \
case 0x20 ... 0x2f: /* MMU passthrough */ \
if (is_ld) \
gen_op_ld_asi(asi, size, sign); \
else \
gen_op_st_asi(asi, size, sign); \
break; \
default: \
if (is_ld) \
gen_op_ld_asi(asi, size, sign); \
else \
gen_op_st_asi(asi, size, sign); \
break; \
} \
}
#define supervisor(dc) (dc->mem_idx == 1)
#endif
OP_LD_TABLE(ld);
OP_LD_TABLE(st);
OP_LD_TABLE(ldub);
OP_LD_TABLE(lduh);
OP_LD_TABLE(ldsb);
OP_LD_TABLE(ldsh);
OP_LD_TABLE(stb);
OP_LD_TABLE(sth);
OP_LD_TABLE(std);
OP_LD_TABLE(ldstub);
OP_LD_TABLE(swap);
OP_LD_TABLE(ldd);
OP_LD_TABLE(stf);
OP_LD_TABLE(stdf);
OP_LD_TABLE(ldf);
OP_LD_TABLE(lddf);
static inline void gen_movl_imm_TN(int reg, int imm)
{
gen_op_movl_TN_im[reg] (imm);
@ -391,6 +482,60 @@ static void gen_cond(int cond)
}
}
static void gen_fcond(int cond)
{
switch (cond) {
case 0x0:
gen_op_movl_T2_0();
break;
case 0x1:
gen_op_eval_fbne();
break;
case 0x2:
gen_op_eval_fblg();
break;
case 0x3:
gen_op_eval_fbul();
break;
case 0x4:
gen_op_eval_fbl();
break;
case 0x5:
gen_op_eval_fbug();
break;
case 0x6:
gen_op_eval_fbg();
break;
case 0x7:
gen_op_eval_fbu();
break;
case 0x8:
gen_op_movl_T2_1();
break;
case 0x9:
gen_op_eval_fbe();
break;
case 0xa:
gen_op_eval_fbue();
break;
case 0xb:
gen_op_eval_fbge();
break;
case 0xc:
gen_op_eval_fbuge();
break;
case 0xd:
gen_op_eval_fble();
break;
case 0xe:
gen_op_eval_fbule();
break;
default:
case 0xf:
gen_op_eval_fbo();
break;
}
}
static void do_branch(DisasContext * dc, uint32_t target, uint32_t insn)
{
@ -429,6 +574,50 @@ static void do_branch(DisasContext * dc, uint32_t target, uint32_t insn)
}
}
static void do_fbranch(DisasContext * dc, uint32_t target, uint32_t insn)
{
unsigned int cond = GET_FIELD(insn, 3, 6), a = (insn & (1 << 29));
target += (uint32_t) dc->pc;
if (cond == 0x0) {
/* unconditional not taken */
if (a) {
dc->pc = dc->npc + 4;
dc->npc = dc->pc + 4;
} else {
dc->pc = dc->npc;
dc->npc = dc->pc + 4;
}
} else if (cond == 0x8) {
/* unconditional taken */
if (a) {
dc->pc = target;
dc->npc = dc->pc + 4;
} else {
dc->pc = dc->npc;
dc->npc = target;
}
} else {
flush_T2(dc);
gen_fcond(cond);
if (a) {
gen_op_branch_a((long)dc->tb, target, dc->npc);
dc->is_br = 1;
} else {
dc->pc = dc->npc;
dc->jump_pc[0] = target;
dc->jump_pc[1] = dc->npc + 4;
dc->npc = JUMP_PC;
}
}
}
static void gen_debug(DisasContext *s, uint32_t pc)
{
gen_op_jmp_im(pc);
gen_op_debug();
s->is_br = 1;
}
#define GET_FIELDs(x,a,b) sign_extend (GET_FIELD(x,a,b), (b) - (a) + 1)
static int sign_extend(int x, int len)
@ -454,6 +643,7 @@ static void disas_sparc_insn(DisasContext * dc)
switch (xop) {
case 0x0:
case 0x1: /* UNIMPL */
default:
goto illegal_insn;
case 0x2: /* BN+x */
{
@ -462,8 +652,13 @@ static void disas_sparc_insn(DisasContext * dc)
do_branch(dc, target, insn);
goto jmp_insn;
}
case 0x3: /* FBN+x */
break;
case 0x6: /* FBN+x */
{
target <<= 2;
target = sign_extend(target, 22);
do_fbranch(dc, target, insn);
goto jmp_insn;
}
case 0x4: /* SETHI */
gen_movl_imm_T0(target << 10);
gen_movl_T0_reg(rd);
@ -492,12 +687,16 @@ static void disas_sparc_insn(DisasContext * dc)
rs1 = GET_FIELD(insn, 13, 17);
gen_movl_reg_T0(rs1);
if (IS_IMM) {
gen_movl_imm_T1(GET_FIELD(insn, 25, 31));
rs2 = GET_FIELD(insn, 25, 31);
if (rs2 != 0) {
gen_movl_imm_T1(rs2);
gen_op_add_T1_T0();
}
} else {
rs2 = GET_FIELD(insn, 27, 31);
gen_movl_reg_T1(rs2);
}
gen_op_add_T1_T0();
}
save_state(dc);
cond = GET_FIELD(insn, 3, 6);
if (cond == 0x8) {
@ -514,11 +713,167 @@ static void disas_sparc_insn(DisasContext * dc)
gen_op_rdy();
gen_movl_T0_reg(rd);
break;
case 15: /* stbar */
break; /* no effect? */
default:
goto illegal_insn;
}
#if !defined(CONFIG_USER_ONLY)
} else if (xop == 0x29) {
if (!supervisor(dc))
goto priv_insn;
gen_op_rdpsr();
gen_movl_T0_reg(rd);
break;
} else if (xop == 0x2a) {
if (!supervisor(dc))
goto priv_insn;
gen_op_rdwim();
gen_movl_T0_reg(rd);
break;
} else if (xop == 0x2b) {
if (!supervisor(dc))
goto priv_insn;
gen_op_rdtbr();
gen_movl_T0_reg(rd);
break;
#endif
} else if (xop == 0x34 || xop == 0x35) { /* FPU Operations */
rs1 = GET_FIELD(insn, 13, 17);
rs2 = GET_FIELD(insn, 27, 31);
xop = GET_FIELD(insn, 18, 26);
switch (xop) {
case 0x1: /* fmovs */
gen_op_load_fpr_FT0(rs2);
gen_op_store_FT0_fpr(rd);
break;
case 0x5: /* fnegs */
gen_op_load_fpr_FT1(rs2);
gen_op_fnegs();
gen_op_store_FT0_fpr(rd);
break;
case 0x9: /* fabss */
gen_op_load_fpr_FT1(rs2);
gen_op_fabss();
gen_op_store_FT0_fpr(rd);
break;
case 0x29: /* fsqrts */
gen_op_load_fpr_FT1(rs2);
gen_op_fsqrts();
gen_op_store_FT0_fpr(rd);
break;
case 0x2a: /* fsqrtd */
gen_op_load_fpr_DT1(rs2);
gen_op_fsqrtd();
gen_op_store_DT0_fpr(rd);
break;
case 0x41:
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fadds();
gen_op_store_FT0_fpr(rd);
break;
case 0x42:
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_faddd();
gen_op_store_DT0_fpr(rd);
break;
case 0x45:
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fsubs();
gen_op_store_FT0_fpr(rd);
break;
case 0x46:
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fsubd();
gen_op_store_DT0_fpr(rd);
break;
case 0x49:
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fmuls();
gen_op_store_FT0_fpr(rd);
break;
case 0x4a:
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fmuld();
gen_op_store_DT0_fpr(rd);
break;
case 0x4d:
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fdivs();
gen_op_store_FT0_fpr(rd);
break;
case 0x4e:
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fdivd();
gen_op_store_DT0_fpr(rd);
break;
case 0x51:
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fcmps();
break;
case 0x52:
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmpd();
break;
case 0x55: /* fcmpes */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fcmps(); /* XXX */
break;
case 0x56: /* fcmped */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmpd(); /* XXX */
break;
case 0x69:
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fsmuld();
gen_op_store_DT0_fpr(rd);
break;
case 0xc4:
gen_op_load_fpr_FT1(rs2);
gen_op_fitos();
gen_op_store_FT0_fpr(rd);
break;
case 0xc6:
gen_op_load_fpr_DT1(rs2);
gen_op_fdtos();
gen_op_store_FT0_fpr(rd);
break;
case 0xc8:
gen_op_load_fpr_FT1(rs2);
gen_op_fitod();
gen_op_store_DT0_fpr(rd);
break;
case 0xc9:
gen_op_load_fpr_FT1(rs2);
gen_op_fstod();
gen_op_store_DT0_fpr(rd);
break;
case 0xd1:
gen_op_load_fpr_FT1(rs2);
gen_op_fstoi();
gen_op_store_FT0_fpr(rd);
break;
case 0xd2:
gen_op_load_fpr_DT1(rs2);
gen_op_fdtoi();
gen_op_store_FT0_fpr(rd);
break;
default:
goto illegal_insn;
}
} else {
rs1 = GET_FIELD(insn, 13, 17);
gen_movl_reg_T0(rs1);
@ -637,6 +992,32 @@ static void disas_sparc_insn(DisasContext * dc)
}
}
break;
#if !defined(CONFIG_USER_ONLY)
case 0x31:
{
if (!supervisor(dc))
goto priv_insn;
gen_op_xor_T1_T0();
gen_op_wrpsr();
}
break;
case 0x32:
{
if (!supervisor(dc))
goto priv_insn;
gen_op_xor_T1_T0();
gen_op_wrwim();
}
break;
case 0x33:
{
if (!supervisor(dc))
goto priv_insn;
gen_op_xor_T1_T0();
gen_op_wrtbr();
}
break;
#endif
case 0x38: /* jmpl */
{
gen_op_add_T1_T0();
@ -649,6 +1030,24 @@ static void disas_sparc_insn(DisasContext * dc)
dc->npc = DYNAMIC_PC;
}
goto jmp_insn;
#if !defined(CONFIG_USER_ONLY)
case 0x39: /* rett */
{
if (!supervisor(dc))
goto priv_insn;
gen_op_add_T1_T0();
gen_op_movl_npc_T0();
gen_op_rett();
#if 0
dc->pc = dc->npc;
dc->npc = DYNAMIC_PC;
#endif
}
#if 0
goto jmp_insn;
#endif
break;
#endif
case 0x3b: /* flush */
gen_op_add_T1_T0();
gen_op_flush_T0();
@ -679,59 +1078,156 @@ static void disas_sparc_insn(DisasContext * dc)
gen_movl_reg_T0(rs1);
if (IS_IMM) { /* immediate */
rs2 = GET_FIELDs(insn, 19, 31);
if (rs2 != 0) {
gen_movl_imm_T1(rs2);
gen_op_add_T1_T0();
}
} else { /* register */
rs2 = GET_FIELD(insn, 27, 31);
gen_movl_reg_T1(rs2);
}
gen_op_add_T1_T0();
if (xop < 4 || xop > 7) {
}
if (xop < 4 || (xop > 7 && xop < 0x14) || \
(xop > 0x17 && xop < 0x20)) {
switch (xop) {
case 0x0: /* load word */
gen_op_ld();
gen_op_ldst(ld);
break;
case 0x1: /* load unsigned byte */
gen_op_ldub();
gen_op_ldst(ldub);
break;
case 0x2: /* load unsigned halfword */
gen_op_lduh();
gen_op_ldst(lduh);
break;
case 0x3: /* load double word */
gen_op_ldd();
gen_op_ldst(ldd);
gen_movl_T0_reg(rd + 1);
break;
case 0x9: /* load signed byte */
gen_op_ldsb();
gen_op_ldst(ldsb);
break;
case 0xa: /* load signed halfword */
gen_op_ldsh();
gen_op_ldst(ldsh);
break;
case 0xd: /* ldstub -- XXX: should be atomically */
gen_op_ldstub();
gen_op_ldst(ldstub);
break;
case 0x0f: /* swap register with memory. Also atomically */
gen_op_swap();
gen_op_ldst(swap);
break;
case 0x10: /* load word alternate */
if (!supervisor(dc))
goto priv_insn;
gen_op_lda(insn, 1, 4, 0);
break;
case 0x11: /* load unsigned byte alternate */
if (!supervisor(dc))
goto priv_insn;
gen_op_lduba(insn, 1, 1, 0);
break;
case 0x12: /* load unsigned halfword alternate */
if (!supervisor(dc))
goto priv_insn;
gen_op_lduha(insn, 1, 2, 0);
break;
case 0x13: /* load double word alternate */
if (!supervisor(dc))
goto priv_insn;
gen_op_ldda(insn, 1, 8, 0);
gen_movl_T0_reg(rd + 1);
break;
case 0x19: /* load signed byte alternate */
if (!supervisor(dc))
goto priv_insn;
gen_op_ldsba(insn, 1, 1, 1);
break;
case 0x1a: /* load signed halfword alternate */
if (!supervisor(dc))
goto priv_insn;
gen_op_ldsha(insn, 1, 2 ,1);
break;
case 0x1d: /* ldstuba -- XXX: should be atomically */
if (!supervisor(dc))
goto priv_insn;
gen_op_ldstuba(insn, 1, 1, 0);
break;
case 0x1f: /* swap reg with alt. memory. Also atomically */
if (!supervisor(dc))
goto priv_insn;
gen_op_swapa(insn, 1, 4, 0);
break;
}
gen_movl_T1_reg(rd);
} else if (xop < 8) {
} else if (xop >= 0x20 && xop < 0x24) {
switch (xop) {
case 0x20: /* load fpreg */
gen_op_ldst(ldf);
gen_op_store_FT0_fpr(rd);
break;
case 0x21: /* load fsr */
gen_op_ldfsr();
break;
case 0x23: /* load double fpreg */
gen_op_ldst(lddf);
gen_op_store_DT0_fpr(rd);
break;
}
} else if (xop < 8 || (xop >= 0x14 && xop < 0x18)) {
gen_movl_reg_T1(rd);
switch (xop) {
case 0x4:
gen_op_st();
gen_op_ldst(st);
break;
case 0x5:
gen_op_stb();
gen_op_ldst(stb);
break;
case 0x6:
gen_op_sth();
gen_op_ldst(sth);
break;
case 0x7:
flush_T2(dc);
gen_movl_reg_T2(rd + 1);
gen_op_std();
gen_op_ldst(std);
break;
case 0x14:
if (!supervisor(dc))
goto priv_insn;
gen_op_sta(insn, 0, 4, 0);
break;
case 0x15:
if (!supervisor(dc))
goto priv_insn;
gen_op_stba(insn, 0, 1, 0);
break;
case 0x16:
if (!supervisor(dc))
goto priv_insn;
gen_op_stha(insn, 0, 2, 0);
break;
case 0x17:
if (!supervisor(dc))
goto priv_insn;
flush_T2(dc);
gen_movl_reg_T2(rd + 1);
gen_op_stda(insn, 0, 8, 0);
break;
}
} else if (xop > 0x23 && xop < 0x28) {
switch (xop) {
case 0x24:
gen_op_load_fpr_FT0(rd);
gen_op_ldst(stf);
break;
case 0x25:
gen_op_stfsr();
break;
case 0x27:
gen_op_load_fpr_DT0(rd);
gen_op_ldst(stdf);
break;
}
} else if (xop > 0x33 && xop < 0x38) {
/* Co-processor */
}
}
}
@ -753,30 +1249,59 @@ static void disas_sparc_insn(DisasContext * dc)
save_state(dc);
gen_op_exception(TT_ILL_INSN);
dc->is_br = 1;
return;
priv_insn:
save_state(dc);
gen_op_exception(TT_PRIV_INSN);
dc->is_br = 1;
}
static inline int gen_intermediate_code_internal(TranslationBlock * tb,
int spc)
int spc, CPUSPARCState *env)
{
target_ulong pc_start, last_pc;
uint16_t *gen_opc_end;
DisasContext dc1, *dc = &dc1;
int j, lj = -1;
memset(dc, 0, sizeof(DisasContext));
if (spc) {
printf("SearchPC not yet supported\n");
exit(0);
}
dc->tb = tb;
pc_start = tb->pc;
dc->pc = pc_start;
dc->npc = (target_ulong) tb->cs_base;
#if defined(CONFIG_USER_ONLY)
dc->mem_idx = 0;
#else
dc->mem_idx = ((env->psrs) != 0);
#endif
gen_opc_ptr = gen_opc_buf;
gen_opc_end = gen_opc_buf + OPC_MAX_SIZE;
gen_opparam_ptr = gen_opparam_buf;
env->access_type = ACCESS_CODE;
do {
if (env->nb_breakpoints > 0) {
for(j = 0; j < env->nb_breakpoints; j++) {
if (env->breakpoints[j] == dc->pc) {
gen_debug(dc, dc->pc);
break;
}
}
}
if (spc) {
if (loglevel > 0)
fprintf(logfile, "Search PC...\n");
j = gen_opc_ptr - gen_opc_buf;
if (lj < j) {
lj++;
while (lj < j)
gen_opc_instr_start[lj++] = 0;
gen_opc_pc[lj] = dc->pc;
gen_opc_npc[lj] = dc->npc;
gen_opc_instr_start[lj] = 1;
}
}
last_pc = dc->pc;
disas_sparc_insn(dc);
if (dc->is_br)
@ -800,6 +1325,20 @@ static inline int gen_intermediate_code_internal(TranslationBlock * tb,
}
}
*gen_opc_ptr = INDEX_op_end;
if (spc) {
j = gen_opc_ptr - gen_opc_buf;
lj++;
while (lj <= j)
gen_opc_instr_start[lj++] = 0;
tb->size = 0;
#if 0
if (loglevel > 0) {
page_dump(logfile);
}
#endif
} else {
tb->size = dc->npc - pc_start;
}
#ifdef DEBUG_DISAS
if (loglevel & CPU_LOG_TB_IN_ASM) {
fprintf(logfile, "--------------\n");
@ -814,17 +1353,18 @@ static inline int gen_intermediate_code_internal(TranslationBlock * tb,
}
#endif
env->access_type = ACCESS_DATA;
return 0;
}
int gen_intermediate_code(CPUSPARCState * env, TranslationBlock * tb)
{
return gen_intermediate_code_internal(tb, 0);
return gen_intermediate_code_internal(tb, 0, env);
}
int gen_intermediate_code_pc(CPUSPARCState * env, TranslationBlock * tb)
{
return gen_intermediate_code_internal(tb, 1);
return gen_intermediate_code_internal(tb, 1, env);
}
CPUSPARCState *cpu_sparc_init(void)
@ -839,7 +1379,17 @@ CPUSPARCState *cpu_sparc_init(void)
env->cwp = 0;
env->wim = 1;
env->regwptr = env->regbase + (env->cwp * 16);
env->access_type = ACCESS_DATA;
#if defined(CONFIG_USER_ONLY)
env->user_mode_only = 1;
#else
/* Emulate Prom */
env->psrs = 1;
env->pc = 0x4000;
env->npc = env->pc + 4;
env->mmuregs[0] = (0x10<<24) | MMU_E; /* Impl 1, ver 0, MMU Enabled */
env->mmuregs[1] = 0x3000 >> 4; /* MMU Context table */
#endif
cpu_single_env = env;
return (env);
}
@ -870,10 +1420,20 @@ void cpu_sparc_dump_state(CPUSPARCState * env, FILE * f, int flags)
env->regwptr[i + x * 8]);
fprintf(f, "\n");
}
fprintf(f, "psr: 0x%08x -> %c%c%c%c wim: 0x%08x\n", env->psr | env->cwp,
fprintf(f, "\nFloating Point Registers:\n");
for (i = 0; i < 32; i++) {
if ((i & 3) == 0)
fprintf(f, "%%f%02d:", i);
fprintf(f, " %016lf", env->fpr[i]);
if ((i & 3) == 3)
fprintf(f, "\n");
}
fprintf(f, "psr: 0x%08x -> %c%c%c%c %c%c%c wim: 0x%08x\n", GET_PSR(env),
GET_FLAG(PSR_ZERO, 'Z'), GET_FLAG(PSR_OVF, 'V'),
GET_FLAG(PSR_NEG, 'N'), GET_FLAG(PSR_CARRY, 'C'),
env->wim);
env->psrs?'S':'-', env->psrps?'P':'-',
env->psret?'E':'-', env->wim);
fprintf(f, "fsr: 0x%08x\n", env->fsr);
}
target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr)