eepro100: Fix endianness issues

Like other Intel devices, e100 (eepro100) uses little endian byte order.

This patch was tested with these combinations:

i386 host, i386 + mipsel guests (le-le)
mipsel host, i386 guest (le-le)
i386 host, mips + ppc guests (le-be)
mips host, i386 guest (be-le)

mips and mipsel hosts were emulated machines.

v2:
Use prefix for new functions. Add the same prefix to stl_le_phys.
Fix alignment of mem (needed for word/dword reads/writes).

Signed-off-by: Stefan Weil <weil@mail.berlios.de>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This commit is contained in:
Stefan Weil 2011-04-30 22:40:08 +02:00 committed by Michael S. Tsirkin
parent 792f1d6394
commit e5e23ab83b

View File

@ -20,11 +20,10 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>. * along with this program. If not, see <http://www.gnu.org/licenses/>.
* *
* Tested features (i82559): * Tested features (i82559):
* PXE boot (i386) ok * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok
* Linux networking (i386) ok * Linux networking (i386) ok
* *
* Untested: * Untested:
* non-i386 platforms
* Windows networking * Windows networking
* *
* References: * References:
@ -139,7 +138,7 @@ typedef struct {
/* Offsets to the various registers. /* Offsets to the various registers.
All accesses need not be longword aligned. */ All accesses need not be longword aligned. */
enum speedo_offsets { typedef enum {
SCBStatus = 0, /* Status Word. */ SCBStatus = 0, /* Status Word. */
SCBAck = 1, SCBAck = 1,
SCBCmd = 2, /* Rx/Command Unit command and status. */ SCBCmd = 2, /* Rx/Command Unit command and status. */
@ -154,7 +153,7 @@ enum speedo_offsets {
SCBpmdr = 27, /* Power Management Driver. */ SCBpmdr = 27, /* Power Management Driver. */
SCBgctrl = 28, /* General Control. */ SCBgctrl = 28, /* General Control. */
SCBgstat = 29, /* General Status. */ SCBgstat = 29, /* General Status. */
}; } E100RegisterOffset;
/* A speedo3 transmit buffer descriptor with two buffers... */ /* A speedo3 transmit buffer descriptor with two buffers... */
typedef struct { typedef struct {
@ -258,11 +257,13 @@ typedef struct {
/* Statistical counters. Also used for wake-up packet (i82559). */ /* Statistical counters. Also used for wake-up packet (i82559). */
eepro100_stats_t statistics; eepro100_stats_t statistics;
/* Data in mem is always in the byte order of the controller (le).
* It must be dword aligned to allow direct access to 32 bit values. */
uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8)));;
/* Configuration bytes. */ /* Configuration bytes. */
uint8_t configuration[22]; uint8_t configuration[22];
/* Data in mem is always in the byte order of the controller (le). */
uint8_t mem[PCI_MEM_SIZE];
/* vmstate for each particular nic */ /* vmstate for each particular nic */
VMStateDescription *vmstate; VMStateDescription *vmstate;
@ -316,8 +317,33 @@ static const uint16_t eepro100_mdi_mask[] = {
0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
}; };
/* XXX: optimize */ /* Read a 16 bit little endian value from physical memory. */
static void stl_le_phys(target_phys_addr_t addr, uint32_t val) static uint16_t e100_ldw_le_phys(target_phys_addr_t addr)
{
/* Load 16 bit (little endian) word from emulated hardware. */
uint16_t val;
cpu_physical_memory_read(addr, &val, sizeof(val));
return le16_to_cpu(val);
}
/* Read a 32 bit little endian value from physical memory. */
static uint32_t e100_ldl_le_phys(target_phys_addr_t addr)
{
/* Load 32 bit (little endian) word from emulated hardware. */
uint32_t val;
cpu_physical_memory_read(addr, &val, sizeof(val));
return le32_to_cpu(val);
}
/* Write a 16 bit little endian value to physical memory. */
static void e100_stw_le_phys(target_phys_addr_t addr, uint16_t val)
{
val = cpu_to_le16(val);
cpu_physical_memory_write(addr, &val, sizeof(val));
}
/* Write a 32 bit little endian value to physical memory. */
static void e100_stl_le_phys(target_phys_addr_t addr, uint32_t val)
{ {
val = cpu_to_le32(val); val = cpu_to_le32(val);
cpu_physical_memory_write(addr, &val, sizeof(val)); cpu_physical_memory_write(addr, &val, sizeof(val));
@ -348,6 +374,36 @@ static unsigned compute_mcast_idx(const uint8_t * ep)
return (crc & BITS(7, 2)) >> 2; return (crc & BITS(7, 2)) >> 2;
} }
/* Read a 16 bit control/status (CSR) register. */
static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr)
{
assert(!((uintptr_t)&s->mem[addr] & 1));
return le16_to_cpup((uint16_t *)&s->mem[addr]);
}
/* Read a 32 bit control/status (CSR) register. */
static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr)
{
assert(!((uintptr_t)&s->mem[addr] & 3));
return le32_to_cpup((uint32_t *)&s->mem[addr]);
}
/* Write a 16 bit control/status (CSR) register. */
static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr,
uint16_t val)
{
assert(!((uintptr_t)&s->mem[addr] & 1));
cpu_to_le16w((uint16_t *)&s->mem[addr], val);
}
/* Read a 32 bit control/status (CSR) register. */
static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr,
uint32_t val)
{
assert(!((uintptr_t)&s->mem[addr] & 3));
cpu_to_le32w((uint32_t *)&s->mem[addr], val);
}
#if defined(DEBUG_EEPRO100) #if defined(DEBUG_EEPRO100)
static const char *nic_dump(const uint8_t * buf, unsigned size) static const char *nic_dump(const uint8_t * buf, unsigned size)
{ {
@ -599,8 +655,7 @@ static void nic_selective_reset(EEPRO100State * s)
TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1])); TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
memset(s->mem, 0, sizeof(s->mem)); memset(s->mem, 0, sizeof(s->mem));
uint32_t val = BIT(21); e100_write_reg4(s, SCBCtrlMDI, BIT(21));
memcpy(&s->mem[SCBCtrlMDI], &val, sizeof(val));
assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default)); assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem)); memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
@ -704,13 +759,13 @@ static void dump_statistics(EEPRO100State * s)
* Number of data should check configuration!!! * Number of data should check configuration!!!
*/ */
cpu_physical_memory_write(s->statsaddr, &s->statistics, s->stats_size); cpu_physical_memory_write(s->statsaddr, &s->statistics, s->stats_size);
stl_le_phys(s->statsaddr + 0, s->statistics.tx_good_frames); e100_stl_le_phys(s->statsaddr + 0, s->statistics.tx_good_frames);
stl_le_phys(s->statsaddr + 36, s->statistics.rx_good_frames); e100_stl_le_phys(s->statsaddr + 36, s->statistics.rx_good_frames);
stl_le_phys(s->statsaddr + 48, s->statistics.rx_resource_errors); e100_stl_le_phys(s->statsaddr + 48, s->statistics.rx_resource_errors);
stl_le_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors); e100_stl_le_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors);
#if 0 #if 0
stw_le_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames); e100_stw_le_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames);
stw_le_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames); e100_stw_le_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames);
missing("CU dump statistical counters"); missing("CU dump statistical counters");
#endif #endif
} }
@ -747,10 +802,10 @@ static void tx_command(EEPRO100State *s)
} }
assert(tcb_bytes <= sizeof(buf)); assert(tcb_bytes <= sizeof(buf));
while (size < tcb_bytes) { while (size < tcb_bytes) {
uint32_t tx_buffer_address = ldl_phys(tbd_address); uint32_t tx_buffer_address = e100_ldl_le_phys(tbd_address);
uint16_t tx_buffer_size = lduw_phys(tbd_address + 4); uint16_t tx_buffer_size = e100_ldw_le_phys(tbd_address + 4);
#if 0 #if 0
uint16_t tx_buffer_el = lduw_phys(tbd_address + 6); uint16_t tx_buffer_el = e100_ldw_le_phys(tbd_address + 6);
#endif #endif
tbd_address += 8; tbd_address += 8;
TRACE(RXTX, logout TRACE(RXTX, logout
@ -769,9 +824,9 @@ static void tx_command(EEPRO100State *s)
if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) { if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) {
/* Extended Flexible TCB. */ /* Extended Flexible TCB. */
for (; tbd_count < 2; tbd_count++) { for (; tbd_count < 2; tbd_count++) {
uint32_t tx_buffer_address = ldl_phys(tbd_address); uint32_t tx_buffer_address = e100_ldl_le_phys(tbd_address);
uint16_t tx_buffer_size = lduw_phys(tbd_address + 4); uint16_t tx_buffer_size = e100_ldw_le_phys(tbd_address + 4);
uint16_t tx_buffer_el = lduw_phys(tbd_address + 6); uint16_t tx_buffer_el = e100_ldw_le_phys(tbd_address + 6);
tbd_address += 8; tbd_address += 8;
TRACE(RXTX, logout TRACE(RXTX, logout
("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n", ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
@ -787,9 +842,9 @@ static void tx_command(EEPRO100State *s)
} }
tbd_address = tbd_array; tbd_address = tbd_array;
for (; tbd_count < s->tx.tbd_count; tbd_count++) { for (; tbd_count < s->tx.tbd_count; tbd_count++) {
uint32_t tx_buffer_address = ldl_phys(tbd_address); uint32_t tx_buffer_address = e100_ldl_le_phys(tbd_address);
uint16_t tx_buffer_size = lduw_phys(tbd_address + 4); uint16_t tx_buffer_size = e100_ldw_le_phys(tbd_address + 4);
uint16_t tx_buffer_el = lduw_phys(tbd_address + 6); uint16_t tx_buffer_el = e100_ldw_le_phys(tbd_address + 6);
tbd_address += 8; tbd_address += 8;
TRACE(RXTX, logout TRACE(RXTX, logout
("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n", ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
@ -897,7 +952,7 @@ static void action_command(EEPRO100State *s)
break; break;
} }
/* Write new status. */ /* Write new status. */
stw_phys(s->cb_address, s->tx.status | ok_status | STATUS_C); e100_stw_le_phys(s->cb_address, s->tx.status | ok_status | STATUS_C);
if (bit_i) { if (bit_i) {
/* CU completed action. */ /* CU completed action. */
eepro100_cx_interrupt(s); eepro100_cx_interrupt(s);
@ -964,7 +1019,7 @@ static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
/* Dump statistical counters. */ /* Dump statistical counters. */
TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val)); TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
dump_statistics(s); dump_statistics(s);
stl_le_phys(s->statsaddr + s->stats_size, 0xa005); e100_stl_le_phys(s->statsaddr + s->stats_size, 0xa005);
break; break;
case CU_CMD_BASE: case CU_CMD_BASE:
/* Load CU base. */ /* Load CU base. */
@ -975,7 +1030,7 @@ static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
/* Dump and reset statistical counters. */ /* Dump and reset statistical counters. */
TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val)); TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
dump_statistics(s); dump_statistics(s);
stl_le_phys(s->statsaddr + s->stats_size, 0xa007); e100_stl_le_phys(s->statsaddr + s->stats_size, 0xa007);
memset(&s->statistics, 0, sizeof(s->statistics)); memset(&s->statistics, 0, sizeof(s->statistics));
break; break;
case CU_SRESUME: case CU_SRESUME:
@ -1058,8 +1113,7 @@ static void eepro100_write_command(EEPRO100State * s, uint8_t val)
static uint16_t eepro100_read_eeprom(EEPRO100State * s) static uint16_t eepro100_read_eeprom(EEPRO100State * s)
{ {
uint16_t val; uint16_t val = e100_read_reg2(s, SCBeeprom);
memcpy(&val, &s->mem[SCBeeprom], sizeof(val));
if (eeprom93xx_read(s->eeprom)) { if (eeprom93xx_read(s->eeprom)) {
val |= EEPROM_DO; val |= EEPROM_DO;
} else { } else {
@ -1129,8 +1183,7 @@ static const char *reg2name(uint8_t reg)
static uint32_t eepro100_read_mdi(EEPRO100State * s) static uint32_t eepro100_read_mdi(EEPRO100State * s)
{ {
uint32_t val; uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
memcpy(&val, &s->mem[0x10], sizeof(val));
#ifdef DEBUG_EEPRO100 #ifdef DEBUG_EEPRO100
uint8_t raiseint = (val & BIT(29)) >> 29; uint8_t raiseint = (val & BIT(29)) >> 29;
@ -1239,7 +1292,7 @@ static void eepro100_write_mdi(EEPRO100State * s, uint32_t val)
} }
} }
val = (val & 0xffff0000) + data; val = (val & 0xffff0000) + data;
memcpy(&s->mem[0x10], &val, sizeof(val)); e100_write_reg4(s, SCBCtrlMDI, val);
} }
/***************************************************************************** /*****************************************************************************
@ -1266,7 +1319,6 @@ static uint32_t eepro100_read_port(EEPRO100State * s)
static void eepro100_write_port(EEPRO100State * s, uint32_t val) static void eepro100_write_port(EEPRO100State * s, uint32_t val)
{ {
val = le32_to_cpu(val);
uint32_t address = (val & ~PORT_SELECTION_MASK); uint32_t address = (val & ~PORT_SELECTION_MASK);
uint8_t selection = (val & PORT_SELECTION_MASK); uint8_t selection = (val & PORT_SELECTION_MASK);
switch (selection) { switch (selection) {
@ -1301,7 +1353,7 @@ static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
{ {
uint8_t val = 0; uint8_t val = 0;
if (addr <= sizeof(s->mem) - sizeof(val)) { if (addr <= sizeof(s->mem) - sizeof(val)) {
memcpy(&val, &s->mem[addr], sizeof(val)); val = s->mem[addr];
} }
switch (addr) { switch (addr) {
@ -1344,7 +1396,7 @@ static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
{ {
uint16_t val = 0; uint16_t val = 0;
if (addr <= sizeof(s->mem) - sizeof(val)) { if (addr <= sizeof(s->mem) - sizeof(val)) {
memcpy(&val, &s->mem[addr], sizeof(val)); val = e100_read_reg2(s, addr);
} }
switch (addr) { switch (addr) {
@ -1367,7 +1419,7 @@ static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
{ {
uint32_t val = 0; uint32_t val = 0;
if (addr <= sizeof(s->mem) - sizeof(val)) { if (addr <= sizeof(s->mem) - sizeof(val)) {
memcpy(&val, &s->mem[addr], sizeof(val)); val = e100_read_reg4(s, addr);
} }
switch (addr) { switch (addr) {
@ -1398,7 +1450,7 @@ static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
{ {
/* SCBStatus is readonly. */ /* SCBStatus is readonly. */
if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
memcpy(&s->mem[addr], &val, sizeof(val)); s->mem[addr] = val;
} }
switch (addr) { switch (addr) {
@ -1441,7 +1493,7 @@ static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
{ {
/* SCBStatus is readonly. */ /* SCBStatus is readonly. */
if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
memcpy(&s->mem[addr], &val, sizeof(val)); e100_write_reg2(s, addr, val);
} }
switch (addr) { switch (addr) {
@ -1468,7 +1520,7 @@ static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val) static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
{ {
if (addr <= sizeof(s->mem) - sizeof(val)) { if (addr <= sizeof(s->mem) - sizeof(val)) {
memcpy(&s->mem[addr], &val, sizeof(val)); e100_write_reg4(s, addr, val);
} }
switch (addr) { switch (addr) {
@ -1760,9 +1812,10 @@ static ssize_t nic_receive(VLANClientState *nc, const uint8_t * buf, size_t size
#endif #endif
TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n", TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
rfd_command, rx.link, rx.rx_buf_addr, rfd_size)); rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, status), e100_stw_le_phys(s->ru_base + s->ru_offset +
rfd_status); offsetof(eepro100_rx_t, status), rfd_status);
stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, count), size); e100_stw_le_phys(s->ru_base + s->ru_offset +
offsetof(eepro100_rx_t, count), size);
/* Early receive interrupt not supported. */ /* Early receive interrupt not supported. */
#if 0 #if 0
eepro100_er_interrupt(s); eepro100_er_interrupt(s);
@ -1891,7 +1944,7 @@ static int e100_nic_init(PCIDevice *pci_dev)
/* Handler for memory-mapped I/O */ /* Handler for memory-mapped I/O */
s->mmio_index = s->mmio_index =
cpu_register_io_memory(pci_mmio_read, pci_mmio_write, s, cpu_register_io_memory(pci_mmio_read, pci_mmio_write, s,
DEVICE_NATIVE_ENDIAN); DEVICE_LITTLE_ENDIAN);
pci_register_bar_simple(&s->dev, 0, PCI_MEM_SIZE, pci_register_bar_simple(&s->dev, 0, PCI_MEM_SIZE,
PCI_BASE_ADDRESS_MEM_PREFETCH, s->mmio_index); PCI_BASE_ADDRESS_MEM_PREFETCH, s->mmio_index);