target-arm queue:

* Various code cleanups
  * More refactoring working towards allowing a build
    without CONFIG_TCG
 -----BEGIN PGP SIGNATURE-----
 
 iQJNBAABCAA3FiEE4aXFk81BneKOgxXPPCUl7RQ2DN4FAmP8ty0ZHHBldGVyLm1h
 eWRlbGxAbGluYXJvLm9yZwAKCRA8JSXtFDYM3na0EACToAEGC4/iFigdKD7ZwG3F
 FvoDcMRRSdElcSo7BTDrFBBOH5/BYhorUq+mVpPvEYADXNaPOCmXWieSJpu68sJC
 VpVLPMhGS8lTsT16C2vB/4Lh4t8pJgs7aej90nqKk2rGgKw4ZNwMS+7Eg6n2lKf/
 V27+O+drJxgYzO6feveuKtIQXsHkx4//DNOCDPLLvrrOk+1NWnyPyT/UDxV/emyr
 KLBbeXqcNhPkn7xZtvM7WARSHZcqhEPBkIAJG2H9HE4imxNm8d8ADZjEMbfE9ZNE
 MDanpM6BYYDWw4y2A8J5QmbiLu3znH8RWmWHww1v6UQ7qyBCLx+HyEGKipGd3Eoe
 48hi/ktsAJUb1lRrk9gOJ+NsokGINzI5urFOReUh1q6+5us0Q0VpwjyVvhi8REy3
 5gOMDC7O2zH+bLN08kseDXfc7vR9wLrIHqMloMgJzpjG5KcL67nVCPHcOwxe0sfn
 0SYWUY0UFNSYgEGBG6JfM6LiM1lRREzlw6YnnaJ+GUf/jdIUbMV6PKpL34TGLeQ3
 xEWrKV0+PMoWHwN0Pdo1tMXm7mc/9H27Mf7hB5k0Hp3dfQ7nIdkfnFA2YEUSxIQt
 OXYsKLTJmO/4XIAYCHhIOncPTmM6KWNQajDJMIuEdYYV67Xb88EIv5Hg8q6tS/mN
 uuQfun3Z2UbAtGvzN5Yx1w==
 =K0Vo
 -----END PGP SIGNATURE-----

Merge tag 'pull-target-arm-20230227' of https://git.linaro.org/people/pmaydell/qemu-arm into staging

target-arm queue:
 * Various code cleanups
 * More refactoring working towards allowing a build
   without CONFIG_TCG

# -----BEGIN PGP SIGNATURE-----
#
# iQJNBAABCAA3FiEE4aXFk81BneKOgxXPPCUl7RQ2DN4FAmP8ty0ZHHBldGVyLm1h
# eWRlbGxAbGluYXJvLm9yZwAKCRA8JSXtFDYM3na0EACToAEGC4/iFigdKD7ZwG3F
# FvoDcMRRSdElcSo7BTDrFBBOH5/BYhorUq+mVpPvEYADXNaPOCmXWieSJpu68sJC
# VpVLPMhGS8lTsT16C2vB/4Lh4t8pJgs7aej90nqKk2rGgKw4ZNwMS+7Eg6n2lKf/
# V27+O+drJxgYzO6feveuKtIQXsHkx4//DNOCDPLLvrrOk+1NWnyPyT/UDxV/emyr
# KLBbeXqcNhPkn7xZtvM7WARSHZcqhEPBkIAJG2H9HE4imxNm8d8ADZjEMbfE9ZNE
# MDanpM6BYYDWw4y2A8J5QmbiLu3znH8RWmWHww1v6UQ7qyBCLx+HyEGKipGd3Eoe
# 48hi/ktsAJUb1lRrk9gOJ+NsokGINzI5urFOReUh1q6+5us0Q0VpwjyVvhi8REy3
# 5gOMDC7O2zH+bLN08kseDXfc7vR9wLrIHqMloMgJzpjG5KcL67nVCPHcOwxe0sfn
# 0SYWUY0UFNSYgEGBG6JfM6LiM1lRREzlw6YnnaJ+GUf/jdIUbMV6PKpL34TGLeQ3
# xEWrKV0+PMoWHwN0Pdo1tMXm7mc/9H27Mf7hB5k0Hp3dfQ7nIdkfnFA2YEUSxIQt
# OXYsKLTJmO/4XIAYCHhIOncPTmM6KWNQajDJMIuEdYYV67Xb88EIv5Hg8q6tS/mN
# uuQfun3Z2UbAtGvzN5Yx1w==
# =K0Vo
# -----END PGP SIGNATURE-----
# gpg: Signature made Mon 27 Feb 2023 13:59:09 GMT
# gpg:                using RSA key E1A5C593CD419DE28E8315CF3C2525ED14360CDE
# gpg:                issuer "peter.maydell@linaro.org"
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@gmail.com>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>" [ultimate]
# gpg:                 aka "Peter Maydell <peter@archaic.org.uk>" [ultimate]
# Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83  15CF 3C25 25ED 1436 0CDE

* tag 'pull-target-arm-20230227' of https://git.linaro.org/people/pmaydell/qemu-arm: (25 commits)
  hw: Replace qemu_or_irq typedef by OrIRQState
  hw/or-irq: Declare QOM macros using OBJECT_DECLARE_SIMPLE_TYPE()
  hw/irq: Declare QOM macros using OBJECT_DECLARE_SIMPLE_TYPE()
  iothread: Remove unused IOThreadClass / IOTHREAD_CLASS
  hw/arm/musicpal: Remove unused dummy MemoryRegion
  hw/intc/armv7m_nvic: Use QOM cast CPU() macro
  hw/timer/cmsdk-apb-timer: Remove unused 'qdev-properties.h' header
  hw/char/cmsdk-apb-uart: Open-code cmsdk_apb_uart_create()
  hw/char/xilinx_uartlite: Open-code xilinx_uartlite_create()
  hw/char/xilinx_uartlite: Expose XILINX_UARTLITE QOM type
  hw/char/pl011: Open-code pl011_luminary_create()
  hw/char/pl011: Un-inline pl011_create()
  hw/gpio/max7310: Simplify max7310_realize()
  tests/avocado: add machine:none tag to version.py
  cpu-defs.h: Expose CPUTLBEntryFull to non-TCG code
  target/arm: Don't access TCG code when debugging with KVM
  target/arm: Move regime_using_lpae_format into internal.h
  target/arm: Move hflags code into the tcg directory
  target/arm: Wrap arm_rebuild_hflags calls with tcg_enabled
  target/arm: Move psci.c into the tcg directory
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2023-02-27 14:46:00 +00:00
commit e1f9f73ba1
82 changed files with 918 additions and 875 deletions

View File

@ -161,6 +161,7 @@ M: Peter Maydell <peter.maydell@linaro.org>
L: qemu-arm@nongnu.org
S: Maintained
F: target/arm/
F: target/arm/tcg/
F: tests/tcg/arm/
F: tests/tcg/aarch64/
F: tests/qtest/arm-cpu-features.c

View File

@ -18,6 +18,7 @@
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/module.h"
#include "hw/char/serial.h"
#include "hw/sysbus.h"
#include "hw/arm/allwinner-a10.h"
#include "hw/misc/unimp.h"

View File

@ -15,6 +15,7 @@
#include "hw/arm/boot.h"
#include "hw/arm/linux-boot-if.h"
#include "sysemu/kvm.h"
#include "sysemu/tcg.h"
#include "sysemu/sysemu.h"
#include "sysemu/numa.h"
#include "hw/boards.h"
@ -827,7 +828,10 @@ static void do_cpu_reset(void *opaque)
info->secondary_cpu_reset_hook(cpu, info);
}
}
arm_rebuild_hflags(env);
if (tcg_enabled()) {
arm_rebuild_hflags(env);
}
}
}

View File

@ -507,7 +507,7 @@ static uint64_t exynos4210_calc_affinity(int cpu)
return (0x9 << ARM_AFF1_SHIFT) | cpu;
}
static DeviceState *pl330_create(uint32_t base, qemu_or_irq *orgate,
static DeviceState *pl330_create(uint32_t base, OrIRQState *orgate,
qemu_irq irq, int nreq, int nevents, int width)
{
SysBusDevice *busdev;
@ -806,7 +806,7 @@ static void exynos4210_init(Object *obj)
for (i = 0; i < ARRAY_SIZE(s->pl330_irq_orgate); i++) {
char *name = g_strdup_printf("pl330-irq-orgate%d", i);
qemu_or_irq *orgate = &s->pl330_irq_orgate[i];
OrIRQState *orgate = &s->pl330_irq_orgate[i];
object_initialize_child(obj, name, orgate, TYPE_OR_IRQ);
g_free(name);

View File

@ -152,7 +152,7 @@ struct MPS2TZMachineState {
TZMSC msc[4];
CMSDKAPBUART uart[6];
SplitIRQ sec_resp_splitter;
qemu_or_irq uart_irq_orgate;
OrIRQState uart_irq_orgate;
DeviceState *lan9118;
SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
Clock *sysclk;

View File

@ -35,6 +35,7 @@
#include "hw/boards.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "hw/qdev-properties.h"
#include "hw/misc/unimp.h"
#include "hw/char/cmsdk-apb-uart.h"
#include "hw/timer/cmsdk-apb-timer.h"
@ -282,6 +283,9 @@ static void mps2_common_init(MachineState *machine)
qdev_connect_gpio_out(orgate_dev, 0, qdev_get_gpio_in(armv7m, 12));
for (i = 0; i < 5; i++) {
DeviceState *dev;
SysBusDevice *s;
static const hwaddr uartbase[] = {0x40004000, 0x40005000,
0x40006000, 0x40007000,
0x40009000};
@ -294,12 +298,16 @@ static void mps2_common_init(MachineState *machine)
rxovrint = qdev_get_gpio_in(orgate_dev, i * 2 + 1);
}
cmsdk_apb_uart_create(uartbase[i],
qdev_get_gpio_in(armv7m, uartirq[i] + 1),
qdev_get_gpio_in(armv7m, uartirq[i]),
txovrint, rxovrint,
NULL,
serial_hd(i), SYSCLK_FRQ);
dev = qdev_new(TYPE_CMSDK_APB_UART);
s = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", serial_hd(i));
qdev_prop_set_uint32(dev, "pclk-frq", SYSCLK_FRQ);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, uartbase[i]);
sysbus_connect_irq(s, 0, qdev_get_gpio_in(armv7m, uartirq[i] + 1));
sysbus_connect_irq(s, 1, qdev_get_gpio_in(armv7m, uartirq[i]));
sysbus_connect_irq(s, 2, txovrint);
sysbus_connect_irq(s, 3, rxovrint);
}
break;
}
@ -324,7 +332,8 @@ static void mps2_common_init(MachineState *machine)
0x4002c000, 0x4002d000,
0x4002e000};
Object *txrx_orgate;
DeviceState *txrx_orgate_dev;
DeviceState *txrx_orgate_dev, *dev;
SysBusDevice *s;
txrx_orgate = object_new(TYPE_OR_IRQ);
object_property_set_int(txrx_orgate, "num-lines", 2, &error_fatal);
@ -332,13 +341,17 @@ static void mps2_common_init(MachineState *machine)
txrx_orgate_dev = DEVICE(txrx_orgate);
qdev_connect_gpio_out(txrx_orgate_dev, 0,
qdev_get_gpio_in(armv7m, uart_txrx_irqno[i]));
cmsdk_apb_uart_create(uartbase[i],
qdev_get_gpio_in(txrx_orgate_dev, 0),
qdev_get_gpio_in(txrx_orgate_dev, 1),
qdev_get_gpio_in(orgate_dev, i * 2),
qdev_get_gpio_in(orgate_dev, i * 2 + 1),
NULL,
serial_hd(i), SYSCLK_FRQ);
dev = qdev_new(TYPE_CMSDK_APB_UART);
s = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", serial_hd(i));
qdev_prop_set_uint32(dev, "pclk-frq", SYSCLK_FRQ);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, uartbase[i]);
sysbus_connect_irq(s, 0, qdev_get_gpio_in(txrx_orgate_dev, 0));
sysbus_connect_irq(s, 1, qdev_get_gpio_in(txrx_orgate_dev, 1));
sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
}
break;
}

View File

@ -1072,7 +1072,6 @@ struct musicpal_key_state {
SysBusDevice parent_obj;
/*< public >*/
MemoryRegion iomem;
uint32_t kbd_extended;
uint32_t pressed_keys;
qemu_irq out[8];
@ -1161,9 +1160,6 @@ static void musicpal_key_init(Object *obj)
DeviceState *dev = DEVICE(sbd);
musicpal_key_state *s = MUSICPAL_KEY(dev);
memory_region_init(&s->iomem, obj, "dummy", 0);
sysbus_init_mmio(sbd, &s->iomem);
s->kbd_extended = 0;
s->pressed_keys = 0;

View File

@ -1146,9 +1146,14 @@ static void stellaris_init(MachineState *ms, stellaris_board_info *board)
for (i = 0; i < 4; i++) {
if (board->dc2 & (1 << i)) {
pl011_luminary_create(0x4000c000 + i * 0x1000,
qdev_get_gpio_in(nvic, uart_irq[i]),
serial_hd(i));
SysBusDevice *sbd;
dev = qdev_new("pl011_luminary");
sbd = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", serial_hd(i));
sysbus_realize_and_unref(sbd, &error_fatal);
sysbus_mmio_map(sbd, 0, 0x4000c000 + i * 0x1000);
sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, uart_irq[i]));
}
}
if (board->dc2 & (1 << 4)) {

View File

@ -19,10 +19,12 @@
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/char/pl011.h"
#include "hw/irq.h"
#include "hw/sysbus.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "migration/vmstate.h"
#include "chardev/char-fe.h"
@ -31,6 +33,21 @@
#include "qemu/module.h"
#include "trace.h"
DeviceState *pl011_create(hwaddr addr, qemu_irq irq, Chardev *chr)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("pl011");
s = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", chr);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, addr);
sysbus_connect_irq(s, 0, irq);
return dev;
}
#define PL011_INT_TX 0x20
#define PL011_INT_RX 0x10

View File

@ -24,6 +24,7 @@
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "hw/char/xilinx_uartlite.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
@ -53,9 +54,6 @@
#define CONTROL_RST_RX 0x02
#define CONTROL_IE 0x10
#define TYPE_XILINX_UARTLITE "xlnx.xps-uartlite"
OBJECT_DECLARE_SIMPLE_TYPE(XilinxUARTLite, XILINX_UARTLITE)
struct XilinxUARTLite {
SysBusDevice parent_obj;

View File

@ -26,8 +26,7 @@
#include "hw/irq.h"
#include "qom/object.h"
DECLARE_INSTANCE_CHECKER(struct IRQState, IRQ,
TYPE_IRQ)
OBJECT_DECLARE_SIMPLE_TYPE(IRQState, IRQ)
struct IRQState {
Object parent_obj;
@ -68,7 +67,7 @@ qemu_irq *qemu_allocate_irqs(qemu_irq_handler handler, void *opaque, int n)
qemu_irq qemu_allocate_irq(qemu_irq_handler handler, void *opaque, int n)
{
struct IRQState *irq;
IRQState *irq;
irq = IRQ(object_new(TYPE_IRQ));
irq->handler = handler;
@ -94,7 +93,7 @@ void qemu_free_irq(qemu_irq irq)
static void qemu_notirq(void *opaque, int line, int level)
{
struct IRQState *irq = opaque;
IRQState *irq = opaque;
irq->handler(irq->opaque, irq->n, !level);
}
@ -120,7 +119,7 @@ void qemu_irq_intercept_in(qemu_irq *gpio_in, qemu_irq_handler handler, int n)
static const TypeInfo irq_type_info = {
.name = TYPE_IRQ,
.parent = TYPE_OBJECT,
.instance_size = sizeof(struct IRQState),
.instance_size = sizeof(IRQState),
};
static void irq_register_types(void)

View File

@ -31,7 +31,7 @@
static void or_irq_handler(void *opaque, int n, int level)
{
qemu_or_irq *s = OR_IRQ(opaque);
OrIRQState *s = OR_IRQ(opaque);
int or_level = 0;
int i;
@ -46,7 +46,7 @@ static void or_irq_handler(void *opaque, int n, int level)
static void or_irq_reset(DeviceState *dev)
{
qemu_or_irq *s = OR_IRQ(dev);
OrIRQState *s = OR_IRQ(dev);
int i;
for (i = 0; i < MAX_OR_LINES; i++) {
@ -56,7 +56,7 @@ static void or_irq_reset(DeviceState *dev)
static void or_irq_realize(DeviceState *dev, Error **errp)
{
qemu_or_irq *s = OR_IRQ(dev);
OrIRQState *s = OR_IRQ(dev);
assert(s->num_lines <= MAX_OR_LINES);
@ -65,7 +65,7 @@ static void or_irq_realize(DeviceState *dev, Error **errp)
static void or_irq_init(Object *obj)
{
qemu_or_irq *s = OR_IRQ(obj);
OrIRQState *s = OR_IRQ(obj);
qdev_init_gpio_out(DEVICE(obj), &s->out_irq, 1);
}
@ -84,7 +84,7 @@ static void or_irq_init(Object *obj)
static bool vmstate_extras_needed(void *opaque)
{
qemu_or_irq *s = OR_IRQ(opaque);
OrIRQState *s = OR_IRQ(opaque);
return s->num_lines >= OLD_MAX_OR_LINES;
}
@ -95,7 +95,7 @@ static const VMStateDescription vmstate_or_irq_extras = {
.minimum_version_id = 1,
.needed = vmstate_extras_needed,
.fields = (VMStateField[]) {
VMSTATE_VARRAY_UINT16_UNSAFE(levels, qemu_or_irq, num_lines, 0,
VMSTATE_VARRAY_UINT16_UNSAFE(levels, OrIRQState, num_lines, 0,
vmstate_info_bool, bool),
VMSTATE_END_OF_LIST(),
},
@ -106,7 +106,7 @@ static const VMStateDescription vmstate_or_irq = {
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_BOOL_SUB_ARRAY(levels, qemu_or_irq, 0, OLD_MAX_OR_LINES),
VMSTATE_BOOL_SUB_ARRAY(levels, OrIRQState, 0, OLD_MAX_OR_LINES),
VMSTATE_END_OF_LIST(),
},
.subsections = (const VMStateDescription*[]) {
@ -116,7 +116,7 @@ static const VMStateDescription vmstate_or_irq = {
};
static Property or_irq_properties[] = {
DEFINE_PROP_UINT16("num-lines", qemu_or_irq, num_lines, 1),
DEFINE_PROP_UINT16("num-lines", OrIRQState, num_lines, 1),
DEFINE_PROP_END_OF_LIST(),
};
@ -136,7 +136,7 @@ static void or_irq_class_init(ObjectClass *klass, void *data)
static const TypeInfo or_irq_type_info = {
.name = TYPE_OR_IRQ,
.parent = TYPE_DEVICE,
.instance_size = sizeof(qemu_or_irq),
.instance_size = sizeof(OrIRQState),
.instance_init = or_irq_init,
.class_init = or_irq_class_init,
};

View File

@ -183,11 +183,10 @@ static void max7310_gpio_set(void *opaque, int line, int level)
* but also accepts sequences that are not SMBus so return an I2C device. */
static void max7310_realize(DeviceState *dev, Error **errp)
{
I2CSlave *i2c = I2C_SLAVE(dev);
MAX7310State *s = MAX7310(dev);
qdev_init_gpio_in(&i2c->qdev, max7310_gpio_set, 8);
qdev_init_gpio_out(&i2c->qdev, s->handler, 8);
qdev_init_gpio_in(dev, max7310_gpio_set, ARRAY_SIZE(s->handler));
qdev_init_gpio_out(dev, s->handler, ARRAY_SIZE(s->handler));
}
static void max7310_class_init(ObjectClass *klass, void *data)

View File

@ -18,6 +18,7 @@
#include "hw/intc/armv7m_nvic.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "sysemu/tcg.h"
#include "sysemu/runstate.h"
#include "target/arm/cpu.h"
#include "exec/exec-all.h"
@ -577,7 +578,7 @@ static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
* which saves having to have an extra argument is_terminal
* that we'd only use in one place.
*/
cpu_abort(&s->cpu->parent_obj,
cpu_abort(CPU(s->cpu),
"Lockup: can't take terminal derived exception "
"(original exception priority %d)\n",
s->vectpending_prio);
@ -643,7 +644,7 @@ static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
* Lockup condition due to a guest bug. We don't model
* Lockup, so report via cpu_abort() instead.
*/
cpu_abort(&s->cpu->parent_obj,
cpu_abort(CPU(s->cpu),
"Lockup: can't escalate %d to HardFault "
"(current priority %d)\n", irq, running);
}
@ -741,7 +742,7 @@ void armv7m_nvic_set_pending_lazyfp(NVICState *s, int irq, bool secure)
* We want to escalate to HardFault but the context the
* FP state belongs to prevents the exception pre-empting.
*/
cpu_abort(&s->cpu->parent_obj,
cpu_abort(CPU(s->cpu),
"Lockup: can't escalate to HardFault during "
"lazy FP register stacking\n");
}
@ -2454,8 +2455,10 @@ static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
/* This is UNPREDICTABLE; treat as RAZ/WI */
exit_ok:
/* Ensure any changes made are reflected in the cached hflags. */
arm_rebuild_hflags(&s->cpu->env);
if (tcg_enabled()) {
/* Ensure any changes made are reflected in the cached hflags. */
arm_rebuild_hflags(&s->cpu->env);
}
return MEMTX_OK;
}
@ -2636,11 +2639,14 @@ static void armv7m_nvic_reset(DeviceState *dev)
}
}
/*
* We updated state that affects the CPU's MMUidx and thus its hflags;
* and we can't guarantee that we run before the CPU reset function.
*/
arm_rebuild_hflags(&s->cpu->env);
if (tcg_enabled()) {
/*
* We updated state that affects the CPU's MMUidx and thus its
* hflags; and we can't guarantee that we run before the CPU
* reset function.
*/
arm_rebuild_hflags(&s->cpu->env);
}
}
static void nvic_systick_trigger(void *opaque, int n, int level)

View File

@ -100,8 +100,11 @@ petalogix_s3adsp1800_init(MachineState *machine)
irq[i] = qdev_get_gpio_in(dev, i);
}
xilinx_uartlite_create(UARTLITE_BASEADDR, irq[UARTLITE_IRQ],
serial_hd(0));
dev = qdev_new(TYPE_XILINX_UARTLITE);
qdev_prop_set_chr(dev, "chardev", serial_hd(0));
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, UARTLITE_BASEADDR);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, irq[UARTLITE_IRQ]);
/* 2 timers at irq 2 @ 62 Mhz. */
dev = qdev_new("xlnx.xps-timer");

View File

@ -60,7 +60,7 @@ DECLARE_INSTANCE_CHECKER(PREPPCIState, RAVEN_PCI_HOST_BRIDGE,
struct PRePPCIState {
PCIHostState parent_obj;
qemu_or_irq *or_irq;
OrIRQState *or_irq;
qemu_irq pci_irqs[PCI_NUM_PINS];
PCIBus pci_bus;
AddressSpace pci_io_as;

View File

@ -135,6 +135,10 @@ typedef struct CPUTLBEntry {
QEMU_BUILD_BUG_ON(sizeof(CPUTLBEntry) != (1 << CPU_TLB_ENTRY_BITS));
#endif /* !CONFIG_USER_ONLY && CONFIG_TCG */
#if !defined(CONFIG_USER_ONLY)
/*
* The full TLB entry, which is not accessed by generated TCG code,
* so the layout is not as critical as that of CPUTLBEntry. This is
@ -176,7 +180,9 @@ typedef struct CPUTLBEntryFull {
TARGET_PAGE_ENTRY_EXTRA
#endif
} CPUTLBEntryFull;
#endif /* !CONFIG_USER_ONLY */
#if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
/*
* Data elements that are per MMU mode, minus the bits accessed by
* the TCG fast path.

View File

@ -1,9 +1,7 @@
#ifndef HW_ARM_ALLWINNER_A10_H
#define HW_ARM_ALLWINNER_A10_H
#include "hw/char/serial.h"
#include "hw/arm/boot.h"
#include "hw/pci/pci_device.h"
#include "hw/timer/allwinner-a10-pit.h"
#include "hw/intc/allwinner-a10-pic.h"
#include "hw/net/allwinner_emac.h"

View File

@ -155,12 +155,12 @@ struct ARMSSE {
TZPPC apb_ppc[NUM_INTERNAL_PPCS];
TZMPC mpc[IOTS_NUM_MPC];
CMSDKAPBTimer timer[3];
qemu_or_irq ppc_irq_orgate;
OrIRQState ppc_irq_orgate;
SplitIRQ sec_resp_splitter;
SplitIRQ ppc_irq_splitter[NUM_PPCS];
SplitIRQ mpc_irq_splitter[IOTS_NUM_EXP_MPC + IOTS_NUM_MPC];
qemu_or_irq mpc_irq_orgate;
qemu_or_irq nmi_orgate;
OrIRQState mpc_irq_orgate;
OrIRQState nmi_orgate;
SplitIRQ cpu_irq_splitter[NUM_SSE_IRQS];

View File

@ -56,7 +56,7 @@ struct BCM2835PeripheralState {
BCM2835AuxState aux;
BCM2835FBState fb;
BCM2835DMAState dma;
qemu_or_irq orgated_dma_irq;
OrIRQState orgated_dma_irq;
BCM2835ICState ic;
BCM2835PropertyState property;
BCM2835RngState rng;

View File

@ -96,8 +96,8 @@ struct Exynos4210State {
MemoryRegion boot_secondary;
MemoryRegion bootreg_mem;
I2CBus *i2c_if[EXYNOS4210_I2C_NUMBER];
qemu_or_irq pl330_irq_orgate[EXYNOS4210_NUM_DMA];
qemu_or_irq cpu_irq_orgate[EXYNOS4210_NCPUS];
OrIRQState pl330_irq_orgate[EXYNOS4210_NUM_DMA];
OrIRQState cpu_irq_orgate[EXYNOS4210_NCPUS];
A9MPPrivState a9mpcore;
Exynos4210GicState ext_gic;
Exynos4210CombinerState int_combiner;

View File

@ -63,7 +63,7 @@ struct STM32F205State {
STM32F2XXADCState adc[STM_NUM_ADCS];
STM32F2XXSPIState spi[STM_NUM_SPIS];
qemu_or_irq *adc_irqs;
OrIRQState *adc_irqs;
MemoryRegion sram;
MemoryRegion flash;

View File

@ -63,7 +63,7 @@ struct STM32F405State {
STM32F4xxExtiState exti;
STM32F2XXUsartState usart[STM_NUM_USARTS];
STM32F2XXTimerState timer[STM_NUM_TIMERS];
qemu_or_irq adc_irqs;
OrIRQState adc_irqs;
STM32F2XXADCState adc[STM_NUM_ADCS];
STM32F2XXSPIState spi[STM_NUM_SPIS];

View File

@ -85,7 +85,7 @@ struct Versal {
} rpu;
struct {
qemu_or_irq irq_orgate;
OrIRQState irq_orgate;
XlnxXramCtrl ctrl[XLNX_VERSAL_NR_XRAM];
} xram;
@ -103,7 +103,7 @@ struct Versal {
XlnxCSUDMA dma_src;
XlnxCSUDMA dma_dst;
MemoryRegion linear_mr;
qemu_or_irq irq_orgate;
OrIRQState irq_orgate;
} ospi;
} iou;
@ -113,7 +113,7 @@ struct Versal {
XlnxVersalEFuseCtrl efuse_ctrl;
XlnxVersalEFuseCache efuse_cache;
qemu_or_irq apb_irq_orgate;
OrIRQState apb_irq_orgate;
} pmc;
struct {

View File

@ -130,7 +130,7 @@ struct XlnxZynqMPState {
XlnxZDMA gdma[XLNX_ZYNQMP_NUM_GDMA_CH];
XlnxZDMA adma[XLNX_ZYNQMP_NUM_ADMA_CH];
XlnxCSUDMA qspi_dma;
qemu_or_irq qspi_irq_orgate;
OrIRQState qspi_irq_orgate;
XlnxZynqMPAPUCtrl apu_ctrl;
XlnxZynqMPCRF crf;
CadenceTTCState ttc[XLNX_ZYNQMP_NUM_TTC];

View File

@ -12,10 +12,8 @@
#ifndef CMSDK_APB_UART_H
#define CMSDK_APB_UART_H
#include "hw/qdev-properties.h"
#include "hw/sysbus.h"
#include "chardev/char-fe.h"
#include "qapi/error.h"
#include "qom/object.h"
#define TYPE_CMSDK_APB_UART "cmsdk-apb-uart"
@ -45,36 +43,4 @@ struct CMSDKAPBUART {
uint8_t rxbuf;
};
/**
* cmsdk_apb_uart_create - convenience function to create TYPE_CMSDK_APB_UART
* @addr: location in system memory to map registers
* @chr: Chardev backend to connect UART to, or NULL if no backend
* @pclk_frq: frequency in Hz of the PCLK clock (used for calculating baud rate)
*/
static inline DeviceState *cmsdk_apb_uart_create(hwaddr addr,
qemu_irq txint,
qemu_irq rxint,
qemu_irq txovrint,
qemu_irq rxovrint,
qemu_irq uartint,
Chardev *chr,
uint32_t pclk_frq)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new(TYPE_CMSDK_APB_UART);
s = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", chr);
qdev_prop_set_uint32(dev, "pclk-frq", pclk_frq);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, addr);
sysbus_connect_irq(s, 0, txint);
sysbus_connect_irq(s, 1, rxint);
sysbus_connect_irq(s, 2, txovrint);
sysbus_connect_irq(s, 3, rxovrint);
sysbus_connect_irq(s, 4, uartint);
return dev;
}
#endif

View File

@ -15,10 +15,8 @@
#ifndef HW_PL011_H
#define HW_PL011_H
#include "hw/qdev-properties.h"
#include "hw/sysbus.h"
#include "chardev/char-fe.h"
#include "qapi/error.h"
#include "qom/object.h"
#define TYPE_PL011 "pl011"
@ -57,38 +55,6 @@ struct PL011State {
const unsigned char *id;
};
static inline DeviceState *pl011_create(hwaddr addr,
qemu_irq irq,
Chardev *chr)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("pl011");
s = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", chr);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, addr);
sysbus_connect_irq(s, 0, irq);
return dev;
}
static inline DeviceState *pl011_luminary_create(hwaddr addr,
qemu_irq irq,
Chardev *chr)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("pl011_luminary");
s = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", chr);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, addr);
sysbus_connect_irq(s, 0, irq);
return dev;
}
DeviceState *pl011_create(hwaddr addr, qemu_irq irq, Chardev *chr);
#endif

View File

@ -15,25 +15,9 @@
#ifndef XILINX_UARTLITE_H
#define XILINX_UARTLITE_H
#include "hw/qdev-properties.h"
#include "hw/sysbus.h"
#include "qapi/error.h"
#include "qom/object.h"
static inline DeviceState *xilinx_uartlite_create(hwaddr addr,
qemu_irq irq,
Chardev *chr)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("xlnx.xps-uartlite");
s = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", chr);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, addr);
sysbus_connect_irq(s, 0, irq);
return dev;
}
#define TYPE_XILINX_UARTLITE "xlnx.xps-uartlite"
OBJECT_DECLARE_SIMPLE_TYPE(XilinxUARTLite, XILINX_UARTLITE)
#endif

View File

@ -35,10 +35,7 @@
*/
#define MAX_OR_LINES 48
typedef struct OrIRQState qemu_or_irq;
DECLARE_INSTANCE_CHECKER(qemu_or_irq, OR_IRQ,
TYPE_OR_IRQ)
OBJECT_DECLARE_SIMPLE_TYPE(OrIRQState, OR_IRQ)
struct OrIRQState {
DeviceState parent_obj;

View File

@ -12,7 +12,6 @@
#ifndef CMSDK_APB_TIMER_H
#define CMSDK_APB_TIMER_H
#include "hw/qdev-properties.h"
#include "hw/sysbus.h"
#include "hw/ptimer.h"
#include "hw/clock.h"

View File

@ -25,10 +25,6 @@
#include "qemu/rcu.h"
#include "qemu/main-loop.h"
typedef ObjectClass IOThreadClass;
DECLARE_CLASS_CHECKERS(IOThreadClass, IOTHREAD,
TYPE_IOTHREAD)
#ifdef CONFIG_POSIX
/* Benchmark results from 2016 on NVMe SSD drives show max polling times around

View File

@ -15,6 +15,7 @@
#include "arm-powerctl.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "sysemu/tcg.h"
#ifndef DEBUG_ARM_POWERCTL
#define DEBUG_ARM_POWERCTL 0
@ -127,8 +128,10 @@ static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
target_cpu->env.regs[0] = info->context_id;
}
/* CP15 update requires rebuilding hflags */
arm_rebuild_hflags(&target_cpu->env);
if (tcg_enabled()) {
/* CP15 update requires rebuilding hflags */
arm_rebuild_hflags(&target_cpu->env);
}
/* Start the new CPU at the requested address */
cpu_set_pc(target_cpu_state, info->entry);

View File

@ -539,9 +539,12 @@ static void arm_cpu_reset_hold(Object *obj)
}
#endif
hw_breakpoint_update_all(cpu);
hw_watchpoint_update_all(cpu);
arm_rebuild_hflags(env);
if (tcg_enabled()) {
hw_breakpoint_update_all(cpu);
hw_watchpoint_update_all(cpu);
arm_rebuild_hflags(env);
}
}
#if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)

View File

@ -12,8 +12,9 @@
#include "cpregs.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "sysemu/tcg.h"
#ifdef CONFIG_TCG
/* Return the Exception Level targeted by debug exceptions. */
static int arm_debug_target_el(CPUARMState *env)
{
@ -536,6 +537,243 @@ void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
raise_exception_debug(env, EXCP_UDEF, syndrome);
}
void hw_watchpoint_update(ARMCPU *cpu, int n)
{
CPUARMState *env = &cpu->env;
vaddr len = 0;
vaddr wvr = env->cp15.dbgwvr[n];
uint64_t wcr = env->cp15.dbgwcr[n];
int mask;
int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
if (env->cpu_watchpoint[n]) {
cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
env->cpu_watchpoint[n] = NULL;
}
if (!FIELD_EX64(wcr, DBGWCR, E)) {
/* E bit clear : watchpoint disabled */
return;
}
switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
case 0:
/* LSC 00 is reserved and must behave as if the wp is disabled */
return;
case 1:
flags |= BP_MEM_READ;
break;
case 2:
flags |= BP_MEM_WRITE;
break;
case 3:
flags |= BP_MEM_ACCESS;
break;
}
/*
* Attempts to use both MASK and BAS fields simultaneously are
* CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
* thus generating a watchpoint for every byte in the masked region.
*/
mask = FIELD_EX64(wcr, DBGWCR, MASK);
if (mask == 1 || mask == 2) {
/*
* Reserved values of MASK; we must act as if the mask value was
* some non-reserved value, or as if the watchpoint were disabled.
* We choose the latter.
*/
return;
} else if (mask) {
/* Watchpoint covers an aligned area up to 2GB in size */
len = 1ULL << mask;
/*
* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
* whether the watchpoint fires when the unmasked bits match; we opt
* to generate the exceptions.
*/
wvr &= ~(len - 1);
} else {
/* Watchpoint covers bytes defined by the byte address select bits */
int bas = FIELD_EX64(wcr, DBGWCR, BAS);
int basstart;
if (extract64(wvr, 2, 1)) {
/*
* Deprecated case of an only 4-aligned address. BAS[7:4] are
* ignored, and BAS[3:0] define which bytes to watch.
*/
bas &= 0xf;
}
if (bas == 0) {
/* This must act as if the watchpoint is disabled */
return;
}
/*
* The BAS bits are supposed to be programmed to indicate a contiguous
* range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
* we fire for each byte in the word/doubleword addressed by the WVR.
* We choose to ignore any non-zero bits after the first range of 1s.
*/
basstart = ctz32(bas);
len = cto32(bas >> basstart);
wvr += basstart;
}
cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
&env->cpu_watchpoint[n]);
}
void hw_watchpoint_update_all(ARMCPU *cpu)
{
int i;
CPUARMState *env = &cpu->env;
/*
* Completely clear out existing QEMU watchpoints and our array, to
* avoid possible stale entries following migration load.
*/
cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
hw_watchpoint_update(cpu, i);
}
}
void hw_breakpoint_update(ARMCPU *cpu, int n)
{
CPUARMState *env = &cpu->env;
uint64_t bvr = env->cp15.dbgbvr[n];
uint64_t bcr = env->cp15.dbgbcr[n];
vaddr addr;
int bt;
int flags = BP_CPU;
if (env->cpu_breakpoint[n]) {
cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
env->cpu_breakpoint[n] = NULL;
}
if (!extract64(bcr, 0, 1)) {
/* E bit clear : watchpoint disabled */
return;
}
bt = extract64(bcr, 20, 4);
switch (bt) {
case 4: /* unlinked address mismatch (reserved if AArch64) */
case 5: /* linked address mismatch (reserved if AArch64) */
qemu_log_mask(LOG_UNIMP,
"arm: address mismatch breakpoint types not implemented\n");
return;
case 0: /* unlinked address match */
case 1: /* linked address match */
{
/*
* Bits [1:0] are RES0.
*
* It is IMPLEMENTATION DEFINED whether bits [63:49]
* ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
* of the VA field ([48] or [52] for FEAT_LVA), or whether the
* value is read as written. It is CONSTRAINED UNPREDICTABLE
* whether the RESS bits are ignored when comparing an address.
* Therefore we are allowed to compare the entire register, which
* lets us avoid considering whether FEAT_LVA is actually enabled.
*
* The BAS field is used to allow setting breakpoints on 16-bit
* wide instructions; it is CONSTRAINED UNPREDICTABLE whether
* a bp will fire if the addresses covered by the bp and the addresses
* covered by the insn overlap but the insn doesn't start at the
* start of the bp address range. We choose to require the insn and
* the bp to have the same address. The constraints on writing to
* BAS enforced in dbgbcr_write mean we have only four cases:
* 0b0000 => no breakpoint
* 0b0011 => breakpoint on addr
* 0b1100 => breakpoint on addr + 2
* 0b1111 => breakpoint on addr
* See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
*/
int bas = extract64(bcr, 5, 4);
addr = bvr & ~3ULL;
if (bas == 0) {
return;
}
if (bas == 0xc) {
addr += 2;
}
break;
}
case 2: /* unlinked context ID match */
case 8: /* unlinked VMID match (reserved if no EL2) */
case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
qemu_log_mask(LOG_UNIMP,
"arm: unlinked context breakpoint types not implemented\n");
return;
case 9: /* linked VMID match (reserved if no EL2) */
case 11: /* linked context ID and VMID match (reserved if no EL2) */
case 3: /* linked context ID match */
default:
/*
* We must generate no events for Linked context matches (unless
* they are linked to by some other bp/wp, which is handled in
* updates for the linking bp/wp). We choose to also generate no events
* for reserved values.
*/
return;
}
cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}
void hw_breakpoint_update_all(ARMCPU *cpu)
{
int i;
CPUARMState *env = &cpu->env;
/*
* Completely clear out existing QEMU breakpoints and our array, to
* avoid possible stale entries following migration load.
*/
cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
hw_breakpoint_update(cpu, i);
}
}
#if !defined(CONFIG_USER_ONLY)
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/*
* In BE32 system mode, target memory is stored byteswapped (on a
* little-endian host system), and by the time we reach here (via an
* opcode helper) the addresses of subword accesses have been adjusted
* to account for that, which means that watchpoints will not match.
* Undo the adjustment here.
*/
if (arm_sctlr_b(env)) {
if (len == 1) {
addr ^= 3;
} else if (len == 2) {
addr ^= 2;
}
}
return addr;
}
#endif /* !CONFIG_USER_ONLY */
#endif /* CONFIG_TCG */
/*
* Check for traps to "powerdown debug" registers, which are controlled
* by MDCR.TDOSA
@ -813,112 +1051,6 @@ static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
};
void hw_watchpoint_update(ARMCPU *cpu, int n)
{
CPUARMState *env = &cpu->env;
vaddr len = 0;
vaddr wvr = env->cp15.dbgwvr[n];
uint64_t wcr = env->cp15.dbgwcr[n];
int mask;
int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
if (env->cpu_watchpoint[n]) {
cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
env->cpu_watchpoint[n] = NULL;
}
if (!FIELD_EX64(wcr, DBGWCR, E)) {
/* E bit clear : watchpoint disabled */
return;
}
switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
case 0:
/* LSC 00 is reserved and must behave as if the wp is disabled */
return;
case 1:
flags |= BP_MEM_READ;
break;
case 2:
flags |= BP_MEM_WRITE;
break;
case 3:
flags |= BP_MEM_ACCESS;
break;
}
/*
* Attempts to use both MASK and BAS fields simultaneously are
* CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
* thus generating a watchpoint for every byte in the masked region.
*/
mask = FIELD_EX64(wcr, DBGWCR, MASK);
if (mask == 1 || mask == 2) {
/*
* Reserved values of MASK; we must act as if the mask value was
* some non-reserved value, or as if the watchpoint were disabled.
* We choose the latter.
*/
return;
} else if (mask) {
/* Watchpoint covers an aligned area up to 2GB in size */
len = 1ULL << mask;
/*
* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
* whether the watchpoint fires when the unmasked bits match; we opt
* to generate the exceptions.
*/
wvr &= ~(len - 1);
} else {
/* Watchpoint covers bytes defined by the byte address select bits */
int bas = FIELD_EX64(wcr, DBGWCR, BAS);
int basstart;
if (extract64(wvr, 2, 1)) {
/*
* Deprecated case of an only 4-aligned address. BAS[7:4] are
* ignored, and BAS[3:0] define which bytes to watch.
*/
bas &= 0xf;
}
if (bas == 0) {
/* This must act as if the watchpoint is disabled */
return;
}
/*
* The BAS bits are supposed to be programmed to indicate a contiguous
* range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
* we fire for each byte in the word/doubleword addressed by the WVR.
* We choose to ignore any non-zero bits after the first range of 1s.
*/
basstart = ctz32(bas);
len = cto32(bas >> basstart);
wvr += basstart;
}
cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
&env->cpu_watchpoint[n]);
}
void hw_watchpoint_update_all(ARMCPU *cpu)
{
int i;
CPUARMState *env = &cpu->env;
/*
* Completely clear out existing QEMU watchpoints and our array, to
* avoid possible stale entries following migration load.
*/
cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
hw_watchpoint_update(cpu, i);
}
}
static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
@ -939,7 +1071,9 @@ static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
value &= ~3ULL;
raw_write(env, ri, value);
hw_watchpoint_update(cpu, i);
if (tcg_enabled()) {
hw_watchpoint_update(cpu, i);
}
}
static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -949,109 +1083,8 @@ static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
int i = ri->crm;
raw_write(env, ri, value);
hw_watchpoint_update(cpu, i);
}
void hw_breakpoint_update(ARMCPU *cpu, int n)
{
CPUARMState *env = &cpu->env;
uint64_t bvr = env->cp15.dbgbvr[n];
uint64_t bcr = env->cp15.dbgbcr[n];
vaddr addr;
int bt;
int flags = BP_CPU;
if (env->cpu_breakpoint[n]) {
cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
env->cpu_breakpoint[n] = NULL;
}
if (!extract64(bcr, 0, 1)) {
/* E bit clear : watchpoint disabled */
return;
}
bt = extract64(bcr, 20, 4);
switch (bt) {
case 4: /* unlinked address mismatch (reserved if AArch64) */
case 5: /* linked address mismatch (reserved if AArch64) */
qemu_log_mask(LOG_UNIMP,
"arm: address mismatch breakpoint types not implemented\n");
return;
case 0: /* unlinked address match */
case 1: /* linked address match */
{
/*
* Bits [1:0] are RES0.
*
* It is IMPLEMENTATION DEFINED whether bits [63:49]
* ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
* of the VA field ([48] or [52] for FEAT_LVA), or whether the
* value is read as written. It is CONSTRAINED UNPREDICTABLE
* whether the RESS bits are ignored when comparing an address.
* Therefore we are allowed to compare the entire register, which
* lets us avoid considering whether FEAT_LVA is actually enabled.
*
* The BAS field is used to allow setting breakpoints on 16-bit
* wide instructions; it is CONSTRAINED UNPREDICTABLE whether
* a bp will fire if the addresses covered by the bp and the addresses
* covered by the insn overlap but the insn doesn't start at the
* start of the bp address range. We choose to require the insn and
* the bp to have the same address. The constraints on writing to
* BAS enforced in dbgbcr_write mean we have only four cases:
* 0b0000 => no breakpoint
* 0b0011 => breakpoint on addr
* 0b1100 => breakpoint on addr + 2
* 0b1111 => breakpoint on addr
* See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
*/
int bas = extract64(bcr, 5, 4);
addr = bvr & ~3ULL;
if (bas == 0) {
return;
}
if (bas == 0xc) {
addr += 2;
}
break;
}
case 2: /* unlinked context ID match */
case 8: /* unlinked VMID match (reserved if no EL2) */
case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
qemu_log_mask(LOG_UNIMP,
"arm: unlinked context breakpoint types not implemented\n");
return;
case 9: /* linked VMID match (reserved if no EL2) */
case 11: /* linked context ID and VMID match (reserved if no EL2) */
case 3: /* linked context ID match */
default:
/*
* We must generate no events for Linked context matches (unless
* they are linked to by some other bp/wp, which is handled in
* updates for the linking bp/wp). We choose to also generate no events
* for reserved values.
*/
return;
}
cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}
void hw_breakpoint_update_all(ARMCPU *cpu)
{
int i;
CPUARMState *env = &cpu->env;
/*
* Completely clear out existing QEMU breakpoints and our array, to
* avoid possible stale entries following migration load.
*/
cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
hw_breakpoint_update(cpu, i);
if (tcg_enabled()) {
hw_watchpoint_update(cpu, i);
}
}
@ -1062,7 +1095,9 @@ static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
int i = ri->crm;
raw_write(env, ri, value);
hw_breakpoint_update(cpu, i);
if (tcg_enabled()) {
hw_breakpoint_update(cpu, i);
}
}
static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -1079,7 +1114,9 @@ static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
value = deposit64(value, 8, 1, extract64(value, 7, 1));
raw_write(env, ri, value);
hw_breakpoint_update(cpu, i);
if (tcg_enabled()) {
hw_breakpoint_update(cpu, i);
}
}
void define_debug_regs(ARMCPU *cpu)
@ -1202,30 +1239,3 @@ void define_debug_regs(ARMCPU *cpu)
g_free(dbgwcr_el1_name);
}
}
#if !defined(CONFIG_USER_ONLY)
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/*
* In BE32 system mode, target memory is stored byteswapped (on a
* little-endian host system), and by the time we reach here (via an
* opcode helper) the addresses of subword accesses have been adjusted
* to account for that, which means that watchpoints will not match.
* Undo the adjustment here.
*/
if (arm_sctlr_b(env)) {
if (len == 1) {
addr ^= 3;
} else if (len == 2) {
addr ^= 2;
}
}
return addr;
}
#endif

View File

@ -5173,7 +5173,7 @@ static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
/* This may enable/disable the MMU, so do a TLB flush. */
tlb_flush(CPU(cpu));
if (ri->type & ARM_CP_SUPPRESS_TB_END) {
if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
/*
* Normally we would always end the TB on an SCTLR write; see the
* comment in ARMCPRegInfo sctlr initialization below for why Xscale
@ -6669,32 +6669,6 @@ int sme_exception_el(CPUARMState *env, int el)
return 0;
}
/* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
static bool sme_fa64(CPUARMState *env, int el)
{
if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
return false;
}
if (el <= 1 && !el_is_in_host(env, el)) {
if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
return false;
}
}
if (el <= 2 && arm_is_el2_enabled(env)) {
if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
return false;
}
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
return false;
}
}
return true;
}
/*
* Given that SVE is enabled, return the vector length for EL.
*/
@ -6841,7 +6815,9 @@ void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
memset(env->zarray, 0, sizeof(env->zarray));
}
arm_rebuild_hflags(env);
if (tcg_enabled()) {
arm_rebuild_hflags(env);
}
}
static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -9886,7 +9862,7 @@ void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
}
mask &= ~CACHED_CPSR_BITS;
env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
if (rebuild_hflags) {
if (tcg_enabled() && rebuild_hflags) {
arm_rebuild_hflags(env);
}
}
@ -10445,7 +10421,10 @@ static void take_aarch32_exception(CPUARMState *env, int new_mode,
env->regs[14] = env->regs[15] + offset;
}
env->regs[15] = newpc;
arm_rebuild_hflags(env);
if (tcg_enabled()) {
arm_rebuild_hflags(env);
}
}
static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
@ -11001,7 +10980,10 @@ static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
pstate_write(env, PSTATE_DAIF | new_mode);
env->aarch64 = true;
aarch64_restore_sp(env, new_el);
helper_rebuild_hflags_a64(env, new_el);
if (tcg_enabled()) {
helper_rebuild_hflags_a64(env, new_el);
}
env->pc = addr;
@ -11142,7 +11124,7 @@ int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
}
}
static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
{
if (regime_has_2_ranges(mmu_idx)) {
return extract64(tcr, 57, 2);
@ -11853,371 +11835,6 @@ ARMMMUIdx arm_mmu_idx(CPUARMState *env)
return arm_mmu_idx_el(env, arm_current_el(env));
}
static inline bool fgt_svc(CPUARMState *env, int el)
{
/*
* Assuming fine-grained-traps are active, return true if we
* should be trapping on SVC instructions. Only AArch64 can
* trap on an SVC at EL1, but we don't need to special-case this
* because if this is AArch32 EL1 then arm_fgt_active() is false.
* We also know el is 0 or 1.
*/
return el == 0 ?
FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) :
FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1);
}
static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx,
CPUARMTBFlags flags)
{
DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
if (arm_singlestep_active(env)) {
DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
}
return flags;
}
static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx,
CPUARMTBFlags flags)
{
bool sctlr_b = arm_sctlr_b(env);
if (sctlr_b) {
DP_TBFLAG_A32(flags, SCTLR__B, 1);
}
if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
DP_TBFLAG_ANY(flags, BE_DATA, 1);
}
DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = {};
uint32_t ccr = env->v7m.ccr[env->v7m.secure];
/* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_v7m_is_handler_mode(env)) {
DP_TBFLAG_M32(flags, HANDLER, 1);
}
/*
* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
* is suppressing them because the requested execution priority
* is less than 0.
*/
if (arm_feature(env, ARM_FEATURE_V8) &&
!((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
(ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
DP_TBFLAG_M32(flags, STACKCHECK, 1);
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
DP_TBFLAG_M32(flags, SECURE, 1);
}
return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = {};
int el = arm_current_el(env);
if (arm_sctlr(env, el) & SCTLR_A) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_el_is_aa64(env, 1)) {
DP_TBFLAG_A32(flags, VFPEN, 1);
}
if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) &&
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
}
if (arm_fgt_active(env, el)) {
DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
if (fgt_svc(env, el)) {
DP_TBFLAG_ANY(flags, FGT_SVC, 1);
}
}
if (env->uncached_cpsr & CPSR_IL) {
DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
}
/*
* The SME exception we are testing for is raised via
* AArch64.CheckFPAdvSIMDEnabled(), as called from
* AArch32.CheckAdvSIMDOrFPEnabled().
*/
if (el == 0
&& FIELD_EX64(env->svcr, SVCR, SM)
&& (!arm_is_el2_enabled(env)
|| (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
&& arm_el_is_aa64(env, 1)
&& !sme_fa64(env, el)) {
DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
}
return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = {};
ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
uint64_t tcr = regime_tcr(env, mmu_idx);
uint64_t sctlr;
int tbii, tbid;
DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
/* Get control bits for tagged addresses. */
tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
DP_TBFLAG_A64(flags, TBII, tbii);
DP_TBFLAG_A64(flags, TBID, tbid);
if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
int sve_el = sve_exception_el(env, el);
/*
* If either FP or SVE are disabled, translator does not need len.
* If SVE EL > FP EL, FP exception has precedence, and translator
* does not need SVE EL. Save potential re-translations by forcing
* the unneeded data to zero.
*/
if (fp_el != 0) {
if (sve_el > fp_el) {
sve_el = 0;
}
} else if (sve_el == 0) {
DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
}
DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
}
if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
int sme_el = sme_exception_el(env, el);
bool sm = FIELD_EX64(env->svcr, SVCR, SM);
DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
if (sme_el == 0) {
/* Similarly, do not compute SVL if SME is disabled. */
int svl = sve_vqm1_for_el_sm(env, el, true);
DP_TBFLAG_A64(flags, SVL, svl);
if (sm) {
/* If SVE is disabled, we will not have set VL above. */
DP_TBFLAG_A64(flags, VL, svl);
}
}
if (sm) {
DP_TBFLAG_A64(flags, PSTATE_SM, 1);
DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
}
DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
}
sctlr = regime_sctlr(env, stage1);
if (sctlr & SCTLR_A) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
DP_TBFLAG_ANY(flags, BE_DATA, 1);
}
if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
/*
* In order to save space in flags, we record only whether
* pauth is "inactive", meaning all insns are implemented as
* a nop, or "active" when some action must be performed.
* The decision of which action to take is left to a helper.
*/
if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
}
}
if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
/* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
DP_TBFLAG_A64(flags, BT, 1);
}
}
/* Compute the condition for using AccType_UNPRIV for LDTR et al. */
if (!(env->pstate & PSTATE_UAO)) {
switch (mmu_idx) {
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
/* TODO: ARMv8.3-NV */
DP_TBFLAG_A64(flags, UNPRIV, 1);
break;
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
/*
* Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
* gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
*/
if (env->cp15.hcr_el2 & HCR_TGE) {
DP_TBFLAG_A64(flags, UNPRIV, 1);
}
break;
default:
break;
}
}
if (env->pstate & PSTATE_IL) {
DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
}
if (arm_fgt_active(env, el)) {
DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) {
DP_TBFLAG_A64(flags, FGT_ERET, 1);
}
if (fgt_svc(env, el)) {
DP_TBFLAG_ANY(flags, FGT_SVC, 1);
}
}
if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
/*
* Set MTE_ACTIVE if any access may be Checked, and leave clear
* if all accesses must be Unchecked:
* 1) If no TBI, then there are no tags in the address to check,
* 2) If Tag Check Override, then all accesses are Unchecked,
* 3) If Tag Check Fail == 0, then Checked access have no effect,
* 4) If no Allocation Tag Access, then all accesses are Unchecked.
*/
if (allocation_tag_access_enabled(env, el, sctlr)) {
DP_TBFLAG_A64(flags, ATA, 1);
if (tbid
&& !(env->pstate & PSTATE_TCO)
&& (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
}
}
/* And again for unprivileged accesses, if required. */
if (EX_TBFLAG_A64(flags, UNPRIV)
&& tbid
&& !(env->pstate & PSTATE_TCO)
&& (sctlr & SCTLR_TCF0)
&& allocation_tag_access_enabled(env, 0, sctlr)) {
DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
}
/* Cache TCMA as well as TBI. */
DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
}
return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
if (is_a64(env)) {
return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
} else if (arm_feature(env, ARM_FEATURE_M)) {
return rebuild_hflags_m32(env, fp_el, mmu_idx);
} else {
return rebuild_hflags_a32(env, fp_el, mmu_idx);
}
}
void arm_rebuild_hflags(CPUARMState *env)
{
env->hflags = rebuild_hflags_internal(env);
}
/*
* If we have triggered a EL state change we can't rely on the
* translator having passed it to us, we need to recompute.
*/
void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
}
/*
* If we have triggered a EL state change we can't rely on the
* translator having passed it to us, we need to recompute.
*/
void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
}
static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
{
#ifdef CONFIG_DEBUG_TCG
CPUARMTBFlags c = env->hflags;
CPUARMTBFlags r = rebuild_hflags_internal(env);
if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
fprintf(stderr, "TCG hflags mismatch "
"(current:(0x%08x,0x" TARGET_FMT_lx ")"
" rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
c.flags, c.flags2, r.flags, r.flags2);
abort();
}
#endif
}
static bool mve_no_pred(CPUARMState *env)
{
/*

View File

@ -600,9 +600,6 @@ int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
/* Return the MMU index for a v7M CPU in the specified security state */
ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
/* Return true if the translation regime is using LPAE format page tables */
bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
/*
* Return true if the stage 1 translation regime is using LPAE
* format page tables
@ -767,6 +764,24 @@ static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
return env->cp15.tcr_el[regime_el(env, mmu_idx)];
}
/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
{
int el = regime_el(env, mmu_idx);
if (el == 2 || arm_el_is_aa64(env, el)) {
return true;
}
if (arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V8)) {
return true;
}
if (arm_feature(env, ARM_FEATURE_LPAE)
&& (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
return true;
}
return false;
}
/**
* arm_num_brps: Return number of implemented breakpoints.
* Note that the ID register BRPS field is "number of bps - 1",
@ -1073,6 +1088,7 @@ ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
/* Determine if allocation tags are available. */
static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
@ -1383,4 +1399,5 @@ static inline bool arm_fgt_active(CPUARMState *env, int el)
(!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
}
void assert_hflags_rebuild_correctly(CPUARMState *env);
#endif

View File

@ -2,6 +2,7 @@
#include "cpu.h"
#include "qemu/error-report.h"
#include "sysemu/kvm.h"
#include "sysemu/tcg.h"
#include "kvm_arm.h"
#include "internals.h"
#include "migration/cpu.h"
@ -848,8 +849,10 @@ static int cpu_post_load(void *opaque, int version_id)
return -1;
}
hw_breakpoint_update_all(cpu);
hw_watchpoint_update_all(cpu);
if (tcg_enabled()) {
hw_breakpoint_update_all(cpu);
hw_watchpoint_update_all(cpu);
}
/*
* TCG gen_update_fp_context() relies on the invariant that
@ -868,7 +871,10 @@ static int cpu_post_load(void *opaque, int version_id)
if (!kvm_enabled()) {
pmu_op_finish(&cpu->env);
}
arm_rebuild_hflags(&cpu->env);
if (tcg_enabled()) {
arm_rebuild_hflags(&cpu->env);
}
return 0;
}

View File

@ -1,40 +1,9 @@
gen = [
decodetree.process('sve.decode', extra_args: '--decode=disas_sve'),
decodetree.process('sme.decode', extra_args: '--decode=disas_sme'),
decodetree.process('sme-fa64.decode', extra_args: '--static-decode=disas_sme_fa64'),
decodetree.process('neon-shared.decode', extra_args: '--decode=disas_neon_shared'),
decodetree.process('neon-dp.decode', extra_args: '--decode=disas_neon_dp'),
decodetree.process('neon-ls.decode', extra_args: '--decode=disas_neon_ls'),
decodetree.process('vfp.decode', extra_args: '--decode=disas_vfp'),
decodetree.process('vfp-uncond.decode', extra_args: '--decode=disas_vfp_uncond'),
decodetree.process('m-nocp.decode', extra_args: '--decode=disas_m_nocp'),
decodetree.process('mve.decode', extra_args: '--decode=disas_mve'),
decodetree.process('a32.decode', extra_args: '--static-decode=disas_a32'),
decodetree.process('a32-uncond.decode', extra_args: '--static-decode=disas_a32_uncond'),
decodetree.process('t32.decode', extra_args: '--static-decode=disas_t32'),
decodetree.process('t16.decode', extra_args: ['-w', '16', '--static-decode=disas_t16']),
]
arm_ss = ss.source_set()
arm_ss.add(gen)
arm_ss.add(files(
'cpu.c',
'crypto_helper.c',
'debug_helper.c',
'gdbstub.c',
'helper.c',
'iwmmxt_helper.c',
'm_helper.c',
'mve_helper.c',
'neon_helper.c',
'op_helper.c',
'tlb_helper.c',
'translate.c',
'translate-m-nocp.c',
'translate-mve.c',
'translate-neon.c',
'translate-vfp.c',
'vec_helper.c',
'vfp_helper.c',
'cpu_tcg.c',
))
@ -45,14 +14,6 @@ arm_ss.add(when: 'CONFIG_KVM', if_true: files('kvm.c', 'kvm64.c'), if_false: fil
arm_ss.add(when: 'TARGET_AARCH64', if_true: files(
'cpu64.c',
'gdbstub64.c',
'helper-a64.c',
'mte_helper.c',
'pauth_helper.c',
'sve_helper.c',
'sme_helper.c',
'translate-a64.c',
'translate-sve.c',
'translate-sme.c',
))
arm_softmmu_ss = ss.source_set()
@ -61,11 +22,16 @@ arm_softmmu_ss.add(files(
'arm-powerctl.c',
'machine.c',
'monitor.c',
'psci.c',
'ptw.c',
))
subdir('hvf')
if 'CONFIG_TCG' in config_all
subdir('tcg')
else
arm_ss.add(files('tcg-stubs.c'))
endif
target_arch += {'arm': arm_ss}
target_softmmu_arch += {'arm': arm_softmmu_ss}

View File

@ -254,6 +254,7 @@ static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
ptw->out_host = NULL;
ptw->out_rw = false;
} else {
#ifdef CONFIG_TCG
CPUTLBEntryFull *full;
int flags;
@ -270,6 +271,9 @@ static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
ptw->out_rw = full->prot & PAGE_WRITE;
pte_attrs = full->pte_attrs;
pte_secure = full->attrs.secure;
#else
g_assert_not_reached();
#endif
}
if (regime_is_stage2(s2_mmu_idx)) {

27
target/arm/tcg-stubs.c Normal file
View File

@ -0,0 +1,27 @@
/*
* QEMU ARM stubs for some TCG helper functions
*
* Copyright 2021 SUSE LLC
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
{
g_assert_not_reached();
}
void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
uint32_t target_el, uintptr_t ra)
{
g_assert_not_reached();
}
/* Temporarily while cpu_get_tb_cpu_state() is still in common code */
void assert_hflags_rebuild_correctly(CPUARMState *env)
{
}

403
target/arm/tcg/hflags.c Normal file
View File

@ -0,0 +1,403 @@
/*
* ARM hflags
*
* This code is licensed under the GNU GPL v2 or later.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "exec/helper-proto.h"
#include "cpregs.h"
static inline bool fgt_svc(CPUARMState *env, int el)
{
/*
* Assuming fine-grained-traps are active, return true if we
* should be trapping on SVC instructions. Only AArch64 can
* trap on an SVC at EL1, but we don't need to special-case this
* because if this is AArch32 EL1 then arm_fgt_active() is false.
* We also know el is 0 or 1.
*/
return el == 0 ?
FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) :
FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1);
}
static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx,
CPUARMTBFlags flags)
{
DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
if (arm_singlestep_active(env)) {
DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
}
return flags;
}
static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx,
CPUARMTBFlags flags)
{
bool sctlr_b = arm_sctlr_b(env);
if (sctlr_b) {
DP_TBFLAG_A32(flags, SCTLR__B, 1);
}
if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
DP_TBFLAG_ANY(flags, BE_DATA, 1);
}
DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = {};
uint32_t ccr = env->v7m.ccr[env->v7m.secure];
/* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_v7m_is_handler_mode(env)) {
DP_TBFLAG_M32(flags, HANDLER, 1);
}
/*
* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
* is suppressing them because the requested execution priority
* is less than 0.
*/
if (arm_feature(env, ARM_FEATURE_V8) &&
!((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
(ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
DP_TBFLAG_M32(flags, STACKCHECK, 1);
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
DP_TBFLAG_M32(flags, SECURE, 1);
}
return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
}
/* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
static bool sme_fa64(CPUARMState *env, int el)
{
if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
return false;
}
if (el <= 1 && !el_is_in_host(env, el)) {
if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
return false;
}
}
if (el <= 2 && arm_is_el2_enabled(env)) {
if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
return false;
}
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
return false;
}
}
return true;
}
static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = {};
int el = arm_current_el(env);
if (arm_sctlr(env, el) & SCTLR_A) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_el_is_aa64(env, 1)) {
DP_TBFLAG_A32(flags, VFPEN, 1);
}
if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) &&
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
}
if (arm_fgt_active(env, el)) {
DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
if (fgt_svc(env, el)) {
DP_TBFLAG_ANY(flags, FGT_SVC, 1);
}
}
if (env->uncached_cpsr & CPSR_IL) {
DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
}
/*
* The SME exception we are testing for is raised via
* AArch64.CheckFPAdvSIMDEnabled(), as called from
* AArch32.CheckAdvSIMDOrFPEnabled().
*/
if (el == 0
&& FIELD_EX64(env->svcr, SVCR, SM)
&& (!arm_is_el2_enabled(env)
|| (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
&& arm_el_is_aa64(env, 1)
&& !sme_fa64(env, el)) {
DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
}
return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = {};
ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
uint64_t tcr = regime_tcr(env, mmu_idx);
uint64_t sctlr;
int tbii, tbid;
DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
/* Get control bits for tagged addresses. */
tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
DP_TBFLAG_A64(flags, TBII, tbii);
DP_TBFLAG_A64(flags, TBID, tbid);
if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
int sve_el = sve_exception_el(env, el);
/*
* If either FP or SVE are disabled, translator does not need len.
* If SVE EL > FP EL, FP exception has precedence, and translator
* does not need SVE EL. Save potential re-translations by forcing
* the unneeded data to zero.
*/
if (fp_el != 0) {
if (sve_el > fp_el) {
sve_el = 0;
}
} else if (sve_el == 0) {
DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
}
DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
}
if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
int sme_el = sme_exception_el(env, el);
bool sm = FIELD_EX64(env->svcr, SVCR, SM);
DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
if (sme_el == 0) {
/* Similarly, do not compute SVL if SME is disabled. */
int svl = sve_vqm1_for_el_sm(env, el, true);
DP_TBFLAG_A64(flags, SVL, svl);
if (sm) {
/* If SVE is disabled, we will not have set VL above. */
DP_TBFLAG_A64(flags, VL, svl);
}
}
if (sm) {
DP_TBFLAG_A64(flags, PSTATE_SM, 1);
DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
}
DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
}
sctlr = regime_sctlr(env, stage1);
if (sctlr & SCTLR_A) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
DP_TBFLAG_ANY(flags, BE_DATA, 1);
}
if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
/*
* In order to save space in flags, we record only whether
* pauth is "inactive", meaning all insns are implemented as
* a nop, or "active" when some action must be performed.
* The decision of which action to take is left to a helper.
*/
if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
}
}
if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
/* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
DP_TBFLAG_A64(flags, BT, 1);
}
}
/* Compute the condition for using AccType_UNPRIV for LDTR et al. */
if (!(env->pstate & PSTATE_UAO)) {
switch (mmu_idx) {
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
/* TODO: ARMv8.3-NV */
DP_TBFLAG_A64(flags, UNPRIV, 1);
break;
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
/*
* Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
* gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
*/
if (env->cp15.hcr_el2 & HCR_TGE) {
DP_TBFLAG_A64(flags, UNPRIV, 1);
}
break;
default:
break;
}
}
if (env->pstate & PSTATE_IL) {
DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
}
if (arm_fgt_active(env, el)) {
DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) {
DP_TBFLAG_A64(flags, FGT_ERET, 1);
}
if (fgt_svc(env, el)) {
DP_TBFLAG_ANY(flags, FGT_SVC, 1);
}
}
if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
/*
* Set MTE_ACTIVE if any access may be Checked, and leave clear
* if all accesses must be Unchecked:
* 1) If no TBI, then there are no tags in the address to check,
* 2) If Tag Check Override, then all accesses are Unchecked,
* 3) If Tag Check Fail == 0, then Checked access have no effect,
* 4) If no Allocation Tag Access, then all accesses are Unchecked.
*/
if (allocation_tag_access_enabled(env, el, sctlr)) {
DP_TBFLAG_A64(flags, ATA, 1);
if (tbid
&& !(env->pstate & PSTATE_TCO)
&& (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
}
}
/* And again for unprivileged accesses, if required. */
if (EX_TBFLAG_A64(flags, UNPRIV)
&& tbid
&& !(env->pstate & PSTATE_TCO)
&& (sctlr & SCTLR_TCF0)
&& allocation_tag_access_enabled(env, 0, sctlr)) {
DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
}
/* Cache TCMA as well as TBI. */
DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
}
return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
if (is_a64(env)) {
return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
} else if (arm_feature(env, ARM_FEATURE_M)) {
return rebuild_hflags_m32(env, fp_el, mmu_idx);
} else {
return rebuild_hflags_a32(env, fp_el, mmu_idx);
}
}
void arm_rebuild_hflags(CPUARMState *env)
{
env->hflags = rebuild_hflags_internal(env);
}
/*
* If we have triggered a EL state change we can't rely on the
* translator having passed it to us, we need to recompute.
*/
void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
}
/*
* If we have triggered a EL state change we can't rely on the
* translator having passed it to us, we need to recompute.
*/
void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
}
void assert_hflags_rebuild_correctly(CPUARMState *env)
{
#ifdef CONFIG_DEBUG_TCG
CPUARMTBFlags c = env->hflags;
CPUARMTBFlags r = rebuild_hflags_internal(env);
if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
fprintf(stderr, "TCG hflags mismatch "
"(current:(0x%08x,0x" TARGET_FMT_lx ")"
" rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
c.flags, c.flags2, r.flags, r.flags2);
abort();
}
#endif
}

View File

@ -0,0 +1,50 @@
gen = [
decodetree.process('sve.decode', extra_args: '--decode=disas_sve'),
decodetree.process('sme.decode', extra_args: '--decode=disas_sme'),
decodetree.process('sme-fa64.decode', extra_args: '--static-decode=disas_sme_fa64'),
decodetree.process('neon-shared.decode', extra_args: '--decode=disas_neon_shared'),
decodetree.process('neon-dp.decode', extra_args: '--decode=disas_neon_dp'),
decodetree.process('neon-ls.decode', extra_args: '--decode=disas_neon_ls'),
decodetree.process('vfp.decode', extra_args: '--decode=disas_vfp'),
decodetree.process('vfp-uncond.decode', extra_args: '--decode=disas_vfp_uncond'),
decodetree.process('m-nocp.decode', extra_args: '--decode=disas_m_nocp'),
decodetree.process('mve.decode', extra_args: '--decode=disas_mve'),
decodetree.process('a32.decode', extra_args: '--static-decode=disas_a32'),
decodetree.process('a32-uncond.decode', extra_args: '--static-decode=disas_a32_uncond'),
decodetree.process('t32.decode', extra_args: '--static-decode=disas_t32'),
decodetree.process('t16.decode', extra_args: ['-w', '16', '--static-decode=disas_t16']),
]
arm_ss.add(gen)
arm_ss.add(files(
'translate.c',
'translate-m-nocp.c',
'translate-mve.c',
'translate-neon.c',
'translate-vfp.c',
'crypto_helper.c',
'hflags.c',
'iwmmxt_helper.c',
'm_helper.c',
'mve_helper.c',
'neon_helper.c',
'op_helper.c',
'tlb_helper.c',
'vec_helper.c',
))
arm_ss.add(when: 'TARGET_AARCH64', if_true: files(
'translate-a64.c',
'translate-sve.c',
'translate-sme.c',
'helper-a64.c',
'mte_helper.c',
'pauth_helper.c',
'sme_helper.c',
'sve_helper.c',
))
arm_softmmu_ss.add(files(
'psci.c',
))

View File

@ -12,24 +12,6 @@
#include "exec/helper-proto.h"
/* Return true if the translation regime is using LPAE format page tables */
bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
{
int el = regime_el(env, mmu_idx);
if (el == 2 || arm_el_is_aa64(env, el)) {
return true;
}
if (arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V8)) {
return true;
}
if (arm_feature(env, ARM_FEATURE_LPAE)
&& (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
return true;
}
return false;
}
/*
* Returns true if the stage 1 translation regime is using LPAE format page
* tables. Used when raising alignment exceptions, whose FSR changes depending

View File

@ -15,6 +15,7 @@ from avocado_qemu import QemuSystemTest
class Version(QemuSystemTest):
"""
:avocado: tags=quick
:avocado: tags=machine:none
"""
def test_qmp_human_info_version(self):
self.vm.add_args('-nodefaults')