exec: split out non-softmmu-specific parts

Over the years, most parts of exec.c that were not specific to softmmu
have been moved to accel/tcg; what's left is mostly the low-level part
of the memory API, which includes RAMBlock and AddressSpaceDispatch.
However exec.c also hosts 4-500 lines of code for the target specific
parts of the CPU QOM object, plus a few functions for user-mode
emulation that do not have a better place (they are not TCG-specific so
accel/tcg/user-exec.c is not a good place either).

Move these parts to a new file, so that exec.c can be moved to
softmmu/physmem.c.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Paolo Bonzini 2020-10-06 09:05:29 +02:00
parent 800d4deda0
commit d9f24bf572
6 changed files with 467 additions and 451 deletions

View File

@ -117,7 +117,6 @@ R: Paolo Bonzini <pbonzini@redhat.com>
S: Maintained S: Maintained
F: softmmu/cpus.c F: softmmu/cpus.c
F: cpus-common.c F: cpus-common.c
F: exec.c
F: accel/tcg/ F: accel/tcg/
F: accel/stubs/tcg-stub.c F: accel/stubs/tcg-stub.c
F: scripts/decodetree.py F: scripts/decodetree.py
@ -1525,6 +1524,7 @@ Machine core
M: Eduardo Habkost <ehabkost@redhat.com> M: Eduardo Habkost <ehabkost@redhat.com>
M: Marcel Apfelbaum <marcel.apfelbaum@gmail.com> M: Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
S: Supported S: Supported
F: cpu.c
F: hw/core/cpu.c F: hw/core/cpu.c
F: hw/core/machine-qmp-cmds.c F: hw/core/machine-qmp-cmds.c
F: hw/core/machine.c F: hw/core/machine.c
@ -2284,8 +2284,8 @@ F: include/exec/ramblock.h
F: softmmu/dma-helpers.c F: softmmu/dma-helpers.c
F: softmmu/ioport.c F: softmmu/ioport.c
F: softmmu/memory.c F: softmmu/memory.c
F: softmmu/physmem.c
F: include/exec/memory-internal.h F: include/exec/memory-internal.h
F: exec.c
F: scripts/coccinelle/memory-region-housekeeping.cocci F: scripts/coccinelle/memory-region-housekeeping.cocci
SPICE SPICE

452
cpu.c Normal file
View File

@ -0,0 +1,452 @@
/*
* Target-specific parts of the CPU object
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qapi/error.h"
#include "exec/target_page.h"
#include "hw/qdev-core.h"
#include "hw/qdev-properties.h"
#include "qemu/error-report.h"
#include "migration/vmstate.h"
#ifdef CONFIG_USER_ONLY
#include "qemu.h"
#else
#include "exec/address-spaces.h"
#endif
#include "sysemu/tcg.h"
#include "sysemu/kvm.h"
#include "sysemu/replay.h"
#include "translate-all.h"
#include "exec/log.h"
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;
#ifndef CONFIG_USER_ONLY
static int cpu_common_post_load(void *opaque, int version_id)
{
CPUState *cpu = opaque;
/* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
version_id is increased. */
cpu->interrupt_request &= ~0x01;
tlb_flush(cpu);
/* loadvm has just updated the content of RAM, bypassing the
* usual mechanisms that ensure we flush TBs for writes to
* memory we've translated code from. So we must flush all TBs,
* which will now be stale.
*/
tb_flush(cpu);
return 0;
}
static int cpu_common_pre_load(void *opaque)
{
CPUState *cpu = opaque;
cpu->exception_index = -1;
return 0;
}
static bool cpu_common_exception_index_needed(void *opaque)
{
CPUState *cpu = opaque;
return tcg_enabled() && cpu->exception_index != -1;
}
static const VMStateDescription vmstate_cpu_common_exception_index = {
.name = "cpu_common/exception_index",
.version_id = 1,
.minimum_version_id = 1,
.needed = cpu_common_exception_index_needed,
.fields = (VMStateField[]) {
VMSTATE_INT32(exception_index, CPUState),
VMSTATE_END_OF_LIST()
}
};
static bool cpu_common_crash_occurred_needed(void *opaque)
{
CPUState *cpu = opaque;
return cpu->crash_occurred;
}
static const VMStateDescription vmstate_cpu_common_crash_occurred = {
.name = "cpu_common/crash_occurred",
.version_id = 1,
.minimum_version_id = 1,
.needed = cpu_common_crash_occurred_needed,
.fields = (VMStateField[]) {
VMSTATE_BOOL(crash_occurred, CPUState),
VMSTATE_END_OF_LIST()
}
};
const VMStateDescription vmstate_cpu_common = {
.name = "cpu_common",
.version_id = 1,
.minimum_version_id = 1,
.pre_load = cpu_common_pre_load,
.post_load = cpu_common_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(halted, CPUState),
VMSTATE_UINT32(interrupt_request, CPUState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_cpu_common_exception_index,
&vmstate_cpu_common_crash_occurred,
NULL
}
};
#endif
void cpu_exec_unrealizefn(CPUState *cpu)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
tlb_destroy(cpu);
cpu_list_remove(cpu);
#ifdef CONFIG_USER_ONLY
assert(cc->vmsd == NULL);
#else
if (cc->vmsd != NULL) {
vmstate_unregister(NULL, cc->vmsd, cpu);
}
if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
}
tcg_iommu_free_notifier_list(cpu);
#endif
}
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
/* Create a memory property for softmmu CPU object,
* so users can wire up its memory. (This can't go in hw/core/cpu.c
* because that file is compiled only once for both user-mode
* and system builds.) The default if no link is set up is to use
* the system address space.
*/
DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
MemoryRegion *),
#endif
DEFINE_PROP_BOOL("start-powered-off", CPUState, start_powered_off, false),
DEFINE_PROP_END_OF_LIST(),
};
void cpu_exec_initfn(CPUState *cpu)
{
cpu->as = NULL;
cpu->num_ases = 0;
#ifndef CONFIG_USER_ONLY
cpu->thread_id = qemu_get_thread_id();
cpu->memory = get_system_memory();
object_ref(OBJECT(cpu->memory));
#endif
}
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
static bool tcg_target_initialized;
cpu_list_add(cpu);
if (tcg_enabled() && !tcg_target_initialized) {
tcg_target_initialized = true;
cc->tcg_initialize();
}
tlb_init(cpu);
qemu_plugin_vcpu_init_hook(cpu);
#ifdef CONFIG_USER_ONLY
assert(cc->vmsd == NULL);
#else /* !CONFIG_USER_ONLY */
if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
}
if (cc->vmsd != NULL) {
vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
}
tcg_iommu_init_notifier_list(cpu);
#endif
}
const char *parse_cpu_option(const char *cpu_option)
{
ObjectClass *oc;
CPUClass *cc;
gchar **model_pieces;
const char *cpu_type;
model_pieces = g_strsplit(cpu_option, ",", 2);
if (!model_pieces[0]) {
error_report("-cpu option cannot be empty");
exit(1);
}
oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
if (oc == NULL) {
error_report("unable to find CPU model '%s'", model_pieces[0]);
g_strfreev(model_pieces);
exit(EXIT_FAILURE);
}
cpu_type = object_class_get_name(oc);
cc = CPU_CLASS(oc);
cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
g_strfreev(model_pieces);
return cpu_type;
}
#if defined(CONFIG_USER_ONLY)
void tb_invalidate_phys_addr(target_ulong addr)
{
mmap_lock();
tb_invalidate_phys_page_range(addr, addr + 1);
mmap_unlock();
}
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
tb_invalidate_phys_addr(pc);
}
#else
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
{
ram_addr_t ram_addr;
MemoryRegion *mr;
hwaddr l = 1;
if (!tcg_enabled()) {
return;
}
RCU_READ_LOCK_GUARD();
mr = address_space_translate(as, addr, &addr, &l, false, attrs);
if (!(memory_region_is_ram(mr)
|| memory_region_is_romd(mr))) {
return;
}
ram_addr = memory_region_get_ram_addr(mr) + addr;
tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
}
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
/*
* There may not be a virtual to physical translation for the pc
* right now, but there may exist cached TB for this pc.
* Flush the whole TB cache to force re-translation of such TBs.
* This is heavyweight, but we're debugging anyway.
*/
tb_flush(cpu);
}
#endif
/* Add a breakpoint. */
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
CPUBreakpoint **breakpoint)
{
CPUBreakpoint *bp;
bp = g_malloc(sizeof(*bp));
bp->pc = pc;
bp->flags = flags;
/* keep all GDB-injected breakpoints in front */
if (flags & BP_GDB) {
QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
} else {
QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
}
breakpoint_invalidate(cpu, pc);
if (breakpoint) {
*breakpoint = bp;
}
return 0;
}
/* Remove a specific breakpoint. */
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
{
CPUBreakpoint *bp;
QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
if (bp->pc == pc && bp->flags == flags) {
cpu_breakpoint_remove_by_ref(cpu, bp);
return 0;
}
}
return -ENOENT;
}
/* Remove a specific breakpoint by reference. */
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
{
QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
breakpoint_invalidate(cpu, breakpoint->pc);
g_free(breakpoint);
}
/* Remove all matching breakpoints. */
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
{
CPUBreakpoint *bp, *next;
QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
if (bp->flags & mask) {
cpu_breakpoint_remove_by_ref(cpu, bp);
}
}
}
/* enable or disable single step mode. EXCP_DEBUG is returned by the
CPU loop after each instruction */
void cpu_single_step(CPUState *cpu, int enabled)
{
if (cpu->singlestep_enabled != enabled) {
cpu->singlestep_enabled = enabled;
if (kvm_enabled()) {
kvm_update_guest_debug(cpu, 0);
} else {
/* must flush all the translated code to avoid inconsistencies */
/* XXX: only flush what is necessary */
tb_flush(cpu);
}
}
}
void cpu_abort(CPUState *cpu, const char *fmt, ...)
{
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
fprintf(stderr, "qemu: fatal: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
if (qemu_log_separate()) {
FILE *logfile = qemu_log_lock();
qemu_log("qemu: fatal: ");
qemu_log_vprintf(fmt, ap2);
qemu_log("\n");
log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
qemu_log_flush();
qemu_log_unlock(logfile);
qemu_log_close();
}
va_end(ap2);
va_end(ap);
replay_finish();
#if defined(CONFIG_USER_ONLY)
{
struct sigaction act;
sigfillset(&act.sa_mask);
act.sa_handler = SIG_DFL;
act.sa_flags = 0;
sigaction(SIGABRT, &act, NULL);
}
#endif
abort();
}
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
void *ptr, target_ulong len, bool is_write)
{
int flags;
target_ulong l, page;
void * p;
uint8_t *buf = ptr;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
flags = page_get_flags(page);
if (!(flags & PAGE_VALID))
return -1;
if (is_write) {
if (!(flags & PAGE_WRITE))
return -1;
/* XXX: this code should not depend on lock_user */
if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
return -1;
memcpy(p, buf, l);
unlock_user(p, addr, l);
} else {
if (!(flags & PAGE_READ))
return -1;
/* XXX: this code should not depend on lock_user */
if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
return -1;
memcpy(buf, p, l);
unlock_user(p, addr, 0);
}
len -= l;
buf += l;
addr += l;
}
return 0;
}
#endif
bool target_words_bigendian(void)
{
#if defined(TARGET_WORDS_BIGENDIAN)
return true;
#else
return false;
#endif
}
void page_size_init(void)
{
/* NOTE: we can always suppose that qemu_host_page_size >=
TARGET_PAGE_SIZE */
if (qemu_host_page_size == 0) {
qemu_host_page_size = qemu_real_host_page_size;
}
if (qemu_host_page_size < TARGET_PAGE_SIZE) {
qemu_host_page_size = TARGET_PAGE_SIZE;
}
qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}

View File

@ -14,6 +14,9 @@ void cpu_list_unlock(void);
void tcg_flush_softmmu_tlb(CPUState *cs); void tcg_flush_softmmu_tlb(CPUState *cs);
void tcg_iommu_init_notifier_list(CPUState *cpu);
void tcg_iommu_free_notifier_list(CPUState *cpu);
#if !defined(CONFIG_USER_ONLY) #if !defined(CONFIG_USER_ONLY)
enum device_endian { enum device_endian {

View File

@ -1372,7 +1372,7 @@ common_ss.add(files('cpus-common.c'))
subdir('softmmu') subdir('softmmu')
common_ss.add(capstone) common_ss.add(capstone)
specific_ss.add(files('disas.c', 'exec.c', 'gdbstub.c'), capstone, libpmem, libdaxctl) specific_ss.add(files('cpu.c', 'disas.c', 'gdbstub.c'), capstone)
specific_ss.add(files('exec-vary.c')) specific_ss.add(files('exec-vary.c'))
specific_ss.add(when: 'CONFIG_TCG', if_true: files( specific_ss.add(when: 'CONFIG_TCG', if_true: files(
'fpu/softfloat.c', 'fpu/softfloat.c',

View File

@ -3,6 +3,7 @@ specific_ss.add(when: 'CONFIG_SOFTMMU', if_true: [files(
'balloon.c', 'balloon.c',
'cpus.c', 'cpus.c',
'cpu-throttle.c', 'cpu-throttle.c',
'physmem.c',
'ioport.c', 'ioport.c',
'memory.c', 'memory.c',
'memory_mapping.c', 'memory_mapping.c',
@ -19,7 +20,7 @@ softmmu_ss.add(files(
'bootdevice.c', 'bootdevice.c',
'dma-helpers.c', 'dma-helpers.c',
'qdev-monitor.c', 'qdev-monitor.c',
), sdl) ), sdl, libpmem, libdaxctl)
softmmu_ss.add(when: 'CONFIG_TPM', if_true: files('tpm.c')) softmmu_ss.add(when: 'CONFIG_TPM', if_true: files('tpm.c'))
softmmu_ss.add(when: 'CONFIG_SECCOMP', if_true: [files('qemu-seccomp.c'), seccomp]) softmmu_ss.add(when: 'CONFIG_SECCOMP', if_true: [files('qemu-seccomp.c'), seccomp])

View File

@ -1,5 +1,5 @@
/* /*
* Virtual page mapping * RAM allocation and memory access
* *
* Copyright (c) 2003 Fabrice Bellard * Copyright (c) 2003 Fabrice Bellard
* *
@ -28,10 +28,8 @@
#include "tcg/tcg.h" #include "tcg/tcg.h"
#include "hw/qdev-core.h" #include "hw/qdev-core.h"
#include "hw/qdev-properties.h" #include "hw/qdev-properties.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/boards.h" #include "hw/boards.h"
#include "hw/xen/xen.h" #include "hw/xen/xen.h"
#endif
#include "sysemu/kvm.h" #include "sysemu/kvm.h"
#include "sysemu/sysemu.h" #include "sysemu/sysemu.h"
#include "sysemu/tcg.h" #include "sysemu/tcg.h"
@ -40,9 +38,6 @@
#include "qemu/config-file.h" #include "qemu/config-file.h"
#include "qemu/error-report.h" #include "qemu/error-report.h"
#include "qemu/qemu-print.h" #include "qemu/qemu-print.h"
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
#else /* !CONFIG_USER_ONLY */
#include "exec/memory.h" #include "exec/memory.h"
#include "exec/ioport.h" #include "exec/ioport.h"
#include "sysemu/dma.h" #include "sysemu/dma.h"
@ -56,7 +51,6 @@
#include <linux/falloc.h> #include <linux/falloc.h>
#endif #endif
#endif
#include "qemu/rcu_queue.h" #include "qemu/rcu_queue.h"
#include "qemu/main-loop.h" #include "qemu/main-loop.h"
#include "translate-all.h" #include "translate-all.h"
@ -83,7 +77,6 @@
//#define DEBUG_SUBPAGE //#define DEBUG_SUBPAGE
#if !defined(CONFIG_USER_ONLY)
/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
* are protected by the ramlist lock. * are protected by the ramlist lock.
*/ */
@ -96,12 +89,6 @@ AddressSpace address_space_io;
AddressSpace address_space_memory; AddressSpace address_space_memory;
static MemoryRegion io_mem_unassigned; static MemoryRegion io_mem_unassigned;
#endif
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;
#if !defined(CONFIG_USER_ONLY)
typedef struct PhysPageEntry PhysPageEntry; typedef struct PhysPageEntry PhysPageEntry;
@ -179,10 +166,6 @@ struct DirtyBitmapSnapshot {
unsigned long dirty[]; unsigned long dirty[];
}; };
#endif
#if !defined(CONFIG_USER_ONLY)
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
{ {
static unsigned alloc_hint = 16; static unsigned alloc_hint = 16;
@ -661,7 +644,7 @@ static void tcg_register_iommu_notifier(CPUState *cpu,
} }
} }
static void tcg_iommu_free_notifier_list(CPUState *cpu) void tcg_iommu_free_notifier_list(CPUState *cpu)
{ {
/* Destroy the CPU's notifier list */ /* Destroy the CPU's notifier list */
int i; int i;
@ -675,6 +658,11 @@ static void tcg_iommu_free_notifier_list(CPUState *cpu)
g_array_free(cpu->iommu_notifiers, true); g_array_free(cpu->iommu_notifiers, true);
} }
void tcg_iommu_init_notifier_list(CPUState *cpu)
{
cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
}
/* Called from RCU critical section */ /* Called from RCU critical section */
MemoryRegionSection * MemoryRegionSection *
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
@ -732,91 +720,6 @@ address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
translate_fail: translate_fail:
return &d->map.sections[PHYS_SECTION_UNASSIGNED]; return &d->map.sections[PHYS_SECTION_UNASSIGNED];
} }
#endif
#if !defined(CONFIG_USER_ONLY)
static int cpu_common_post_load(void *opaque, int version_id)
{
CPUState *cpu = opaque;
/* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
version_id is increased. */
cpu->interrupt_request &= ~0x01;
tlb_flush(cpu);
/* loadvm has just updated the content of RAM, bypassing the
* usual mechanisms that ensure we flush TBs for writes to
* memory we've translated code from. So we must flush all TBs,
* which will now be stale.
*/
tb_flush(cpu);
return 0;
}
static int cpu_common_pre_load(void *opaque)
{
CPUState *cpu = opaque;
cpu->exception_index = -1;
return 0;
}
static bool cpu_common_exception_index_needed(void *opaque)
{
CPUState *cpu = opaque;
return tcg_enabled() && cpu->exception_index != -1;
}
static const VMStateDescription vmstate_cpu_common_exception_index = {
.name = "cpu_common/exception_index",
.version_id = 1,
.minimum_version_id = 1,
.needed = cpu_common_exception_index_needed,
.fields = (VMStateField[]) {
VMSTATE_INT32(exception_index, CPUState),
VMSTATE_END_OF_LIST()
}
};
static bool cpu_common_crash_occurred_needed(void *opaque)
{
CPUState *cpu = opaque;
return cpu->crash_occurred;
}
static const VMStateDescription vmstate_cpu_common_crash_occurred = {
.name = "cpu_common/crash_occurred",
.version_id = 1,
.minimum_version_id = 1,
.needed = cpu_common_crash_occurred_needed,
.fields = (VMStateField[]) {
VMSTATE_BOOL(crash_occurred, CPUState),
VMSTATE_END_OF_LIST()
}
};
const VMStateDescription vmstate_cpu_common = {
.name = "cpu_common",
.version_id = 1,
.minimum_version_id = 1,
.pre_load = cpu_common_pre_load,
.post_load = cpu_common_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(halted, CPUState),
VMSTATE_UINT32(interrupt_request, CPUState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_cpu_common_exception_index,
&vmstate_cpu_common_crash_occurred,
NULL
}
};
void cpu_address_space_init(CPUState *cpu, int asidx, void cpu_address_space_init(CPUState *cpu, int asidx,
const char *prefix, MemoryRegion *mr) const char *prefix, MemoryRegion *mr)
@ -860,155 +763,7 @@ AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
/* Return the AddressSpace corresponding to the specified index */ /* Return the AddressSpace corresponding to the specified index */
return cpu->cpu_ases[asidx].as; return cpu->cpu_ases[asidx].as;
} }
#endif
void cpu_exec_unrealizefn(CPUState *cpu)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
tlb_destroy(cpu);
cpu_list_remove(cpu);
if (cc->vmsd != NULL) {
vmstate_unregister(NULL, cc->vmsd, cpu);
}
if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
}
#ifndef CONFIG_USER_ONLY
tcg_iommu_free_notifier_list(cpu);
#endif
}
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
/* Create a memory property for softmmu CPU object,
* so users can wire up its memory. (This can't go in hw/core/cpu.c
* because that file is compiled only once for both user-mode
* and system builds.) The default if no link is set up is to use
* the system address space.
*/
DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
MemoryRegion *),
#endif
DEFINE_PROP_BOOL("start-powered-off", CPUState, start_powered_off, false),
DEFINE_PROP_END_OF_LIST(),
};
void cpu_exec_initfn(CPUState *cpu)
{
cpu->as = NULL;
cpu->num_ases = 0;
#ifndef CONFIG_USER_ONLY
cpu->thread_id = qemu_get_thread_id();
cpu->memory = system_memory;
object_ref(OBJECT(cpu->memory));
#endif
}
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
static bool tcg_target_initialized;
cpu_list_add(cpu);
if (tcg_enabled() && !tcg_target_initialized) {
tcg_target_initialized = true;
cc->tcg_initialize();
}
tlb_init(cpu);
qemu_plugin_vcpu_init_hook(cpu);
#ifdef CONFIG_USER_ONLY
assert(cc->vmsd == NULL);
#else /* !CONFIG_USER_ONLY */
if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
}
if (cc->vmsd != NULL) {
vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
}
cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
#endif
}
const char *parse_cpu_option(const char *cpu_option)
{
ObjectClass *oc;
CPUClass *cc;
gchar **model_pieces;
const char *cpu_type;
model_pieces = g_strsplit(cpu_option, ",", 2);
if (!model_pieces[0]) {
error_report("-cpu option cannot be empty");
exit(1);
}
oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
if (oc == NULL) {
error_report("unable to find CPU model '%s'", model_pieces[0]);
g_strfreev(model_pieces);
exit(EXIT_FAILURE);
}
cpu_type = object_class_get_name(oc);
cc = CPU_CLASS(oc);
cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
g_strfreev(model_pieces);
return cpu_type;
}
#if defined(CONFIG_USER_ONLY)
void tb_invalidate_phys_addr(target_ulong addr)
{
mmap_lock();
tb_invalidate_phys_page_range(addr, addr + 1);
mmap_unlock();
}
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
tb_invalidate_phys_addr(pc);
}
#else
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
{
ram_addr_t ram_addr;
MemoryRegion *mr;
hwaddr l = 1;
if (!tcg_enabled()) {
return;
}
RCU_READ_LOCK_GUARD();
mr = address_space_translate(as, addr, &addr, &l, false, attrs);
if (!(memory_region_is_ram(mr)
|| memory_region_is_romd(mr))) {
return;
}
ram_addr = memory_region_get_ram_addr(mr) + addr;
tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
}
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
/*
* There may not be a virtual to physical translation for the pc
* right now, but there may exist cached TB for this pc.
* Flush the whole TB cache to force re-translation of such TBs.
* This is heavyweight, but we're debugging anyway.
*/
tb_flush(cpu);
}
#endif
#ifndef CONFIG_USER_ONLY
/* Add a watchpoint. */ /* Add a watchpoint. */
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
int flags, CPUWatchpoint **watchpoint) int flags, CPUWatchpoint **watchpoint)
@ -1117,123 +872,7 @@ int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
} }
return ret; return ret;
} }
#endif /* !CONFIG_USER_ONLY */
/* Add a breakpoint. */
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
CPUBreakpoint **breakpoint)
{
CPUBreakpoint *bp;
bp = g_malloc(sizeof(*bp));
bp->pc = pc;
bp->flags = flags;
/* keep all GDB-injected breakpoints in front */
if (flags & BP_GDB) {
QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
} else {
QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
}
breakpoint_invalidate(cpu, pc);
if (breakpoint) {
*breakpoint = bp;
}
return 0;
}
/* Remove a specific breakpoint. */
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
{
CPUBreakpoint *bp;
QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
if (bp->pc == pc && bp->flags == flags) {
cpu_breakpoint_remove_by_ref(cpu, bp);
return 0;
}
}
return -ENOENT;
}
/* Remove a specific breakpoint by reference. */
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
{
QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
breakpoint_invalidate(cpu, breakpoint->pc);
g_free(breakpoint);
}
/* Remove all matching breakpoints. */
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
{
CPUBreakpoint *bp, *next;
QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
if (bp->flags & mask) {
cpu_breakpoint_remove_by_ref(cpu, bp);
}
}
}
/* enable or disable single step mode. EXCP_DEBUG is returned by the
CPU loop after each instruction */
void cpu_single_step(CPUState *cpu, int enabled)
{
if (cpu->singlestep_enabled != enabled) {
cpu->singlestep_enabled = enabled;
if (kvm_enabled()) {
kvm_update_guest_debug(cpu, 0);
} else {
/* must flush all the translated code to avoid inconsistencies */
/* XXX: only flush what is necessary */
tb_flush(cpu);
}
}
}
void cpu_abort(CPUState *cpu, const char *fmt, ...)
{
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
fprintf(stderr, "qemu: fatal: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
if (qemu_log_separate()) {
FILE *logfile = qemu_log_lock();
qemu_log("qemu: fatal: ");
qemu_log_vprintf(fmt, ap2);
qemu_log("\n");
log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
qemu_log_flush();
qemu_log_unlock(logfile);
qemu_log_close();
}
va_end(ap2);
va_end(ap);
replay_finish();
#if defined(CONFIG_USER_ONLY)
{
struct sigaction act;
sigfillset(&act.sa_mask);
act.sa_handler = SIG_DFL;
act.sa_flags = 0;
sigaction(SIGABRT, &act, NULL);
}
#endif
abort();
}
#if !defined(CONFIG_USER_ONLY)
/* Called from RCU critical section */ /* Called from RCU critical section */
static RAMBlock *qemu_get_ram_block(ram_addr_t addr) static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{ {
@ -1420,9 +1059,6 @@ hwaddr memory_region_section_get_iotlb(CPUState *cpu,
AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
return section - d->map.sections; return section - d->map.sections;
} }
#endif /* defined(CONFIG_USER_ONLY) */
#if !defined(CONFIG_USER_ONLY)
static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
uint16_t section); uint16_t section);
@ -3023,52 +2659,6 @@ MemoryRegion *get_system_io(void)
return system_io; return system_io;
} }
#endif /* !defined(CONFIG_USER_ONLY) */
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
void *ptr, target_ulong len, bool is_write)
{
int flags;
target_ulong l, page;
void * p;
uint8_t *buf = ptr;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
flags = page_get_flags(page);
if (!(flags & PAGE_VALID))
return -1;
if (is_write) {
if (!(flags & PAGE_WRITE))
return -1;
/* XXX: this code should not depend on lock_user */
if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
return -1;
memcpy(p, buf, l);
unlock_user(p, addr, l);
} else {
if (!(flags & PAGE_READ))
return -1;
/* XXX: this code should not depend on lock_user */
if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
return -1;
memcpy(buf, p, l);
unlock_user(p, addr, 0);
}
len -= l;
buf += l;
addr += l;
}
return 0;
}
#else
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr length) hwaddr length)
{ {
@ -3857,18 +3447,7 @@ int qemu_target_page_bits_min(void)
{ {
return TARGET_PAGE_BITS_MIN; return TARGET_PAGE_BITS_MIN;
} }
#endif
bool target_words_bigendian(void)
{
#if defined(TARGET_WORDS_BIGENDIAN)
return true;
#else
return false;
#endif
}
#ifndef CONFIG_USER_ONLY
bool cpu_physical_memory_is_io(hwaddr phys_addr) bool cpu_physical_memory_is_io(hwaddr phys_addr)
{ {
MemoryRegion*mr; MemoryRegion*mr;
@ -3998,23 +3577,6 @@ bool ramblock_is_pmem(RAMBlock *rb)
return rb->flags & RAM_PMEM; return rb->flags & RAM_PMEM;
} }
#endif
void page_size_init(void)
{
/* NOTE: we can always suppose that qemu_host_page_size >=
TARGET_PAGE_SIZE */
if (qemu_host_page_size == 0) {
qemu_host_page_size = qemu_real_host_page_size;
}
if (qemu_host_page_size < TARGET_PAGE_SIZE) {
qemu_host_page_size = TARGET_PAGE_SIZE;
}
qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
#if !defined(CONFIG_USER_ONLY)
static void mtree_print_phys_entries(int start, int end, int skip, int ptr) static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
{ {
if (start == end - 1) { if (start == end - 1) {
@ -4147,5 +3709,3 @@ bool ram_block_discard_is_required(void)
{ {
return qatomic_read(&ram_block_discard_disabled) < 0; return qatomic_read(&ram_block_discard_disabled) < 0;
} }
#endif