Merge remote-tracking branch 'remotes/kvm/uq/master' into staging

* remotes/kvm/uq/master:
  hw/mips: malta: Don't boot from flash with KVM T&E
  MAINTAINERS: Add entry for MIPS KVM
  target-mips: Enable KVM support in build system
  hw/mips: malta: Add KVM support
  hw/mips: In KVM mode, inject IRQ2 (I/O) interrupts via ioctls
  target-mips: Call kvm_mips_reset_vcpu() from mips_cpu_reset()
  target-mips: kvm: Add main KVM support for MIPS
  kvm: Allow arch to set sigmask length
  target-mips: get_physical_address: Add KVM awareness
  target-mips: get_physical_address: Add defines for segment bases
  hw/mips: Add API to convert KVM guest KSEG0 <-> GPA
  hw/mips/cputimer: Don't start periodic timer in KVM mode
  target-mips: Reset CPU timer consistently
  KVM: Fix GSI number space limit

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2014-06-20 19:25:17 +01:00
commit d70a319b8d
15 changed files with 873 additions and 41 deletions

View File

@ -176,6 +176,11 @@ M: Peter Maydell <peter.maydell@linaro.org>
S: Maintained S: Maintained
F: target-arm/kvm.c F: target-arm/kvm.c
MIPS
M: James Hogan <james.hogan@imgtec.com>
S: Maintained
F: target-mips/kvm.c
PPC PPC
M: Alexander Graf <agraf@suse.de> M: Alexander Graf <agraf@suse.de>
S: Maintained S: Maintained

6
configure vendored
View File

@ -4828,6 +4828,9 @@ if test "$linux" = "yes" ; then
aarch64) aarch64)
linux_arch=arm64 linux_arch=arm64
;; ;;
mips64)
linux_arch=mips
;;
*) *)
# For most CPUs the kernel architecture name and QEMU CPU name match. # For most CPUs the kernel architecture name and QEMU CPU name match.
linux_arch="$cpu" linux_arch="$cpu"
@ -5026,7 +5029,7 @@ case "$target_name" in
*) *)
esac esac
case "$target_name" in case "$target_name" in
aarch64|arm|i386|x86_64|ppcemb|ppc|ppc64|s390x) aarch64|arm|i386|x86_64|ppcemb|ppc|ppc64|s390x|mipsel|mips)
# Make sure the target and host cpus are compatible # Make sure the target and host cpus are compatible
if test "$kvm" = "yes" -a "$target_softmmu" = "yes" -a \ if test "$kvm" = "yes" -a "$target_softmmu" = "yes" -a \
\( "$target_name" = "$cpu" -o \ \( "$target_name" = "$cpu" -o \
@ -5034,6 +5037,7 @@ case "$target_name" in
\( "$target_name" = "ppc64" -a "$cpu" = "ppc" \) -o \ \( "$target_name" = "ppc64" -a "$cpu" = "ppc" \) -o \
\( "$target_name" = "ppc" -a "$cpu" = "ppc64" \) -o \ \( "$target_name" = "ppc" -a "$cpu" = "ppc64" \) -o \
\( "$target_name" = "ppcemb" -a "$cpu" = "ppc64" \) -o \ \( "$target_name" = "ppcemb" -a "$cpu" = "ppc64" \) -o \
\( "$target_name" = "mipsel" -a "$cpu" = "mips" \) -o \
\( "$target_name" = "x86_64" -a "$cpu" = "i386" \) -o \ \( "$target_name" = "x86_64" -a "$cpu" = "i386" \) -o \
\( "$target_name" = "i386" -a "$cpu" = "x86_64" \) \) ; then \( "$target_name" = "i386" -a "$cpu" = "x86_64" \) \) ; then
echo "CONFIG_KVM=y" >> $config_target_mak echo "CONFIG_KVM=y" >> $config_target_mak

View File

@ -25,10 +25,15 @@
uint64_t cpu_mips_kseg0_to_phys(void *opaque, uint64_t addr) uint64_t cpu_mips_kseg0_to_phys(void *opaque, uint64_t addr)
{ {
return addr & 0x7fffffffll; return addr & 0x1fffffffll;
} }
uint64_t cpu_mips_phys_to_kseg0(void *opaque, uint64_t addr) uint64_t cpu_mips_phys_to_kseg0(void *opaque, uint64_t addr)
{ {
return addr | ~0x7fffffffll; return addr | ~0x7fffffffll;
} }
uint64_t cpu_mips_kvm_um_phys_to_kseg0(void *opaque, uint64_t addr)
{
return addr | 0x40000000ll;
}

View File

@ -23,6 +23,7 @@
#include "hw/hw.h" #include "hw/hw.h"
#include "hw/mips/cpudevs.h" #include "hw/mips/cpudevs.h"
#include "qemu/timer.h" #include "qemu/timer.h"
#include "sysemu/kvm.h"
#define TIMER_FREQ 100 * 1000 * 1000 #define TIMER_FREQ 100 * 1000 * 1000
@ -85,7 +86,12 @@ uint32_t cpu_mips_get_count (CPUMIPSState *env)
void cpu_mips_store_count (CPUMIPSState *env, uint32_t count) void cpu_mips_store_count (CPUMIPSState *env, uint32_t count)
{ {
if (env->CP0_Cause & (1 << CP0Ca_DC)) /*
* This gets called from cpu_state_reset(), potentially before timer init.
* So env->timer may be NULL, which is also the case with KVM enabled so
* treat timer as disabled in that case.
*/
if (env->CP0_Cause & (1 << CP0Ca_DC) || !env->timer)
env->CP0_Count = count; env->CP0_Count = count;
else { else {
/* Store new count register */ /* Store new count register */
@ -141,7 +147,11 @@ static void mips_timer_cb (void *opaque)
void cpu_mips_clock_init (CPUMIPSState *env) void cpu_mips_clock_init (CPUMIPSState *env)
{ {
env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &mips_timer_cb, env); /*
env->CP0_Compare = 0; * If we're in KVM mode, don't create the periodic timer, that is handled in
cpu_mips_store_count(env, 1); * kernel.
*/
if (!kvm_enabled()) {
env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &mips_timer_cb, env);
}
} }

View File

@ -23,6 +23,8 @@
#include "hw/hw.h" #include "hw/hw.h"
#include "hw/mips/cpudevs.h" #include "hw/mips/cpudevs.h"
#include "cpu.h" #include "cpu.h"
#include "sysemu/kvm.h"
#include "kvm_mips.h"
static void cpu_mips_irq_request(void *opaque, int irq, int level) static void cpu_mips_irq_request(void *opaque, int irq, int level)
{ {
@ -35,8 +37,17 @@ static void cpu_mips_irq_request(void *opaque, int irq, int level)
if (level) { if (level) {
env->CP0_Cause |= 1 << (irq + CP0Ca_IP); env->CP0_Cause |= 1 << (irq + CP0Ca_IP);
if (kvm_enabled() && irq == 2) {
kvm_mips_set_interrupt(cpu, irq, level);
}
} else { } else {
env->CP0_Cause &= ~(1 << (irq + CP0Ca_IP)); env->CP0_Cause &= ~(1 << (irq + CP0Ca_IP));
if (kvm_enabled() && irq == 2) {
kvm_mips_set_interrupt(cpu, irq, level);
}
} }
if (env->CP0_Cause & CP0Ca_IP_mask) { if (env->CP0_Cause & CP0Ca_IP_mask) {

View File

@ -51,6 +51,7 @@
#include "sysemu/qtest.h" #include "sysemu/qtest.h"
#include "qemu/error-report.h" #include "qemu/error-report.h"
#include "hw/empty_slot.h" #include "hw/empty_slot.h"
#include "sysemu/kvm.h"
//#define DEBUG_BOARD_INIT //#define DEBUG_BOARD_INIT
@ -603,29 +604,31 @@ static void network_init(PCIBus *pci_bus)
*/ */
static void write_bootloader (CPUMIPSState *env, uint8_t *base, static void write_bootloader (CPUMIPSState *env, uint8_t *base,
int64_t kernel_entry) int64_t run_addr, int64_t kernel_entry)
{ {
uint32_t *p; uint32_t *p;
/* Small bootloader */ /* Small bootloader */
p = (uint32_t *)base; p = (uint32_t *)base;
stl_p(p++, 0x0bf00160); /* j 0x1fc00580 */
stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
((run_addr + 0x580) & 0x0fffffff) >> 2);
stl_p(p++, 0x00000000); /* nop */ stl_p(p++, 0x00000000); /* nop */
/* YAMON service vector */ /* YAMON service vector */
stl_p(base + 0x500, 0xbfc00580); /* start: */ stl_p(base + 0x500, run_addr + 0x0580); /* start: */
stl_p(base + 0x504, 0xbfc0083c); /* print_count: */ stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
stl_p(base + 0x520, 0xbfc00580); /* start: */ stl_p(base + 0x520, run_addr + 0x0580); /* start: */
stl_p(base + 0x52c, 0xbfc00800); /* flush_cache: */ stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
stl_p(base + 0x534, 0xbfc00808); /* print: */ stl_p(base + 0x534, run_addr + 0x0808); /* print: */
stl_p(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */ stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
stl_p(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */ stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
stl_p(base + 0x540, 0xbfc00800); /* reg_ic_isr: */ stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
stl_p(base + 0x544, 0xbfc00800); /* unred_ic_isr: */ stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
stl_p(base + 0x548, 0xbfc00800); /* reg_esr: */ stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
stl_p(base + 0x54c, 0xbfc00800); /* unreg_esr: */ stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
stl_p(base + 0x550, 0xbfc00800); /* getchar: */ stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
stl_p(base + 0x554, 0xbfc00800); /* syscon_read: */ stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
/* Second part of the bootloader */ /* Second part of the bootloader */
@ -701,7 +704,7 @@ static void write_bootloader (CPUMIPSState *env, uint8_t *base,
p = (uint32_t *) (base + 0x800); p = (uint32_t *) (base + 0x800);
stl_p(p++, 0x03e00008); /* jr ra */ stl_p(p++, 0x03e00008); /* jr ra */
stl_p(p++, 0x24020000); /* li v0,0 */ stl_p(p++, 0x24020000); /* li v0,0 */
/* 808 YAMON print */ /* 808 YAMON print */
stl_p(p++, 0x03e06821); /* move t5,ra */ stl_p(p++, 0x03e06821); /* move t5,ra */
stl_p(p++, 0x00805821); /* move t3,a0 */ stl_p(p++, 0x00805821); /* move t3,a0 */
stl_p(p++, 0x00a05021); /* move t2,a1 */ stl_p(p++, 0x00a05021); /* move t2,a1 */
@ -774,6 +777,7 @@ static int64_t load_kernel (void)
uint32_t *prom_buf; uint32_t *prom_buf;
long prom_size; long prom_size;
int prom_index = 0; int prom_index = 0;
uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
#ifdef TARGET_WORDS_BIGENDIAN #ifdef TARGET_WORDS_BIGENDIAN
big_endian = 1; big_endian = 1;
@ -788,6 +792,11 @@ static int64_t load_kernel (void)
loaderparams.kernel_filename); loaderparams.kernel_filename);
exit(1); exit(1);
} }
if (kvm_enabled()) {
xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
} else {
xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
}
/* load initrd */ /* load initrd */
initrd_size = 0; initrd_size = 0;
@ -820,7 +829,7 @@ static int64_t load_kernel (void)
prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename); prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
if (initrd_size > 0) { if (initrd_size > 0) {
prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s", prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size, xlate_to_kseg0(NULL, initrd_offset), initrd_size,
loaderparams.kernel_cmdline); loaderparams.kernel_cmdline);
} else { } else {
prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline); prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
@ -829,6 +838,7 @@ static int64_t load_kernel (void)
prom_set(prom_buf, prom_index++, "memsize"); prom_set(prom_buf, prom_index++, "memsize");
prom_set(prom_buf, prom_index++, "%i", prom_set(prom_buf, prom_index++, "%i",
MIN(loaderparams.ram_size, 256 << 20)); MIN(loaderparams.ram_size, 256 << 20));
prom_set(prom_buf, prom_index++, "modetty0"); prom_set(prom_buf, prom_index++, "modetty0");
prom_set(prom_buf, prom_index++, "38400n8r"); prom_set(prom_buf, prom_index++, "38400n8r");
prom_set(prom_buf, prom_index++, NULL); prom_set(prom_buf, prom_index++, NULL);
@ -863,6 +873,11 @@ static void main_cpu_reset(void *opaque)
} }
malta_mips_config(cpu); malta_mips_config(cpu);
if (kvm_enabled()) {
/* Start running from the bootloader we wrote to end of RAM */
env->active_tc.PC = 0x40000000 + loaderparams.ram_size;
}
} }
static void cpu_request_exit(void *opaque, int irq, int level) static void cpu_request_exit(void *opaque, int irq, int level)
@ -878,6 +893,7 @@ static
void mips_malta_init(MachineState *machine) void mips_malta_init(MachineState *machine)
{ {
ram_addr_t ram_size = machine->ram_size; ram_addr_t ram_size = machine->ram_size;
ram_addr_t ram_low_size;
const char *cpu_model = machine->cpu_model; const char *cpu_model = machine->cpu_model;
const char *kernel_filename = machine->kernel_filename; const char *kernel_filename = machine->kernel_filename;
const char *kernel_cmdline = machine->kernel_cmdline; const char *kernel_cmdline = machine->kernel_cmdline;
@ -892,7 +908,7 @@ void mips_malta_init(MachineState *machine)
target_long bios_size = FLASH_SIZE; target_long bios_size = FLASH_SIZE;
const size_t smbus_eeprom_size = 8 * 256; const size_t smbus_eeprom_size = 8 * 256;
uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size); uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
int64_t kernel_entry; int64_t kernel_entry, bootloader_run_addr;
PCIBus *pci_bus; PCIBus *pci_bus;
ISABus *isa_bus; ISABus *isa_bus;
MIPSCPU *cpu; MIPSCPU *cpu;
@ -1011,14 +1027,37 @@ void mips_malta_init(MachineState *machine)
bios = pflash_cfi01_get_memory(fl); bios = pflash_cfi01_get_memory(fl);
fl_idx++; fl_idx++;
if (kernel_filename) { if (kernel_filename) {
ram_low_size = MIN(ram_size, 256 << 20);
/* For KVM T&E we reserve 1MB of RAM for running bootloader */
if (kvm_enabled()) {
ram_low_size -= 0x100000;
bootloader_run_addr = 0x40000000 + ram_low_size;
} else {
bootloader_run_addr = 0xbfc00000;
}
/* Write a small bootloader to the flash location. */ /* Write a small bootloader to the flash location. */
loaderparams.ram_size = MIN(ram_size, 256 << 20); loaderparams.ram_size = ram_low_size;
loaderparams.kernel_filename = kernel_filename; loaderparams.kernel_filename = kernel_filename;
loaderparams.kernel_cmdline = kernel_cmdline; loaderparams.kernel_cmdline = kernel_cmdline;
loaderparams.initrd_filename = initrd_filename; loaderparams.initrd_filename = initrd_filename;
kernel_entry = load_kernel(); kernel_entry = load_kernel();
write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry);
write_bootloader(env, memory_region_get_ram_ptr(bios),
bootloader_run_addr, kernel_entry);
if (kvm_enabled()) {
/* Write the bootloader code @ the end of RAM, 1MB reserved */
write_bootloader(env, memory_region_get_ram_ptr(ram_low_preio) +
ram_low_size,
bootloader_run_addr, kernel_entry);
}
} else { } else {
/* The flash region isn't executable from a KVM T&E guest */
if (kvm_enabled()) {
error_report("KVM enabled but no -kernel argument was specified. "
"Booting from flash is not supported with KVM T&E.");
exit(1);
}
/* Load firmware from flash. */ /* Load firmware from flash. */
if (!dinfo) { if (!dinfo) {
/* Load a BIOS image. */ /* Load a BIOS image. */

View File

@ -5,6 +5,8 @@
/* mips_addr.c */ /* mips_addr.c */
uint64_t cpu_mips_kseg0_to_phys(void *opaque, uint64_t addr); uint64_t cpu_mips_kseg0_to_phys(void *opaque, uint64_t addr);
uint64_t cpu_mips_phys_to_kseg0(void *opaque, uint64_t addr); uint64_t cpu_mips_phys_to_kseg0(void *opaque, uint64_t addr);
uint64_t cpu_mips_kvm_um_phys_to_kseg0(void *opaque, uint64_t addr);
/* mips_int.c */ /* mips_int.c */
void cpu_mips_irq_init_cpu(CPUMIPSState *env); void cpu_mips_irq_init_cpu(CPUMIPSState *env);

View File

@ -336,6 +336,8 @@ int kvm_check_extension(KVMState *s, unsigned int extension);
uint32_t kvm_arch_get_supported_cpuid(KVMState *env, uint32_t function, uint32_t kvm_arch_get_supported_cpuid(KVMState *env, uint32_t function,
uint32_t index, int reg); uint32_t index, int reg);
void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len);
#if !defined(CONFIG_USER_ONLY) #if !defined(CONFIG_USER_ONLY)
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram_addr, int kvm_physical_memory_addr_from_host(KVMState *s, void *ram_addr,
hwaddr *phys_addr); hwaddr *phys_addr);

View File

@ -99,6 +99,7 @@ struct KVMState
* they're not. Linux, glibc and *BSD all treat ioctl numbers as * they're not. Linux, glibc and *BSD all treat ioctl numbers as
* unsigned, and treating them as signed here can break things */ * unsigned, and treating them as signed here can break things */
unsigned irq_set_ioctl; unsigned irq_set_ioctl;
unsigned int sigmask_len;
#ifdef KVM_CAP_IRQ_ROUTING #ifdef KVM_CAP_IRQ_ROUTING
struct kvm_irq_routing *irq_routes; struct kvm_irq_routing *irq_routes;
int nr_allocated_irq_routes; int nr_allocated_irq_routes;
@ -939,7 +940,7 @@ void kvm_init_irq_routing(KVMState *s)
{ {
int gsi_count, i; int gsi_count, i;
gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
if (gsi_count > 0) { if (gsi_count > 0) {
unsigned int gsi_bits, i; unsigned int gsi_bits, i;
@ -1398,6 +1399,8 @@ int kvm_init(MachineClass *mc)
assert(TARGET_PAGE_SIZE <= getpagesize()); assert(TARGET_PAGE_SIZE <= getpagesize());
page_size_init(); page_size_init();
s->sigmask_len = 8;
#ifdef KVM_CAP_SET_GUEST_DEBUG #ifdef KVM_CAP_SET_GUEST_DEBUG
QTAILQ_INIT(&s->kvm_sw_breakpoints); QTAILQ_INIT(&s->kvm_sw_breakpoints);
#endif #endif
@ -1579,6 +1582,11 @@ err:
return ret; return ret;
} }
void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
{
s->sigmask_len = sigmask_len;
}
static void kvm_handle_io(uint16_t port, void *data, int direction, int size, static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
uint32_t count) uint32_t count)
{ {
@ -2115,6 +2123,7 @@ void kvm_remove_all_breakpoints(CPUState *cpu)
int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
{ {
KVMState *s = kvm_state;
struct kvm_signal_mask *sigmask; struct kvm_signal_mask *sigmask;
int r; int r;
@ -2124,7 +2133,7 @@ int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
sigmask->len = 8; sigmask->len = s->sigmask_len;
memcpy(sigmask->sigset, sigset, sizeof(*sigset)); memcpy(sigmask->sigset, sigset, sizeof(*sigset));
r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
g_free(sigmask); g_free(sigmask);

View File

@ -1,3 +1,4 @@
obj-y += translate.o dsp_helper.o op_helper.o lmi_helper.o helper.o cpu.o obj-y += translate.o dsp_helper.o op_helper.o lmi_helper.o helper.o cpu.o
obj-y += gdbstub.o obj-y += gdbstub.o
obj-$(CONFIG_SOFTMMU) += machine.o obj-$(CONFIG_SOFTMMU) += machine.o
obj-$(CONFIG_KVM) += kvm.o

View File

@ -19,7 +19,9 @@
*/ */
#include "cpu.h" #include "cpu.h"
#include "kvm_mips.h"
#include "qemu-common.h" #include "qemu-common.h"
#include "sysemu/kvm.h"
static void mips_cpu_set_pc(CPUState *cs, vaddr value) static void mips_cpu_set_pc(CPUState *cs, vaddr value)
@ -87,6 +89,12 @@ static void mips_cpu_reset(CPUState *s)
tlb_flush(s, 1); tlb_flush(s, 1);
cpu_state_reset(env); cpu_state_reset(env);
#ifndef CONFIG_USER_ONLY
if (kvm_enabled()) {
kvm_mips_reset_vcpu(cpu);
}
#endif
} }
static void mips_cpu_realizefn(DeviceState *dev, Error **errp) static void mips_cpu_realizefn(DeviceState *dev, Error **errp)

View File

@ -24,6 +24,7 @@
#include <signal.h> #include <signal.h>
#include "cpu.h" #include "cpu.h"
#include "sysemu/kvm.h"
enum { enum {
TLBRET_DIRTY = -4, TLBRET_DIRTY = -4,
@ -100,7 +101,7 @@ int r4k_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
} }
static int get_physical_address (CPUMIPSState *env, hwaddr *physical, static int get_physical_address (CPUMIPSState *env, hwaddr *physical,
int *prot, target_ulong address, int *prot, target_ulong real_address,
int rw, int access_type) int rw, int access_type)
{ {
/* User mode can only access useg/xuseg */ /* User mode can only access useg/xuseg */
@ -113,24 +114,48 @@ static int get_physical_address (CPUMIPSState *env, hwaddr *physical,
int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0; int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
#endif #endif
int ret = TLBRET_MATCH; int ret = TLBRET_MATCH;
/* effective address (modified for KVM T&E kernel segments) */
target_ulong address = real_address;
#if 0 #if 0
qemu_log("user mode %d h %08x\n", user_mode, env->hflags); qemu_log("user mode %d h %08x\n", user_mode, env->hflags);
#endif #endif
if (address <= (int32_t)0x7FFFFFFFUL) { #define USEG_LIMIT 0x7FFFFFFFUL
#define KSEG0_BASE 0x80000000UL
#define KSEG1_BASE 0xA0000000UL
#define KSEG2_BASE 0xC0000000UL
#define KSEG3_BASE 0xE0000000UL
#define KVM_KSEG0_BASE 0x40000000UL
#define KVM_KSEG2_BASE 0x60000000UL
if (kvm_enabled()) {
/* KVM T&E adds guest kernel segments in useg */
if (real_address >= KVM_KSEG0_BASE) {
if (real_address < KVM_KSEG2_BASE) {
/* kseg0 */
address += KSEG0_BASE - KVM_KSEG0_BASE;
} else if (real_address <= USEG_LIMIT) {
/* kseg2/3 */
address += KSEG2_BASE - KVM_KSEG2_BASE;
}
}
}
if (address <= USEG_LIMIT) {
/* useg */ /* useg */
if (env->CP0_Status & (1 << CP0St_ERL)) { if (env->CP0_Status & (1 << CP0St_ERL)) {
*physical = address & 0xFFFFFFFF; *physical = address & 0xFFFFFFFF;
*prot = PAGE_READ | PAGE_WRITE; *prot = PAGE_READ | PAGE_WRITE;
} else { } else {
ret = env->tlb->map_address(env, physical, prot, address, rw, access_type); ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
} }
#if defined(TARGET_MIPS64) #if defined(TARGET_MIPS64)
} else if (address < 0x4000000000000000ULL) { } else if (address < 0x4000000000000000ULL) {
/* xuseg */ /* xuseg */
if (UX && address <= (0x3FFFFFFFFFFFFFFFULL & env->SEGMask)) { if (UX && address <= (0x3FFFFFFFFFFFFFFFULL & env->SEGMask)) {
ret = env->tlb->map_address(env, physical, prot, address, rw, access_type); ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
} else { } else {
ret = TLBRET_BADADDR; ret = TLBRET_BADADDR;
} }
@ -138,7 +163,7 @@ static int get_physical_address (CPUMIPSState *env, hwaddr *physical,
/* xsseg */ /* xsseg */
if ((supervisor_mode || kernel_mode) && if ((supervisor_mode || kernel_mode) &&
SX && address <= (0x7FFFFFFFFFFFFFFFULL & env->SEGMask)) { SX && address <= (0x7FFFFFFFFFFFFFFFULL & env->SEGMask)) {
ret = env->tlb->map_address(env, physical, prot, address, rw, access_type); ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
} else { } else {
ret = TLBRET_BADADDR; ret = TLBRET_BADADDR;
} }
@ -155,31 +180,31 @@ static int get_physical_address (CPUMIPSState *env, hwaddr *physical,
/* xkseg */ /* xkseg */
if (kernel_mode && KX && if (kernel_mode && KX &&
address <= (0xFFFFFFFF7FFFFFFFULL & env->SEGMask)) { address <= (0xFFFFFFFF7FFFFFFFULL & env->SEGMask)) {
ret = env->tlb->map_address(env, physical, prot, address, rw, access_type); ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
} else { } else {
ret = TLBRET_BADADDR; ret = TLBRET_BADADDR;
} }
#endif #endif
} else if (address < (int32_t)0xA0000000UL) { } else if (address < (int32_t)KSEG1_BASE) {
/* kseg0 */ /* kseg0 */
if (kernel_mode) { if (kernel_mode) {
*physical = address - (int32_t)0x80000000UL; *physical = address - (int32_t)KSEG0_BASE;
*prot = PAGE_READ | PAGE_WRITE; *prot = PAGE_READ | PAGE_WRITE;
} else { } else {
ret = TLBRET_BADADDR; ret = TLBRET_BADADDR;
} }
} else if (address < (int32_t)0xC0000000UL) { } else if (address < (int32_t)KSEG2_BASE) {
/* kseg1 */ /* kseg1 */
if (kernel_mode) { if (kernel_mode) {
*physical = address - (int32_t)0xA0000000UL; *physical = address - (int32_t)KSEG1_BASE;
*prot = PAGE_READ | PAGE_WRITE; *prot = PAGE_READ | PAGE_WRITE;
} else { } else {
ret = TLBRET_BADADDR; ret = TLBRET_BADADDR;
} }
} else if (address < (int32_t)0xE0000000UL) { } else if (address < (int32_t)KSEG3_BASE) {
/* sseg (kseg2) */ /* sseg (kseg2) */
if (supervisor_mode || kernel_mode) { if (supervisor_mode || kernel_mode) {
ret = env->tlb->map_address(env, physical, prot, address, rw, access_type); ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
} else { } else {
ret = TLBRET_BADADDR; ret = TLBRET_BADADDR;
} }
@ -187,7 +212,7 @@ static int get_physical_address (CPUMIPSState *env, hwaddr *physical,
/* kseg3 */ /* kseg3 */
/* XXX: debug segment is not emulated */ /* XXX: debug segment is not emulated */
if (kernel_mode) { if (kernel_mode) {
ret = env->tlb->map_address(env, physical, prot, address, rw, access_type); ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
} else { } else {
ret = TLBRET_BADADDR; ret = TLBRET_BADADDR;
} }

683
target-mips/kvm.c Normal file
View File

@ -0,0 +1,683 @@
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* KVM/MIPS: MIPS specific KVM APIs
*
* Copyright (C) 2012-2014 Imagination Technologies Ltd.
* Authors: Sanjay Lal <sanjayl@kymasys.com>
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/kvm.h>
#include "qemu-common.h"
#include "qemu/error-report.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "cpu.h"
#include "sysemu/cpus.h"
#include "kvm_mips.h"
#define DEBUG_KVM 0
#define DPRINTF(fmt, ...) \
do { if (DEBUG_KVM) { fprintf(stderr, fmt, ## __VA_ARGS__); } } while (0)
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
static void kvm_mips_update_state(void *opaque, int running, RunState state);
unsigned long kvm_arch_vcpu_id(CPUState *cs)
{
return cs->cpu_index;
}
int kvm_arch_init(KVMState *s)
{
/* MIPS has 128 signals */
kvm_set_sigmask_len(s, 16);
DPRINTF("%s\n", __func__);
return 0;
}
int kvm_arch_init_vcpu(CPUState *cs)
{
int ret = 0;
qemu_add_vm_change_state_handler(kvm_mips_update_state, cs);
DPRINTF("%s\n", __func__);
return ret;
}
void kvm_mips_reset_vcpu(MIPSCPU *cpu)
{
DPRINTF("%s\n", __func__);
}
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
DPRINTF("%s\n", __func__);
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
DPRINTF("%s\n", __func__);
return 0;
}
static inline int cpu_mips_io_interrupts_pending(MIPSCPU *cpu)
{
CPUMIPSState *env = &cpu->env;
DPRINTF("%s: %#x\n", __func__, env->CP0_Cause & (1 << (2 + CP0Ca_IP)));
return env->CP0_Cause & (0x1 << (2 + CP0Ca_IP));
}
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
MIPSCPU *cpu = MIPS_CPU(cs);
int r;
struct kvm_mips_interrupt intr;
if ((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
cpu_mips_io_interrupts_pending(cpu)) {
intr.cpu = -1;
intr.irq = 2;
r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &intr);
if (r < 0) {
error_report("%s: cpu %d: failed to inject IRQ %x",
__func__, cs->cpu_index, intr.irq);
}
}
}
void kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
DPRINTF("%s\n", __func__);
}
int kvm_arch_process_async_events(CPUState *cs)
{
return cs->halted;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
int ret;
DPRINTF("%s\n", __func__);
switch (run->exit_reason) {
default:
error_report("%s: unknown exit reason %d",
__func__, run->exit_reason);
ret = -1;
break;
}
return ret;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
DPRINTF("%s\n", __func__);
return true;
}
int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
{
DPRINTF("%s\n", __func__);
return 1;
}
int kvm_arch_on_sigbus(int code, void *addr)
{
DPRINTF("%s\n", __func__);
return 1;
}
void kvm_arch_init_irq_routing(KVMState *s)
{
}
int kvm_mips_set_interrupt(MIPSCPU *cpu, int irq, int level)
{
CPUState *cs = CPU(cpu);
struct kvm_mips_interrupt intr;
if (!kvm_enabled()) {
return 0;
}
intr.cpu = -1;
if (level) {
intr.irq = irq;
} else {
intr.irq = -irq;
}
kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &intr);
return 0;
}
int kvm_mips_set_ipi_interrupt(MIPSCPU *cpu, int irq, int level)
{
CPUState *cs = current_cpu;
CPUState *dest_cs = CPU(cpu);
struct kvm_mips_interrupt intr;
if (!kvm_enabled()) {
return 0;
}
intr.cpu = dest_cs->cpu_index;
if (level) {
intr.irq = irq;
} else {
intr.irq = -irq;
}
DPRINTF("%s: CPU %d, IRQ: %d\n", __func__, intr.cpu, intr.irq);
kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &intr);
return 0;
}
#define MIPS_CP0_32(_R, _S) \
(KVM_REG_MIPS | KVM_REG_SIZE_U32 | 0x10000 | (8 * (_R) + (_S)))
#define MIPS_CP0_64(_R, _S) \
(KVM_REG_MIPS | KVM_REG_SIZE_U64 | 0x10000 | (8 * (_R) + (_S)))
#define KVM_REG_MIPS_CP0_INDEX MIPS_CP0_32(0, 0)
#define KVM_REG_MIPS_CP0_CONTEXT MIPS_CP0_64(4, 0)
#define KVM_REG_MIPS_CP0_USERLOCAL MIPS_CP0_64(4, 2)
#define KVM_REG_MIPS_CP0_PAGEMASK MIPS_CP0_32(5, 0)
#define KVM_REG_MIPS_CP0_WIRED MIPS_CP0_32(6, 0)
#define KVM_REG_MIPS_CP0_HWRENA MIPS_CP0_32(7, 0)
#define KVM_REG_MIPS_CP0_BADVADDR MIPS_CP0_64(8, 0)
#define KVM_REG_MIPS_CP0_COUNT MIPS_CP0_32(9, 0)
#define KVM_REG_MIPS_CP0_ENTRYHI MIPS_CP0_64(10, 0)
#define KVM_REG_MIPS_CP0_COMPARE MIPS_CP0_32(11, 0)
#define KVM_REG_MIPS_CP0_STATUS MIPS_CP0_32(12, 0)
#define KVM_REG_MIPS_CP0_CAUSE MIPS_CP0_32(13, 0)
#define KVM_REG_MIPS_CP0_EPC MIPS_CP0_64(14, 0)
#define KVM_REG_MIPS_CP0_ERROREPC MIPS_CP0_64(30, 0)
/* CP0_Count control */
#define KVM_REG_MIPS_COUNT_CTL (KVM_REG_MIPS | KVM_REG_SIZE_U64 | \
0x20000 | 0)
#define KVM_REG_MIPS_COUNT_CTL_DC 0x00000001 /* master disable */
/* CP0_Count resume monotonic nanoseconds */
#define KVM_REG_MIPS_COUNT_RESUME (KVM_REG_MIPS | KVM_REG_SIZE_U64 | \
0x20000 | 1)
/* CP0_Count rate in Hz */
#define KVM_REG_MIPS_COUNT_HZ (KVM_REG_MIPS | KVM_REG_SIZE_U64 | \
0x20000 | 2)
static inline int kvm_mips_put_one_reg(CPUState *cs, uint64_t reg_id,
int32_t *addr)
{
uint64_t val64 = *addr;
struct kvm_one_reg cp0reg = {
.id = reg_id,
.addr = (uintptr_t)&val64
};
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &cp0reg);
}
static inline int kvm_mips_put_one_ulreg(CPUState *cs, uint64_t reg_id,
target_ulong *addr)
{
uint64_t val64 = *addr;
struct kvm_one_reg cp0reg = {
.id = reg_id,
.addr = (uintptr_t)&val64
};
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &cp0reg);
}
static inline int kvm_mips_put_one_reg64(CPUState *cs, uint64_t reg_id,
uint64_t *addr)
{
struct kvm_one_reg cp0reg = {
.id = reg_id,
.addr = (uintptr_t)addr
};
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &cp0reg);
}
static inline int kvm_mips_get_one_reg(CPUState *cs, uint64_t reg_id,
int32_t *addr)
{
int ret;
uint64_t val64 = 0;
struct kvm_one_reg cp0reg = {
.id = reg_id,
.addr = (uintptr_t)&val64
};
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &cp0reg);
if (ret >= 0) {
*addr = val64;
}
return ret;
}
static inline int kvm_mips_get_one_ulreg(CPUState *cs, uint64 reg_id,
target_ulong *addr)
{
int ret;
uint64_t val64 = 0;
struct kvm_one_reg cp0reg = {
.id = reg_id,
.addr = (uintptr_t)&val64
};
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &cp0reg);
if (ret >= 0) {
*addr = val64;
}
return ret;
}
static inline int kvm_mips_get_one_reg64(CPUState *cs, uint64 reg_id,
uint64_t *addr)
{
struct kvm_one_reg cp0reg = {
.id = reg_id,
.addr = (uintptr_t)addr
};
return kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &cp0reg);
}
/*
* We freeze the KVM timer when either the VM clock is stopped or the state is
* saved (the state is dirty).
*/
/*
* Save the state of the KVM timer when VM clock is stopped or state is synced
* to QEMU.
*/
static int kvm_mips_save_count(CPUState *cs)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
uint64_t count_ctl;
int err, ret = 0;
/* freeze KVM timer */
err = kvm_mips_get_one_reg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl);
if (err < 0) {
DPRINTF("%s: Failed to get COUNT_CTL (%d)\n", __func__, err);
ret = err;
} else if (!(count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) {
count_ctl |= KVM_REG_MIPS_COUNT_CTL_DC;
err = kvm_mips_put_one_reg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl);
if (err < 0) {
DPRINTF("%s: Failed to set COUNT_CTL.DC=1 (%d)\n", __func__, err);
ret = err;
}
}
/* read CP0_Cause */
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_CAUSE, &env->CP0_Cause);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_CAUSE (%d)\n", __func__, err);
ret = err;
}
/* read CP0_Count */
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_COUNT, &env->CP0_Count);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_COUNT (%d)\n", __func__, err);
ret = err;
}
return ret;
}
/*
* Restore the state of the KVM timer when VM clock is restarted or state is
* synced to KVM.
*/
static int kvm_mips_restore_count(CPUState *cs)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
uint64_t count_ctl;
int err_dc, err, ret = 0;
/* check the timer is frozen */
err_dc = kvm_mips_get_one_reg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl);
if (err_dc < 0) {
DPRINTF("%s: Failed to get COUNT_CTL (%d)\n", __func__, err_dc);
ret = err_dc;
} else if (!(count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) {
/* freeze timer (sets COUNT_RESUME for us) */
count_ctl |= KVM_REG_MIPS_COUNT_CTL_DC;
err = kvm_mips_put_one_reg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl);
if (err < 0) {
DPRINTF("%s: Failed to set COUNT_CTL.DC=1 (%d)\n", __func__, err);
ret = err;
}
}
/* load CP0_Cause */
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_CAUSE, &env->CP0_Cause);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_CAUSE (%d)\n", __func__, err);
ret = err;
}
/* load CP0_Count */
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_COUNT, &env->CP0_Count);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_COUNT (%d)\n", __func__, err);
ret = err;
}
/* resume KVM timer */
if (err_dc >= 0) {
count_ctl &= ~KVM_REG_MIPS_COUNT_CTL_DC;
err = kvm_mips_put_one_reg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl);
if (err < 0) {
DPRINTF("%s: Failed to set COUNT_CTL.DC=0 (%d)\n", __func__, err);
ret = err;
}
}
return ret;
}
/*
* Handle the VM clock being started or stopped
*/
static void kvm_mips_update_state(void *opaque, int running, RunState state)
{
CPUState *cs = opaque;
int ret;
uint64_t count_resume;
/*
* If state is already dirty (synced to QEMU) then the KVM timer state is
* already saved and can be restored when it is synced back to KVM.
*/
if (!running) {
if (!cs->kvm_vcpu_dirty) {
ret = kvm_mips_save_count(cs);
if (ret < 0) {
fprintf(stderr, "Failed saving count\n");
}
}
} else {
/* Set clock restore time to now */
count_resume = get_clock();
ret = kvm_mips_put_one_reg64(cs, KVM_REG_MIPS_COUNT_RESUME,
&count_resume);
if (ret < 0) {
fprintf(stderr, "Failed setting COUNT_RESUME\n");
return;
}
if (!cs->kvm_vcpu_dirty) {
ret = kvm_mips_restore_count(cs);
if (ret < 0) {
fprintf(stderr, "Failed restoring count\n");
}
}
}
}
static int kvm_mips_put_cp0_registers(CPUState *cs, int level)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
int err, ret = 0;
(void)level;
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_INDEX, &env->CP0_Index);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_INDEX (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_CONTEXT,
&env->CP0_Context);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_CONTEXT (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_USERLOCAL,
&env->active_tc.CP0_UserLocal);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_USERLOCAL (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_PAGEMASK,
&env->CP0_PageMask);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_PAGEMASK (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_WIRED, &env->CP0_Wired);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_WIRED (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_HWRENA, &env->CP0_HWREna);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_HWRENA (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_BADVADDR,
&env->CP0_BadVAddr);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_BADVADDR (%d)\n", __func__, err);
ret = err;
}
/* If VM clock stopped then state will be restored when it is restarted */
if (runstate_is_running()) {
err = kvm_mips_restore_count(cs);
if (err < 0) {
ret = err;
}
}
err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_ENTRYHI,
&env->CP0_EntryHi);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_ENTRYHI (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_COMPARE,
&env->CP0_Compare);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_COMPARE (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_STATUS, &env->CP0_Status);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_STATUS (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_EPC, &env->CP0_EPC);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_EPC (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_ERROREPC,
&env->CP0_ErrorEPC);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_ERROREPC (%d)\n", __func__, err);
ret = err;
}
return ret;
}
static int kvm_mips_get_cp0_registers(CPUState *cs)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
int err, ret = 0;
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_INDEX, &env->CP0_Index);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_INDEX (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_CONTEXT,
&env->CP0_Context);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_CONTEXT (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_USERLOCAL,
&env->active_tc.CP0_UserLocal);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_USERLOCAL (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_PAGEMASK,
&env->CP0_PageMask);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_PAGEMASK (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_WIRED, &env->CP0_Wired);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_WIRED (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_HWRENA, &env->CP0_HWREna);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_HWRENA (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_BADVADDR,
&env->CP0_BadVAddr);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_BADVADDR (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_ENTRYHI,
&env->CP0_EntryHi);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_ENTRYHI (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_COMPARE,
&env->CP0_Compare);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_COMPARE (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_STATUS, &env->CP0_Status);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_STATUS (%d)\n", __func__, err);
ret = err;
}
/* If VM clock stopped then state was already saved when it was stopped */
if (runstate_is_running()) {
err = kvm_mips_save_count(cs);
if (err < 0) {
ret = err;
}
}
err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_EPC, &env->CP0_EPC);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_EPC (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_ERROREPC,
&env->CP0_ErrorEPC);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_ERROREPC (%d)\n", __func__, err);
ret = err;
}
return ret;
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
struct kvm_regs regs;
int ret;
int i;
/* Set the registers based on QEMU's view of things */
for (i = 0; i < 32; i++) {
regs.gpr[i] = env->active_tc.gpr[i];
}
regs.hi = env->active_tc.HI[0];
regs.lo = env->active_tc.LO[0];
regs.pc = env->active_tc.PC;
ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
if (ret < 0) {
return ret;
}
ret = kvm_mips_put_cp0_registers(cs, level);
if (ret < 0) {
return ret;
}
return ret;
}
int kvm_arch_get_registers(CPUState *cs)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
int ret = 0;
struct kvm_regs regs;
int i;
/* Get the current register set as KVM seems it */
ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
if (ret < 0) {
return ret;
}
for (i = 0; i < 32; i++) {
env->active_tc.gpr[i] = regs.gpr[i];
}
env->active_tc.HI[0] = regs.hi;
env->active_tc.LO[0] = regs.lo;
env->active_tc.PC = regs.pc;
kvm_mips_get_cp0_registers(cs);
return ret;
}

26
target-mips/kvm_mips.h Normal file
View File

@ -0,0 +1,26 @@
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* KVM/MIPS: MIPS specific KVM APIs
*
* Copyright (C) 2012-2014 Imagination Technologies Ltd.
* Authors: Sanjay Lal <sanjayl@kymasys.com>
*/
#ifndef __KVM_MIPS_H__
#define __KVM_MIPS_H__
/**
* kvm_mips_reset_vcpu:
* @cpu: MIPSCPU
*
* Called at reset time to set kernel registers to their initial values.
*/
void kvm_mips_reset_vcpu(MIPSCPU *cpu);
int kvm_mips_set_interrupt(MIPSCPU *cpu, int irq, int level);
int kvm_mips_set_ipi_interrupt(MIPSCPU *cpu, int irq, int level);
#endif /* __KVM_MIPS_H__ */

View File

@ -16092,6 +16092,8 @@ void cpu_state_reset(CPUMIPSState *env)
/* Count register increments in debug mode, EJTAG version 1 */ /* Count register increments in debug mode, EJTAG version 1 */
env->CP0_Debug = (1 << CP0DB_CNT) | (0x1 << CP0DB_VER); env->CP0_Debug = (1 << CP0DB_CNT) | (0x1 << CP0DB_VER);
cpu_mips_store_count(env, 1);
if (env->CP0_Config3 & (1 << CP0C3_MT)) { if (env->CP0_Config3 & (1 << CP0C3_MT)) {
int i; int i;