move unaligned memory access functions to bswap.h

This is just code movement, and moving the fpu/ include path from
target-dependent to target-independent Make variables.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
This commit is contained in:
Paolo Bonzini 2011-07-28 12:10:30 +02:00 committed by Anthony Liguori
parent 789ec7ce20
commit cbbab9226d
4 changed files with 477 additions and 448 deletions

View File

@ -9,7 +9,7 @@ include $(SRC_PATH)/rules.mak
$(call set-vpath, $(SRC_PATH):$(SRC_PATH)/hw) $(call set-vpath, $(SRC_PATH):$(SRC_PATH)/hw)
QEMU_CFLAGS+=-I.. -I$(SRC_PATH)/fpu QEMU_CFLAGS+=-I..
include $(SRC_PATH)/Makefile.objs include $(SRC_PATH)/Makefile.objs

474
bswap.h
View File

@ -11,6 +11,8 @@
#include <machine/bswap.h> #include <machine/bswap.h>
#else #else
#include "softfloat.h"
#ifdef CONFIG_BYTESWAP_H #ifdef CONFIG_BYTESWAP_H
#include <byteswap.h> #include <byteswap.h>
#else #else
@ -237,4 +239,476 @@ static inline uint32_t qemu_bswap_len(uint32_t value, int len)
return bswap32(value) >> (32 - 8 * len); return bswap32(value) >> (32 - 8 * len);
} }
typedef union {
float32 f;
uint32_t l;
} CPU_FloatU;
typedef union {
float64 d;
#if defined(HOST_WORDS_BIGENDIAN)
struct {
uint32_t upper;
uint32_t lower;
} l;
#else
struct {
uint32_t lower;
uint32_t upper;
} l;
#endif
uint64_t ll;
} CPU_DoubleU;
typedef union {
floatx80 d;
struct {
uint64_t lower;
uint16_t upper;
} l;
} CPU_LDoubleU;
typedef union {
float128 q;
#if defined(HOST_WORDS_BIGENDIAN)
struct {
uint32_t upmost;
uint32_t upper;
uint32_t lower;
uint32_t lowest;
} l;
struct {
uint64_t upper;
uint64_t lower;
} ll;
#else
struct {
uint32_t lowest;
uint32_t lower;
uint32_t upper;
uint32_t upmost;
} l;
struct {
uint64_t lower;
uint64_t upper;
} ll;
#endif
} CPU_QuadU;
/* unaligned/endian-independent pointer access */
/*
* the generic syntax is:
*
* load: ld{type}{sign}{size}{endian}_p(ptr)
*
* store: st{type}{size}{endian}_p(ptr, val)
*
* Note there are small differences with the softmmu access API!
*
* type is:
* (empty): integer access
* f : float access
*
* sign is:
* (empty): for floats or 32 bit size
* u : unsigned
* s : signed
*
* size is:
* b: 8 bits
* w: 16 bits
* l: 32 bits
* q: 64 bits
*
* endian is:
* (empty): 8 bit access
* be : big endian
* le : little endian
*/
static inline int ldub_p(const void *ptr)
{
return *(uint8_t *)ptr;
}
static inline int ldsb_p(const void *ptr)
{
return *(int8_t *)ptr;
}
static inline void stb_p(void *ptr, int v)
{
*(uint8_t *)ptr = v;
}
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
kernel handles unaligned load/stores may give better results, but
it is a system wide setting : bad */
#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
/* conservative code for little endian unaligned accesses */
static inline int lduw_le_p(const void *ptr)
{
#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
const uint8_t *p = ptr;
return p[0] | (p[1] << 8);
#endif
}
static inline int ldsw_le_p(const void *ptr)
{
#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return (int16_t)val;
#else
const uint8_t *p = ptr;
return (int16_t)(p[0] | (p[1] << 8));
#endif
}
static inline int ldl_le_p(const void *ptr)
{
#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
const uint8_t *p = ptr;
return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
static inline uint64_t ldq_le_p(const void *ptr)
{
const uint8_t *p = ptr;
uint32_t v1, v2;
v1 = ldl_le_p(p);
v2 = ldl_le_p(p + 4);
return v1 | ((uint64_t)v2 << 32);
}
static inline void stw_le_p(void *ptr, int v)
{
#ifdef _ARCH_PPC
__asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
#endif
}
static inline void stl_le_p(void *ptr, int v)
{
#ifdef _ARCH_PPC
__asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
p[2] = v >> 16;
p[3] = v >> 24;
#endif
}
static inline void stq_le_p(void *ptr, uint64_t v)
{
uint8_t *p = ptr;
stl_le_p(p, (uint32_t)v);
stl_le_p(p + 4, v >> 32);
}
/* float access */
static inline float32 ldfl_le_p(const void *ptr)
{
union {
float32 f;
uint32_t i;
} u;
u.i = ldl_le_p(ptr);
return u.f;
}
static inline void stfl_le_p(void *ptr, float32 v)
{
union {
float32 f;
uint32_t i;
} u;
u.f = v;
stl_le_p(ptr, u.i);
}
static inline float64 ldfq_le_p(const void *ptr)
{
CPU_DoubleU u;
u.l.lower = ldl_le_p(ptr);
u.l.upper = ldl_le_p(ptr + 4);
return u.d;
}
static inline void stfq_le_p(void *ptr, float64 v)
{
CPU_DoubleU u;
u.d = v;
stl_le_p(ptr, u.l.lower);
stl_le_p(ptr + 4, u.l.upper);
}
#else
static inline int lduw_le_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
static inline int ldsw_le_p(const void *ptr)
{
return *(int16_t *)ptr;
}
static inline int ldl_le_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
static inline uint64_t ldq_le_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
static inline void stw_le_p(void *ptr, int v)
{
*(uint16_t *)ptr = v;
}
static inline void stl_le_p(void *ptr, int v)
{
*(uint32_t *)ptr = v;
}
static inline void stq_le_p(void *ptr, uint64_t v)
{
*(uint64_t *)ptr = v;
}
/* float access */
static inline float32 ldfl_le_p(const void *ptr)
{
return *(float32 *)ptr;
}
static inline float64 ldfq_le_p(const void *ptr)
{
return *(float64 *)ptr;
}
static inline void stfl_le_p(void *ptr, float32 v)
{
*(float32 *)ptr = v;
}
static inline void stfq_le_p(void *ptr, float64 v)
{
*(float64 *)ptr = v;
}
#endif
#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
static inline int lduw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
asm volatile ("movzwl %1, %0\n"
"xchgb %b0, %h0\n"
: "=q" (val)
: "m" (*(uint16_t *)ptr));
return val;
#else
const uint8_t *b = ptr;
return ((b[0] << 8) | b[1]);
#endif
}
static inline int ldsw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
asm volatile ("movzwl %1, %0\n"
"xchgb %b0, %h0\n"
: "=q" (val)
: "m" (*(uint16_t *)ptr));
return (int16_t)val;
#else
const uint8_t *b = ptr;
return (int16_t)((b[0] << 8) | b[1]);
#endif
}
static inline int ldl_be_p(const void *ptr)
{
#if defined(__i386__) || defined(__x86_64__)
int val;
asm volatile ("movl %1, %0\n"
"bswap %0\n"
: "=r" (val)
: "m" (*(uint32_t *)ptr));
return val;
#else
const uint8_t *b = ptr;
return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
}
static inline uint64_t ldq_be_p(const void *ptr)
{
uint32_t a,b;
a = ldl_be_p(ptr);
b = ldl_be_p((uint8_t *)ptr + 4);
return (((uint64_t)a<<32)|b);
}
static inline void stw_be_p(void *ptr, int v)
{
#if defined(__i386__)
asm volatile ("xchgb %b0, %h0\n"
"movw %w0, %1\n"
: "=q" (v)
: "m" (*(uint16_t *)ptr), "0" (v));
#else
uint8_t *d = (uint8_t *) ptr;
d[0] = v >> 8;
d[1] = v;
#endif
}
static inline void stl_be_p(void *ptr, int v)
{
#if defined(__i386__) || defined(__x86_64__)
asm volatile ("bswap %0\n"
"movl %0, %1\n"
: "=r" (v)
: "m" (*(uint32_t *)ptr), "0" (v));
#else
uint8_t *d = (uint8_t *) ptr;
d[0] = v >> 24;
d[1] = v >> 16;
d[2] = v >> 8;
d[3] = v;
#endif
}
static inline void stq_be_p(void *ptr, uint64_t v)
{
stl_be_p(ptr, v >> 32);
stl_be_p((uint8_t *)ptr + 4, v);
}
/* float access */
static inline float32 ldfl_be_p(const void *ptr)
{
union {
float32 f;
uint32_t i;
} u;
u.i = ldl_be_p(ptr);
return u.f;
}
static inline void stfl_be_p(void *ptr, float32 v)
{
union {
float32 f;
uint32_t i;
} u;
u.f = v;
stl_be_p(ptr, u.i);
}
static inline float64 ldfq_be_p(const void *ptr)
{
CPU_DoubleU u;
u.l.upper = ldl_be_p(ptr);
u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
return u.d;
}
static inline void stfq_be_p(void *ptr, float64 v)
{
CPU_DoubleU u;
u.d = v;
stl_be_p(ptr, u.l.upper);
stl_be_p((uint8_t *)ptr + 4, u.l.lower);
}
#else
static inline int lduw_be_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
static inline int ldsw_be_p(const void *ptr)
{
return *(int16_t *)ptr;
}
static inline int ldl_be_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
static inline uint64_t ldq_be_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
static inline void stw_be_p(void *ptr, int v)
{
*(uint16_t *)ptr = v;
}
static inline void stl_be_p(void *ptr, int v)
{
*(uint32_t *)ptr = v;
}
static inline void stq_be_p(void *ptr, uint64_t v)
{
*(uint64_t *)ptr = v;
}
/* float access */
static inline float32 ldfl_be_p(const void *ptr)
{
return *(float32 *)ptr;
}
static inline float64 ldfq_be_p(const void *ptr)
{
return *(float64 *)ptr;
}
static inline void stfl_be_p(void *ptr, float32 v)
{
*(float32 *)ptr = v;
}
static inline void stfq_be_p(void *ptr, float64 v)
{
*(float64 *)ptr = v;
}
#endif
#endif /* BSWAP_H */ #endif /* BSWAP_H */

3
configure vendored
View File

@ -233,7 +233,7 @@ QEMU_CFLAGS="-Wall -Wundef -Wwrite-strings -Wmissing-prototypes $QEMU_CFLAGS"
QEMU_CFLAGS="-Wstrict-prototypes -Wredundant-decls $QEMU_CFLAGS" QEMU_CFLAGS="-Wstrict-prototypes -Wredundant-decls $QEMU_CFLAGS"
QEMU_CFLAGS="-D_GNU_SOURCE -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE $QEMU_CFLAGS" QEMU_CFLAGS="-D_GNU_SOURCE -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE $QEMU_CFLAGS"
QEMU_CFLAGS="-D_FORTIFY_SOURCE=2 $QEMU_CFLAGS" QEMU_CFLAGS="-D_FORTIFY_SOURCE=2 $QEMU_CFLAGS"
QEMU_INCLUDES="-I. -I\$(SRC_PATH)" QEMU_INCLUDES="-I. -I\$(SRC_PATH) -I\$(SRC_PATH)/fpu"
LDFLAGS="-g $LDFLAGS" LDFLAGS="-g $LDFLAGS"
# make source path absolute # make source path absolute
@ -3374,7 +3374,6 @@ else
includes="-I\$(SRC_PATH)/tcg/\$(ARCH) $includes" includes="-I\$(SRC_PATH)/tcg/\$(ARCH) $includes"
fi fi
includes="-I\$(SRC_PATH)/tcg $includes" includes="-I\$(SRC_PATH)/tcg $includes"
includes="-I\$(SRC_PATH)/fpu $includes"
if test "$target_user_only" = "yes" ; then if test "$target_user_only" = "yes" ; then
libdis_config_mak=libdis-user/config.mak libdis_config_mak=libdis-user/config.mak

446
cpu-all.h
View File

@ -35,8 +35,6 @@
* TARGET_WORDS_BIGENDIAN : same for target cpu * TARGET_WORDS_BIGENDIAN : same for target cpu
*/ */
#include "softfloat.h"
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED #define BSWAP_NEEDED
#endif #endif
@ -114,64 +112,6 @@ static inline void tswap64s(uint64_t *s)
#define bswaptls(s) bswap64s(s) #define bswaptls(s) bswap64s(s)
#endif #endif
typedef union {
float32 f;
uint32_t l;
} CPU_FloatU;
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
endian ! */
typedef union {
float64 d;
#if defined(HOST_WORDS_BIGENDIAN)
struct {
uint32_t upper;
uint32_t lower;
} l;
#else
struct {
uint32_t lower;
uint32_t upper;
} l;
#endif
uint64_t ll;
} CPU_DoubleU;
typedef union {
floatx80 d;
struct {
uint64_t lower;
uint16_t upper;
} l;
} CPU_LDoubleU;
typedef union {
float128 q;
#if defined(HOST_WORDS_BIGENDIAN)
struct {
uint32_t upmost;
uint32_t upper;
uint32_t lower;
uint32_t lowest;
} l;
struct {
uint64_t upper;
uint64_t lower;
} ll;
#else
struct {
uint32_t lowest;
uint32_t lower;
uint32_t upper;
uint32_t upmost;
} l;
struct {
uint64_t lower;
uint64_t upper;
} ll;
#endif
} CPU_QuadU;
/* CPU memory access without any memory or io remapping */ /* CPU memory access without any memory or io remapping */
/* /*
@ -207,392 +147,8 @@ typedef union {
* user : user mode access using soft MMU * user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU * kernel : kernel mode access using soft MMU
*/ */
static inline int ldub_p(const void *ptr)
{
return *(uint8_t *)ptr;
}
static inline int ldsb_p(const void *ptr) /* target-endianness CPU memory access functions */
{
return *(int8_t *)ptr;
}
static inline void stb_p(void *ptr, int v)
{
*(uint8_t *)ptr = v;
}
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
kernel handles unaligned load/stores may give better results, but
it is a system wide setting : bad */
#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
/* conservative code for little endian unaligned accesses */
static inline int lduw_le_p(const void *ptr)
{
#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
const uint8_t *p = ptr;
return p[0] | (p[1] << 8);
#endif
}
static inline int ldsw_le_p(const void *ptr)
{
#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return (int16_t)val;
#else
const uint8_t *p = ptr;
return (int16_t)(p[0] | (p[1] << 8));
#endif
}
static inline int ldl_le_p(const void *ptr)
{
#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
const uint8_t *p = ptr;
return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
static inline uint64_t ldq_le_p(const void *ptr)
{
const uint8_t *p = ptr;
uint32_t v1, v2;
v1 = ldl_le_p(p);
v2 = ldl_le_p(p + 4);
return v1 | ((uint64_t)v2 << 32);
}
static inline void stw_le_p(void *ptr, int v)
{
#ifdef _ARCH_PPC
__asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
#endif
}
static inline void stl_le_p(void *ptr, int v)
{
#ifdef _ARCH_PPC
__asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
p[2] = v >> 16;
p[3] = v >> 24;
#endif
}
static inline void stq_le_p(void *ptr, uint64_t v)
{
uint8_t *p = ptr;
stl_le_p(p, (uint32_t)v);
stl_le_p(p + 4, v >> 32);
}
/* float access */
static inline float32 ldfl_le_p(const void *ptr)
{
union {
float32 f;
uint32_t i;
} u;
u.i = ldl_le_p(ptr);
return u.f;
}
static inline void stfl_le_p(void *ptr, float32 v)
{
union {
float32 f;
uint32_t i;
} u;
u.f = v;
stl_le_p(ptr, u.i);
}
static inline float64 ldfq_le_p(const void *ptr)
{
CPU_DoubleU u;
u.l.lower = ldl_le_p(ptr);
u.l.upper = ldl_le_p(ptr + 4);
return u.d;
}
static inline void stfq_le_p(void *ptr, float64 v)
{
CPU_DoubleU u;
u.d = v;
stl_le_p(ptr, u.l.lower);
stl_le_p(ptr + 4, u.l.upper);
}
#else
static inline int lduw_le_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
static inline int ldsw_le_p(const void *ptr)
{
return *(int16_t *)ptr;
}
static inline int ldl_le_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
static inline uint64_t ldq_le_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
static inline void stw_le_p(void *ptr, int v)
{
*(uint16_t *)ptr = v;
}
static inline void stl_le_p(void *ptr, int v)
{
*(uint32_t *)ptr = v;
}
static inline void stq_le_p(void *ptr, uint64_t v)
{
*(uint64_t *)ptr = v;
}
/* float access */
static inline float32 ldfl_le_p(const void *ptr)
{
return *(float32 *)ptr;
}
static inline float64 ldfq_le_p(const void *ptr)
{
return *(float64 *)ptr;
}
static inline void stfl_le_p(void *ptr, float32 v)
{
*(float32 *)ptr = v;
}
static inline void stfq_le_p(void *ptr, float64 v)
{
*(float64 *)ptr = v;
}
#endif
#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
static inline int lduw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
asm volatile ("movzwl %1, %0\n"
"xchgb %b0, %h0\n"
: "=q" (val)
: "m" (*(uint16_t *)ptr));
return val;
#else
const uint8_t *b = ptr;
return ((b[0] << 8) | b[1]);
#endif
}
static inline int ldsw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
asm volatile ("movzwl %1, %0\n"
"xchgb %b0, %h0\n"
: "=q" (val)
: "m" (*(uint16_t *)ptr));
return (int16_t)val;
#else
const uint8_t *b = ptr;
return (int16_t)((b[0] << 8) | b[1]);
#endif
}
static inline int ldl_be_p(const void *ptr)
{
#if defined(__i386__) || defined(__x86_64__)
int val;
asm volatile ("movl %1, %0\n"
"bswap %0\n"
: "=r" (val)
: "m" (*(uint32_t *)ptr));
return val;
#else
const uint8_t *b = ptr;
return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
}
static inline uint64_t ldq_be_p(const void *ptr)
{
uint32_t a,b;
a = ldl_be_p(ptr);
b = ldl_be_p((uint8_t *)ptr + 4);
return (((uint64_t)a<<32)|b);
}
static inline void stw_be_p(void *ptr, int v)
{
#if defined(__i386__)
asm volatile ("xchgb %b0, %h0\n"
"movw %w0, %1\n"
: "=q" (v)
: "m" (*(uint16_t *)ptr), "0" (v));
#else
uint8_t *d = (uint8_t *) ptr;
d[0] = v >> 8;
d[1] = v;
#endif
}
static inline void stl_be_p(void *ptr, int v)
{
#if defined(__i386__) || defined(__x86_64__)
asm volatile ("bswap %0\n"
"movl %0, %1\n"
: "=r" (v)
: "m" (*(uint32_t *)ptr), "0" (v));
#else
uint8_t *d = (uint8_t *) ptr;
d[0] = v >> 24;
d[1] = v >> 16;
d[2] = v >> 8;
d[3] = v;
#endif
}
static inline void stq_be_p(void *ptr, uint64_t v)
{
stl_be_p(ptr, v >> 32);
stl_be_p((uint8_t *)ptr + 4, v);
}
/* float access */
static inline float32 ldfl_be_p(const void *ptr)
{
union {
float32 f;
uint32_t i;
} u;
u.i = ldl_be_p(ptr);
return u.f;
}
static inline void stfl_be_p(void *ptr, float32 v)
{
union {
float32 f;
uint32_t i;
} u;
u.f = v;
stl_be_p(ptr, u.i);
}
static inline float64 ldfq_be_p(const void *ptr)
{
CPU_DoubleU u;
u.l.upper = ldl_be_p(ptr);
u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
return u.d;
}
static inline void stfq_be_p(void *ptr, float64 v)
{
CPU_DoubleU u;
u.d = v;
stl_be_p(ptr, u.l.upper);
stl_be_p((uint8_t *)ptr + 4, u.l.lower);
}
#else
static inline int lduw_be_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
static inline int ldsw_be_p(const void *ptr)
{
return *(int16_t *)ptr;
}
static inline int ldl_be_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
static inline uint64_t ldq_be_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
static inline void stw_be_p(void *ptr, int v)
{
*(uint16_t *)ptr = v;
}
static inline void stl_be_p(void *ptr, int v)
{
*(uint32_t *)ptr = v;
}
static inline void stq_be_p(void *ptr, uint64_t v)
{
*(uint64_t *)ptr = v;
}
/* float access */
static inline float32 ldfl_be_p(const void *ptr)
{
return *(float32 *)ptr;
}
static inline float64 ldfq_be_p(const void *ptr)
{
return *(float64 *)ptr;
}
static inline void stfl_be_p(void *ptr, float32 v)
{
*(float32 *)ptr = v;
}
static inline void stfq_be_p(void *ptr, float64 v)
{
*(float64 *)ptr = v;
}
#endif
/* target CPU memory access functions */
#if defined(TARGET_WORDS_BIGENDIAN) #if defined(TARGET_WORDS_BIGENDIAN)
#define lduw_p(p) lduw_be_p(p) #define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p) #define ldsw_p(p) ldsw_be_p(p)