fpu/softfloat: re-factor sqrt
This is a little bit of a departure from softfloat's original approach as we skip the estimate step in favour of a straight iteration. There is a minor optimisation to avoid calculating more bits of precision than we need however this still brings a performance drop, especially for float64 operations. Suggested-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
parent
0c4c909291
commit
c13bb2da9e
207
fpu/softfloat.c
207
fpu/softfloat.c
@ -1896,6 +1896,102 @@ float64 float64_scalbn(float64 a, int n, float_status *status)
|
||||
return float64_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
/*
|
||||
* Square Root
|
||||
*
|
||||
* The old softfloat code did an approximation step before zeroing in
|
||||
* on the final result. However for simpleness we just compute the
|
||||
* square root by iterating down from the implicit bit to enough extra
|
||||
* bits to ensure we get a correctly rounded result.
|
||||
*
|
||||
* This does mean however the calculation is slower than before,
|
||||
* especially for 64 bit floats.
|
||||
*/
|
||||
|
||||
static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p)
|
||||
{
|
||||
uint64_t a_frac, r_frac, s_frac;
|
||||
int bit, last_bit;
|
||||
|
||||
if (is_nan(a.cls)) {
|
||||
return return_nan(a, s);
|
||||
}
|
||||
if (a.cls == float_class_zero) {
|
||||
return a; /* sqrt(+-0) = +-0 */
|
||||
}
|
||||
if (a.sign) {
|
||||
s->float_exception_flags |= float_flag_invalid;
|
||||
a.cls = float_class_dnan;
|
||||
return a;
|
||||
}
|
||||
if (a.cls == float_class_inf) {
|
||||
return a; /* sqrt(+inf) = +inf */
|
||||
}
|
||||
|
||||
assert(a.cls == float_class_normal);
|
||||
|
||||
/* We need two overflow bits at the top. Adding room for that is a
|
||||
* right shift. If the exponent is odd, we can discard the low bit
|
||||
* by multiplying the fraction by 2; that's a left shift. Combine
|
||||
* those and we shift right if the exponent is even.
|
||||
*/
|
||||
a_frac = a.frac;
|
||||
if (!(a.exp & 1)) {
|
||||
a_frac >>= 1;
|
||||
}
|
||||
a.exp >>= 1;
|
||||
|
||||
/* Bit-by-bit computation of sqrt. */
|
||||
r_frac = 0;
|
||||
s_frac = 0;
|
||||
|
||||
/* Iterate from implicit bit down to the 3 extra bits to compute a
|
||||
* properly rounded result. Remember we've inserted one more bit
|
||||
* at the top, so these positions are one less.
|
||||
*/
|
||||
bit = DECOMPOSED_BINARY_POINT - 1;
|
||||
last_bit = MAX(p->frac_shift - 4, 0);
|
||||
do {
|
||||
uint64_t q = 1ULL << bit;
|
||||
uint64_t t_frac = s_frac + q;
|
||||
if (t_frac <= a_frac) {
|
||||
s_frac = t_frac + q;
|
||||
a_frac -= t_frac;
|
||||
r_frac += q;
|
||||
}
|
||||
a_frac <<= 1;
|
||||
} while (--bit >= last_bit);
|
||||
|
||||
/* Undo the right shift done above. If there is any remaining
|
||||
* fraction, the result is inexact. Set the sticky bit.
|
||||
*/
|
||||
a.frac = (r_frac << 1) + (a_frac != 0);
|
||||
|
||||
return a;
|
||||
}
|
||||
|
||||
float16 __attribute__((flatten)) float16_sqrt(float16 a, float_status *status)
|
||||
{
|
||||
FloatParts pa = float16_unpack_canonical(a, status);
|
||||
FloatParts pr = sqrt_float(pa, status, &float16_params);
|
||||
return float16_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
float32 __attribute__((flatten)) float32_sqrt(float32 a, float_status *status)
|
||||
{
|
||||
FloatParts pa = float32_unpack_canonical(a, status);
|
||||
FloatParts pr = sqrt_float(pa, status, &float32_params);
|
||||
return float32_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
float64 __attribute__((flatten)) float64_sqrt(float64 a, float_status *status)
|
||||
{
|
||||
FloatParts pa = float64_unpack_canonical(a, status);
|
||||
FloatParts pr = sqrt_float(pa, status, &float64_params);
|
||||
return float64_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
|
||||
| and 7, and returns the properly rounded 32-bit integer corresponding to the
|
||||
@ -3303,62 +3399,6 @@ float32 float32_rem(float32 a, float32 b, float_status *status)
|
||||
}
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the square root of the single-precision floating-point value `a'.
|
||||
| The operation is performed according to the IEC/IEEE Standard for Binary
|
||||
| Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float32 float32_sqrt(float32 a, float_status *status)
|
||||
{
|
||||
flag aSign;
|
||||
int aExp, zExp;
|
||||
uint32_t aSig, zSig;
|
||||
uint64_t rem, term;
|
||||
a = float32_squash_input_denormal(a, status);
|
||||
|
||||
aSig = extractFloat32Frac( a );
|
||||
aExp = extractFloat32Exp( a );
|
||||
aSign = extractFloat32Sign( a );
|
||||
if ( aExp == 0xFF ) {
|
||||
if (aSig) {
|
||||
return propagateFloat32NaN(a, float32_zero, status);
|
||||
}
|
||||
if ( ! aSign ) return a;
|
||||
float_raise(float_flag_invalid, status);
|
||||
return float32_default_nan(status);
|
||||
}
|
||||
if ( aSign ) {
|
||||
if ( ( aExp | aSig ) == 0 ) return a;
|
||||
float_raise(float_flag_invalid, status);
|
||||
return float32_default_nan(status);
|
||||
}
|
||||
if ( aExp == 0 ) {
|
||||
if ( aSig == 0 ) return float32_zero;
|
||||
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
||||
}
|
||||
zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
|
||||
aSig = ( aSig | 0x00800000 )<<8;
|
||||
zSig = estimateSqrt32( aExp, aSig ) + 2;
|
||||
if ( ( zSig & 0x7F ) <= 5 ) {
|
||||
if ( zSig < 2 ) {
|
||||
zSig = 0x7FFFFFFF;
|
||||
goto roundAndPack;
|
||||
}
|
||||
aSig >>= aExp & 1;
|
||||
term = ( (uint64_t) zSig ) * zSig;
|
||||
rem = ( ( (uint64_t) aSig )<<32 ) - term;
|
||||
while ( (int64_t) rem < 0 ) {
|
||||
--zSig;
|
||||
rem += ( ( (uint64_t) zSig )<<1 ) | 1;
|
||||
}
|
||||
zSig |= ( rem != 0 );
|
||||
}
|
||||
shift32RightJamming( zSig, 1, &zSig );
|
||||
roundAndPack:
|
||||
return roundAndPackFloat32(0, zExp, zSig, status);
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the binary exponential of the single-precision floating-point value
|
||||
@ -4202,61 +4242,6 @@ float64 float64_rem(float64 a, float64 b, float_status *status)
|
||||
|
||||
}
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the square root of the double-precision floating-point value `a'.
|
||||
| The operation is performed according to the IEC/IEEE Standard for Binary
|
||||
| Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float64 float64_sqrt(float64 a, float_status *status)
|
||||
{
|
||||
flag aSign;
|
||||
int aExp, zExp;
|
||||
uint64_t aSig, zSig, doubleZSig;
|
||||
uint64_t rem0, rem1, term0, term1;
|
||||
a = float64_squash_input_denormal(a, status);
|
||||
|
||||
aSig = extractFloat64Frac( a );
|
||||
aExp = extractFloat64Exp( a );
|
||||
aSign = extractFloat64Sign( a );
|
||||
if ( aExp == 0x7FF ) {
|
||||
if (aSig) {
|
||||
return propagateFloat64NaN(a, a, status);
|
||||
}
|
||||
if ( ! aSign ) return a;
|
||||
float_raise(float_flag_invalid, status);
|
||||
return float64_default_nan(status);
|
||||
}
|
||||
if ( aSign ) {
|
||||
if ( ( aExp | aSig ) == 0 ) return a;
|
||||
float_raise(float_flag_invalid, status);
|
||||
return float64_default_nan(status);
|
||||
}
|
||||
if ( aExp == 0 ) {
|
||||
if ( aSig == 0 ) return float64_zero;
|
||||
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
||||
}
|
||||
zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
|
||||
aSig |= LIT64( 0x0010000000000000 );
|
||||
zSig = estimateSqrt32( aExp, aSig>>21 );
|
||||
aSig <<= 9 - ( aExp & 1 );
|
||||
zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
|
||||
if ( ( zSig & 0x1FF ) <= 5 ) {
|
||||
doubleZSig = zSig<<1;
|
||||
mul64To128( zSig, zSig, &term0, &term1 );
|
||||
sub128( aSig, 0, term0, term1, &rem0, &rem1 );
|
||||
while ( (int64_t) rem0 < 0 ) {
|
||||
--zSig;
|
||||
doubleZSig -= 2;
|
||||
add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
|
||||
}
|
||||
zSig |= ( ( rem0 | rem1 ) != 0 );
|
||||
}
|
||||
return roundAndPackFloat64(0, zExp, zSig, status);
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the binary log of the double-precision floating-point value `a'.
|
||||
| The operation is performed according to the IEC/IEEE Standard for Binary
|
||||
|
@ -251,6 +251,7 @@ float16 float16_minnum(float16, float16, float_status *status);
|
||||
float16 float16_maxnum(float16, float16, float_status *status);
|
||||
float16 float16_minnummag(float16, float16, float_status *status);
|
||||
float16 float16_maxnummag(float16, float16, float_status *status);
|
||||
float16 float16_sqrt(float16, float_status *status);
|
||||
int float16_compare(float16, float16, float_status *status);
|
||||
int float16_compare_quiet(float16, float16, float_status *status);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user