target-arm queue:

* Support u-boot 'noload' images for Arm (as used by NetBSD/evbarm GENERIC kernel)
  * hw/misc/tz-mpc: Fix value of BLK_MAX register
  * target/arm: Emit barriers for A32/T32 load-acquire/store-release insns
  * nRF51 SoC: add timer, GPIO, RNG peripherals
  * hw/arm/allwinner-a10: Add the 'A' SRAM and the SRAM controller
  * cpus.c: Fix race condition in cpu_stop_current()
  * hw/arm: versal: Plug memory leaks
  * Allow M profile boards to run even if -kernel not specified
  * gdbstub: Add multiprocess extension support for use when the
    board has multiple CPUs of different types (like the Xilinx Zynq boards)
  * target/arm: Don't decode S bit in SVE brk[ab] merging insns
  * target/arm: Convert ARM_TBFLAG_* to FIELDs
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABCAAGBQJcM36AAAoJEDwlJe0UNgzepuMP/A6umcXRrO+vOZgkW+cvJ8cD
 JkDdb8H/u3S6zqNokABI3Ya/areX1P30sRV7e7mC5IsknVNZe0MqQX6TW5477HMP
 Oz/m1AbyByWMLVILFiWfte5dtRRLfs3axzrmhu6HwJXe0NIUiYQofoJzCZEDMxDn
 71cehgeNkUGA36HViPyqzHZYADFkCX3Tfmh1FEh2jD7taK9GNsff8p6cHTb05W7d
 wWk68PS8VKTb5VrYH6SyiAHW8gBVrrUkYlkPKHzemK5fwlgDOSfxVLthf8mo08SH
 QxEXI430tagdmrGNO/nKOTA2NQwMzvCk/OLf0Qwg9I9F9pYtiOJ7nXXbtqDC8eKy
 DdHsL57W0F7sFkoVt+YNHSeylyLRluDh+D+Q7OHnlvwsEYmecqsWkW/A2CYC0uWs
 8ajxPBNpGG1lIvo63YK5/4kOy0DE/6ISljYOSlYYg3iXeAZPkQZMTlUxoYmJQ+Zr
 h1tLg1N9SuyQK5g5Uuluw2GwgzIv/Bt1LFo7pnvsA2X6PKiv6nno40T8q0Lw6ah4
 lmAUWx0OUilTrvQwterHlr6hfWu2RLiRoxCg06a3C93YlRjsR3vZOBeQ5ByaE+ho
 5ItKn58EerO+UaweVoc6MDhJFPC8b16Eee281BCec8Ks4GR1tIcpP/0z2lUwhBu6
 hoPmkoPtFtu1dKBgF8Ma
 =x1jv
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20190107' into staging

target-arm queue:
 * Support u-boot 'noload' images for Arm (as used by NetBSD/evbarm GENERIC kernel)
 * hw/misc/tz-mpc: Fix value of BLK_MAX register
 * target/arm: Emit barriers for A32/T32 load-acquire/store-release insns
 * nRF51 SoC: add timer, GPIO, RNG peripherals
 * hw/arm/allwinner-a10: Add the 'A' SRAM and the SRAM controller
 * cpus.c: Fix race condition in cpu_stop_current()
 * hw/arm: versal: Plug memory leaks
 * Allow M profile boards to run even if -kernel not specified
 * gdbstub: Add multiprocess extension support for use when the
   board has multiple CPUs of different types (like the Xilinx Zynq boards)
 * target/arm: Don't decode S bit in SVE brk[ab] merging insns
 * target/arm: Convert ARM_TBFLAG_* to FIELDs

# gpg: Signature made Mon 07 Jan 2019 16:29:52 GMT
# gpg:                using RSA key 3C2525ED14360CDE
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>"
# gpg:                 aka "Peter Maydell <pmaydell@gmail.com>"
# gpg:                 aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>"
# Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83  15CF 3C25 25ED 1436 0CDE

* remotes/pmaydell/tags/pull-target-arm-20190107: (37 commits)
  Support u-boot noload images for arm as used by, NetBSD/evbarm GENERIC kernel.
  hw/misc/tz-mpc: Fix value of BLK_MAX register
  target/arm: Emit barriers for A32/T32 load-acquire/store-release insns
  arm: Add Clock peripheral stub to NRF51 SOC
  tests/microbit-test: Add Tests for nRF51 Timer
  arm: Instantiate NRF51 Timers
  hw/timer/nrf51_timer: Add nRF51 Timer peripheral
  tests/microbit-test: Add Tests for nRF51 GPIO
  arm: Instantiate NRF51 general purpose I/O
  hw/gpio/nrf51_gpio: Add nRF51 GPIO peripheral
  arm: Instantiate NRF51 random number generator
  hw/misc/nrf51_rng: Add NRF51 random number generator peripheral
  arm: Add header to host common definition for nRF51 SOC peripherals
  qtest: Add set_irq_in command to set IRQ/GPIO level
  hw/arm/allwinner-a10: Add the 'A' SRAM and the SRAM controller
  cpus.c: Fix race condition in cpu_stop_current()
  MAINTAINERS: Add ARM-related files for hw/[misc|input|timer]/
  hw/arm: versal: Plug memory leaks
  Revert "armv7m: Guard against no -kernel argument"
  arm/xlnx-zynqmp: put APUs and RPUs in separate CPU clusters
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2019-01-07 16:56:32 +00:00
commit c102d9471f
48 changed files with 2567 additions and 271 deletions

View File

@ -515,6 +515,7 @@ F: hw/intc/arm*
F: hw/intc/gic_internal.h
F: hw/misc/a9scu.c
F: hw/misc/arm11scu.c
F: hw/misc/arm_l2x0.c
F: hw/timer/a9gtimer*
F: hw/timer/arm*
F: include/hw/arm/arm*.h
@ -587,6 +588,7 @@ L: qemu-arm@nongnu.org
S: Maintained
F: hw/arm/integratorcp.c
F: hw/misc/arm_integrator_debug.c
F: include/hw/misc/arm_integrator_debug.h
MCIMX6UL EVK / i.MX6ul
M: Peter Maydell <peter.maydell@linaro.org>
@ -606,7 +608,9 @@ L: qemu-arm@nongnu.org
S: Odd Fixes
F: hw/arm/mcimx7d-sabre.c
F: hw/arm/fsl-imx7.c
F: hw/misc/imx7_*.c
F: include/hw/arm/fsl-imx7.h
F: include/hw/misc/imx7_*.h
F: hw/pci-host/designware.c
F: include/hw/pci-host/designware.h
@ -640,6 +644,10 @@ M: Peter Maydell <peter.maydell@linaro.org>
L: qemu-arm@nongnu.org
S: Odd Fixes
F: hw/arm/nseries.c
F: hw/input/lm832x.c
F: hw/input/tsc2005.c
F: hw/misc/cbus.c
F: hw/timer/twl92230.c
Palm
M: Andrzej Zaborowski <balrogg@gmail.com>
@ -647,6 +655,7 @@ M: Peter Maydell <peter.maydell@linaro.org>
L: qemu-arm@nongnu.org
S: Odd Fixes
F: hw/arm/palm.c
F: hw/input/tsc210x.c
Raspberry Pi
M: Peter Maydell <peter.maydell@linaro.org>
@ -683,6 +692,7 @@ F: hw/display/tc6393xb.c
F: hw/gpio/max7310.c
F: hw/gpio/zaurus.c
F: hw/misc/mst_fpga.c
F: hw/misc/max111x.c
F: include/hw/arm/pxa.h
F: include/hw/arm/sharpsl.h
@ -693,10 +703,10 @@ L: qemu-arm@nongnu.org
S: Odd Fixes
F: hw/arm/sabrelite.c
F: hw/arm/fsl-imx6.c
F: hw/misc/imx6_src.c
F: hw/misc/imx6_*.c
F: hw/ssi/imx_spi.c
F: include/hw/arm/fsl-imx6.h
F: include/hw/misc/imx6_src.h
F: include/hw/misc/imx6_*.h
F: include/hw/ssi/imx_spi.h
Sharp SL-5500 (Collie) PDA
@ -807,7 +817,9 @@ R: Joel Stanley <joel@jms.id.au>
L: qemu-arm@nongnu.org
S: Maintained
F: hw/*/*aspeed*
F: hw/misc/pca9552.c
F: include/hw/*/*aspeed*
F: include/hw/misc/pca9552*.h
F: hw/net/ftgmac100.c
F: include/hw/net/ftgmac100.h
@ -1195,7 +1207,9 @@ M: Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
S: Supported
F: hw/core/machine.c
F: hw/core/null-machine.c
F: hw/cpu/cluster.c
F: include/hw/boards.h
F: include/hw/cpu/cluster.h
T: git https://github.com/ehabkost/qemu.git machine-next
Xtensa Machines

View File

@ -184,6 +184,7 @@ trace-events-subdirs += hw/vfio
trace-events-subdirs += hw/virtio
trace-events-subdirs += hw/watchdog
trace-events-subdirs += hw/xen
trace-events-subdirs += hw/gpio
trace-events-subdirs += io
trace-events-subdirs += linux-user
trace-events-subdirs += migration

3
cpus.c
View File

@ -2100,7 +2100,8 @@ void qemu_init_vcpu(CPUState *cpu)
void cpu_stop_current(void)
{
if (current_cpu) {
qemu_cpu_stop(current_cpu, true);
current_cpu->stop = true;
cpu_exit(current_cpu);
}
}

672
gdbstub.c
View File

@ -29,6 +29,7 @@
#include "chardev/char-fe.h"
#include "sysemu/sysemu.h"
#include "exec/gdbstub.h"
#include "hw/cpu/cluster.h"
#endif
#define MAX_PACKET_LENGTH 4096
@ -296,6 +297,13 @@ typedef struct GDBRegisterState {
struct GDBRegisterState *next;
} GDBRegisterState;
typedef struct GDBProcess {
uint32_t pid;
bool attached;
char target_xml[1024];
} GDBProcess;
enum RSState {
RS_INACTIVE,
RS_IDLE,
@ -324,6 +332,9 @@ typedef struct GDBState {
CharBackend chr;
Chardev *mon_chr;
#endif
bool multiprocess;
GDBProcess *processes;
int process_num;
char syscall_buf[256];
gdb_syscall_complete_cb current_syscall_cb;
} GDBState;
@ -631,13 +642,186 @@ static int memtox(char *buf, const char *mem, int len)
return p - buf;
}
static const char *get_feature_xml(const char *p, const char **newp,
CPUClass *cc)
static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
{
#ifndef CONFIG_USER_ONLY
gchar *path, *name = NULL;
Object *obj;
CPUClusterState *cluster;
uint32_t ret;
path = object_get_canonical_path(OBJECT(cpu));
if (path == NULL) {
/* Return the default process' PID */
ret = s->processes[s->process_num - 1].pid;
goto out;
}
name = object_get_canonical_path_component(OBJECT(cpu));
assert(name != NULL);
/*
* Retrieve the CPU parent path by removing the last '/' and the CPU name
* from the CPU canonical path.
*/
path[strlen(path) - strlen(name) - 1] = '\0';
obj = object_resolve_path_type(path, TYPE_CPU_CLUSTER, NULL);
if (obj == NULL) {
/* Return the default process' PID */
ret = s->processes[s->process_num - 1].pid;
goto out;
}
cluster = CPU_CLUSTER(obj);
ret = cluster->cluster_id + 1;
out:
g_free(name);
g_free(path);
return ret;
#else
/* TODO: In user mode, we should use the task state PID */
return s->processes[s->process_num - 1].pid;
#endif
}
static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
{
int i;
if (!pid) {
/* 0 means any process, we take the first one */
return &s->processes[0];
}
for (i = 0; i < s->process_num; i++) {
if (s->processes[i].pid == pid) {
return &s->processes[i];
}
}
return NULL;
}
static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
{
return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
}
static CPUState *find_cpu(uint32_t thread_id)
{
CPUState *cpu;
CPU_FOREACH(cpu) {
if (cpu_gdb_index(cpu) == thread_id) {
return cpu;
}
}
return NULL;
}
static CPUState *get_first_cpu_in_process(const GDBState *s,
GDBProcess *process)
{
CPUState *cpu;
CPU_FOREACH(cpu) {
if (gdb_get_cpu_pid(s, cpu) == process->pid) {
return cpu;
}
}
return NULL;
}
static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
{
uint32_t pid = gdb_get_cpu_pid(s, cpu);
cpu = CPU_NEXT(cpu);
while (cpu) {
if (gdb_get_cpu_pid(s, cpu) == pid) {
break;
}
cpu = CPU_NEXT(cpu);
}
return cpu;
}
static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
{
GDBProcess *process;
CPUState *cpu;
if (!tid) {
/* 0 means any thread, we take the first one */
tid = 1;
}
cpu = find_cpu(tid);
if (cpu == NULL) {
return NULL;
}
process = gdb_get_cpu_process(s, cpu);
if (process->pid != pid) {
return NULL;
}
if (!process->attached) {
return NULL;
}
return cpu;
}
/* Return the cpu following @cpu, while ignoring unattached processes. */
static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
{
cpu = CPU_NEXT(cpu);
while (cpu) {
if (gdb_get_cpu_process(s, cpu)->attached) {
break;
}
cpu = CPU_NEXT(cpu);
}
return cpu;
}
/* Return the first attached cpu */
static CPUState *gdb_first_attached_cpu(const GDBState *s)
{
CPUState *cpu = first_cpu;
GDBProcess *process = gdb_get_cpu_process(s, cpu);
if (!process->attached) {
return gdb_next_attached_cpu(s, cpu);
}
return cpu;
}
static const char *get_feature_xml(const GDBState *s, const char *p,
const char **newp, GDBProcess *process)
{
size_t len;
int i;
const char *name;
static char target_xml[1024];
CPUState *cpu = get_first_cpu_in_process(s, process);
CPUClass *cc = CPU_GET_CLASS(cpu);
len = 0;
while (p[len] && p[len] != ':')
@ -646,36 +830,37 @@ static const char *get_feature_xml(const char *p, const char **newp,
name = NULL;
if (strncmp(p, "target.xml", len) == 0) {
/* Generate the XML description for this CPU. */
if (!target_xml[0]) {
GDBRegisterState *r;
CPUState *cpu = first_cpu;
char *buf = process->target_xml;
const size_t buf_sz = sizeof(process->target_xml);
pstrcat(target_xml, sizeof(target_xml),
/* Generate the XML description for this CPU. */
if (!buf[0]) {
GDBRegisterState *r;
pstrcat(buf, buf_sz,
"<?xml version=\"1.0\"?>"
"<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
"<target>");
if (cc->gdb_arch_name) {
gchar *arch = cc->gdb_arch_name(cpu);
pstrcat(target_xml, sizeof(target_xml), "<architecture>");
pstrcat(target_xml, sizeof(target_xml), arch);
pstrcat(target_xml, sizeof(target_xml), "</architecture>");
pstrcat(buf, buf_sz, "<architecture>");
pstrcat(buf, buf_sz, arch);
pstrcat(buf, buf_sz, "</architecture>");
g_free(arch);
}
pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
pstrcat(target_xml, sizeof(target_xml), cc->gdb_core_xml_file);
pstrcat(target_xml, sizeof(target_xml), "\"/>");
pstrcat(buf, buf_sz, "<xi:include href=\"");
pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
pstrcat(buf, buf_sz, "\"/>");
for (r = cpu->gdb_regs; r; r = r->next) {
pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
pstrcat(target_xml, sizeof(target_xml), r->xml);
pstrcat(target_xml, sizeof(target_xml), "\"/>");
pstrcat(buf, buf_sz, "<xi:include href=\"");
pstrcat(buf, buf_sz, r->xml);
pstrcat(buf, buf_sz, "\"/>");
}
pstrcat(target_xml, sizeof(target_xml), "</target>");
pstrcat(buf, buf_sz, "</target>");
}
return target_xml;
return buf;
}
if (cc->gdb_get_dynamic_xml) {
CPUState *cpu = first_cpu;
char *xmlname = g_strndup(p, len);
const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
@ -862,6 +1047,24 @@ static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
}
}
static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
{
cpu_breakpoint_remove_all(cpu, BP_GDB);
#ifndef CONFIG_USER_ONLY
cpu_watchpoint_remove_all(cpu, BP_GDB);
#endif
}
static void gdb_process_breakpoint_remove_all(const GDBState *s, GDBProcess *p)
{
CPUState *cpu = get_first_cpu_in_process(s, p);
while (cpu) {
gdb_cpu_breakpoint_remove_all(cpu);
cpu = gdb_next_cpu_in_process(s, cpu);
}
}
static void gdb_breakpoint_remove_all(void)
{
CPUState *cpu;
@ -872,10 +1075,7 @@ static void gdb_breakpoint_remove_all(void)
}
CPU_FOREACH(cpu) {
cpu_breakpoint_remove_all(cpu, BP_GDB);
#ifndef CONFIG_USER_ONLY
cpu_watchpoint_remove_all(cpu, BP_GDB);
#endif
gdb_cpu_breakpoint_remove_all(cpu);
}
}
@ -887,17 +1087,71 @@ static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
cpu_set_pc(cpu, pc);
}
static CPUState *find_cpu(uint32_t thread_id)
static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
char *buf, size_t buf_size)
{
CPUState *cpu;
CPU_FOREACH(cpu) {
if (cpu_gdb_index(cpu) == thread_id) {
return cpu;
}
if (s->multiprocess) {
snprintf(buf, buf_size, "p%02x.%02x",
gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
} else {
snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
}
return NULL;
return buf;
}
typedef enum GDBThreadIdKind {
GDB_ONE_THREAD = 0,
GDB_ALL_THREADS, /* One process, all threads */
GDB_ALL_PROCESSES,
GDB_READ_THREAD_ERR
} GDBThreadIdKind;
static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
uint32_t *pid, uint32_t *tid)
{
unsigned long p, t;
int ret;
if (*buf == 'p') {
buf++;
ret = qemu_strtoul(buf, &buf, 16, &p);
if (ret) {
return GDB_READ_THREAD_ERR;
}
/* Skip '.' */
buf++;
} else {
p = 1;
}
ret = qemu_strtoul(buf, &buf, 16, &t);
if (ret) {
return GDB_READ_THREAD_ERR;
}
*end_buf = buf;
if (p == -1) {
return GDB_ALL_PROCESSES;
}
if (pid) {
*pid = p;
}
if (t == -1) {
return GDB_ALL_THREADS;
}
if (tid) {
*tid = t;
}
return GDB_ONE_THREAD;
}
static int is_query_packet(const char *p, const char *query, char separator)
@ -915,10 +1169,12 @@ static int is_query_packet(const char *p, const char *query, char separator)
*/
static int gdb_handle_vcont(GDBState *s, const char *p)
{
int res, idx, signal = 0;
int res, signal = 0;
char cur_action;
char *newstates;
unsigned long tmp;
uint32_t pid, tid;
GDBProcess *process;
CPUState *cpu;
#ifdef CONFIG_USER_ONLY
int max_cpus = 1; /* global variable max_cpus exists only in system mode */
@ -961,25 +1217,48 @@ static int gdb_handle_vcont(GDBState *s, const char *p)
res = -ENOTSUP;
goto out;
}
/* thread specification. special values: (none), -1 = all; 0 = any */
if ((p[0] == ':' && p[1] == '-' && p[2] == '1') || (p[0] != ':')) {
if (*p == ':') {
p += 3;
}
for (idx = 0; idx < max_cpus; idx++) {
if (newstates[idx] == 1) {
newstates[idx] = cur_action;
if (*p++ != ':') {
res = -ENOTSUP;
goto out;
}
switch (read_thread_id(p, &p, &pid, &tid)) {
case GDB_READ_THREAD_ERR:
res = -EINVAL;
goto out;
case GDB_ALL_PROCESSES:
cpu = gdb_first_attached_cpu(s);
while (cpu) {
if (newstates[cpu->cpu_index] == 1) {
newstates[cpu->cpu_index] = cur_action;
}
cpu = gdb_next_attached_cpu(s, cpu);
}
} else if (*p == ':') {
p++;
res = qemu_strtoul(p, &p, 16, &tmp);
if (res) {
break;
case GDB_ALL_THREADS:
process = gdb_get_process(s, pid);
if (!process->attached) {
res = -EINVAL;
goto out;
}
/* 0 means any thread, so we pick the first valid CPU */
cpu = tmp ? find_cpu(tmp) : first_cpu;
cpu = get_first_cpu_in_process(s, process);
while (cpu) {
if (newstates[cpu->cpu_index] == 1) {
newstates[cpu->cpu_index] = cur_action;
}
cpu = gdb_next_cpu_in_process(s, cpu);
}
break;
case GDB_ONE_THREAD:
cpu = gdb_get_cpu(s, pid, tid);
/* invalid CPU/thread specified */
if (!cpu) {
@ -991,6 +1270,7 @@ static int gdb_handle_vcont(GDBState *s, const char *p)
if (newstates[cpu->cpu_index] == 1) {
newstates[cpu->cpu_index] = cur_action;
}
break;
}
}
s->signal = signal;
@ -1005,24 +1285,30 @@ out:
static int gdb_handle_packet(GDBState *s, const char *line_buf)
{
CPUState *cpu;
GDBProcess *process;
CPUClass *cc;
const char *p;
uint32_t thread;
uint32_t pid, tid;
int ch, reg_size, type, res;
uint8_t mem_buf[MAX_PACKET_LENGTH];
char buf[sizeof(mem_buf) + 1 /* trailing NUL */];
char thread_id[16];
uint8_t *registers;
target_ulong addr, len;
GDBThreadIdKind thread_kind;
trace_gdbstub_io_command(line_buf);
p = line_buf;
ch = *p++;
switch(ch) {
case '!':
put_packet(s, "OK");
break;
case '?':
/* TODO: Make this return the correct value for user-mode. */
snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
cpu_gdb_index(s->c_cpu));
snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
gdb_fmt_thread_id(s, s->c_cpu, thread_id, sizeof(thread_id)));
put_packet(s, buf);
/* Remove all the breakpoints when this query is issued,
* because gdb is doing and initial connect and the state
@ -1062,6 +1348,41 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
goto unknown_command;
}
break;
} else if (strncmp(p, "Attach;", 7) == 0) {
unsigned long pid;
p += 7;
if (qemu_strtoul(p, &p, 16, &pid)) {
put_packet(s, "E22");
break;
}
process = gdb_get_process(s, pid);
if (process == NULL) {
put_packet(s, "E22");
break;
}
cpu = get_first_cpu_in_process(s, process);
if (cpu == NULL) {
/* Refuse to attach an empty process */
put_packet(s, "E22");
break;
}
process->attached = true;
s->g_cpu = cpu;
s->c_cpu = cpu;
snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
put_packet(s, buf);
break;
} else {
goto unknown_command;
}
@ -1071,9 +1392,40 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
exit(0);
case 'D':
/* Detach packet */
gdb_breakpoint_remove_all();
gdb_syscall_mode = GDB_SYS_DISABLED;
gdb_continue(s);
pid = 1;
if (s->multiprocess) {
unsigned long lpid;
if (*p != ';') {
put_packet(s, "E22");
break;
}
if (qemu_strtoul(p + 1, &p, 16, &lpid)) {
put_packet(s, "E22");
break;
}
pid = lpid;
}
process = gdb_get_process(s, pid);
gdb_process_breakpoint_remove_all(s, process);
process->attached = false;
if (pid == gdb_get_cpu_pid(s, s->c_cpu)) {
s->c_cpu = gdb_first_attached_cpu(s);
}
if (pid == gdb_get_cpu_pid(s, s->g_cpu)) {
s->g_cpu = gdb_first_attached_cpu(s);
}
if (s->c_cpu == NULL) {
/* No more process attached */
gdb_syscall_mode = GDB_SYS_DISABLED;
gdb_continue(s);
}
put_packet(s, "OK");
break;
case 's':
@ -1220,12 +1572,18 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
break;
case 'H':
type = *p++;
thread = strtoull(p, (char **)&p, 16);
if (thread == -1 || thread == 0) {
thread_kind = read_thread_id(p, &p, &pid, &tid);
if (thread_kind == GDB_READ_THREAD_ERR) {
put_packet(s, "E22");
break;
}
if (thread_kind != GDB_ONE_THREAD) {
put_packet(s, "OK");
break;
}
cpu = find_cpu(thread);
cpu = gdb_get_cpu(s, pid, tid);
if (cpu == NULL) {
put_packet(s, "E22");
break;
@ -1245,8 +1603,12 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
}
break;
case 'T':
thread = strtoull(p, (char **)&p, 16);
cpu = find_cpu(thread);
thread_kind = read_thread_id(p, &p, &pid, &tid);
if (thread_kind == GDB_READ_THREAD_ERR) {
put_packet(s, "E22");
break;
}
cpu = gdb_get_cpu(s, pid, tid);
if (cpu != NULL) {
put_packet(s, "OK");
@ -1280,31 +1642,55 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
put_packet(s, "OK");
break;
} else if (strcmp(p,"C") == 0) {
/* "Current thread" remains vague in the spec, so always return
* the first CPU (gdb returns the first thread). */
put_packet(s, "QC1");
/*
* "Current thread" remains vague in the spec, so always return
* the first thread of the current process (gdb returns the
* first thread).
*/
cpu = get_first_cpu_in_process(s, gdb_get_cpu_process(s, s->g_cpu));
snprintf(buf, sizeof(buf), "QC%s",
gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
put_packet(s, buf);
break;
} else if (strcmp(p,"fThreadInfo") == 0) {
s->query_cpu = first_cpu;
s->query_cpu = gdb_first_attached_cpu(s);
goto report_cpuinfo;
} else if (strcmp(p,"sThreadInfo") == 0) {
report_cpuinfo:
if (s->query_cpu) {
snprintf(buf, sizeof(buf), "m%x", cpu_gdb_index(s->query_cpu));
snprintf(buf, sizeof(buf), "m%s",
gdb_fmt_thread_id(s, s->query_cpu,
thread_id, sizeof(thread_id)));
put_packet(s, buf);
s->query_cpu = CPU_NEXT(s->query_cpu);
s->query_cpu = gdb_next_attached_cpu(s, s->query_cpu);
} else
put_packet(s, "l");
break;
} else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
thread = strtoull(p+16, (char **)&p, 16);
cpu = find_cpu(thread);
if (read_thread_id(p + 16, &p, &pid, &tid) == GDB_READ_THREAD_ERR) {
put_packet(s, "E22");
break;
}
cpu = gdb_get_cpu(s, pid, tid);
if (cpu != NULL) {
cpu_synchronize_state(cpu);
/* memtohex() doubles the required space */
len = snprintf((char *)mem_buf, sizeof(buf) / 2,
"CPU#%d [%s]", cpu->cpu_index,
cpu->halted ? "halted " : "running");
if (s->multiprocess && (s->process_num > 1)) {
/* Print the CPU model and name in multiprocess mode */
ObjectClass *oc = object_get_class(OBJECT(cpu));
const char *cpu_model = object_class_get_name(oc);
char *cpu_name =
object_get_canonical_path_component(OBJECT(cpu));
len = snprintf((char *)mem_buf, sizeof(buf) / 2,
"%s %s [%s]", cpu_model, cpu_name,
cpu->halted ? "halted " : "running");
g_free(cpu_name);
} else {
/* memtohex() doubles the required space */
len = snprintf((char *)mem_buf, sizeof(buf) / 2,
"CPU#%d [%s]", cpu->cpu_index,
cpu->halted ? "halted " : "running");
}
trace_gdbstub_op_extra_info((char *)mem_buf);
memtohex(buf, mem_buf, len);
put_packet(s, buf);
@ -1346,6 +1732,12 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
if (cc->gdb_core_xml_file != NULL) {
pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
}
if (strstr(p, "multiprocess+")) {
s->multiprocess = true;
}
pstrcat(buf, sizeof(buf), ";multiprocess+");
put_packet(s, buf);
break;
}
@ -1353,14 +1745,15 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
const char *xml;
target_ulong total_len;
cc = CPU_GET_CLASS(first_cpu);
process = gdb_get_cpu_process(s, s->g_cpu);
cc = CPU_GET_CLASS(s->g_cpu);
if (cc->gdb_core_xml_file == NULL) {
goto unknown_command;
}
gdb_has_xml = true;
p += 19;
xml = get_feature_xml(p, &p, cc);
xml = get_feature_xml(s, p, &p, process);
if (!xml) {
snprintf(buf, sizeof(buf), "E00");
put_packet(s, buf);
@ -1411,6 +1804,16 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
void gdb_set_stop_cpu(CPUState *cpu)
{
GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
if (!p->attached) {
/*
* Having a stop CPU corresponding to a process that is not attached
* confuses GDB. So we ignore the request.
*/
return;
}
gdbserver_state->c_cpu = cpu;
gdbserver_state->g_cpu = cpu;
}
@ -1421,6 +1824,7 @@ static void gdb_vm_state_change(void *opaque, int running, RunState state)
GDBState *s = gdbserver_state;
CPUState *cpu = s->c_cpu;
char buf[256];
char thread_id[16];
const char *type;
int ret;
@ -1432,6 +1836,14 @@ static void gdb_vm_state_change(void *opaque, int running, RunState state)
put_packet(s, s->syscall_buf);
return;
}
if (cpu == NULL) {
/* No process attached */
return;
}
gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
switch (state) {
case RUN_STATE_DEBUG:
if (cpu->watchpoint_hit) {
@ -1449,8 +1861,8 @@ static void gdb_vm_state_change(void *opaque, int running, RunState state)
trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
(target_ulong)cpu->watchpoint_hit->vaddr);
snprintf(buf, sizeof(buf),
"T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
GDB_SIGNAL_TRAP, cpu_gdb_index(cpu), type,
"T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
GDB_SIGNAL_TRAP, thread_id, type,
(target_ulong)cpu->watchpoint_hit->vaddr);
cpu->watchpoint_hit = NULL;
goto send_packet;
@ -1492,7 +1904,7 @@ static void gdb_vm_state_change(void *opaque, int running, RunState state)
break;
}
gdb_set_stop_cpu(cpu);
snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, cpu_gdb_index(cpu));
snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
send_packet:
put_packet(s, buf);
@ -1751,6 +2163,31 @@ void gdb_exit(CPUArchState *env, int code)
#endif
}
/*
* Create the process that will contain all the "orphan" CPUs (that are not
* part of a CPU cluster). Note that if this process contains no CPUs, it won't
* be attachable and thus will be invisible to the user.
*/
static void create_default_process(GDBState *s)
{
GDBProcess *process;
int max_pid = 0;
if (s->process_num) {
max_pid = s->processes[s->process_num - 1].pid;
}
s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
process = &s->processes[s->process_num - 1];
/* We need an available PID slot for this process */
assert(max_pid < UINT32_MAX);
process->pid = max_pid + 1;
process->attached = false;
process->target_xml[0] = '\0';
}
#ifdef CONFIG_USER_ONLY
int
gdb_handlesig(CPUState *cpu, int sig)
@ -1846,8 +2283,10 @@ static bool gdb_accept(void)
}
s = g_malloc0(sizeof(GDBState));
s->c_cpu = first_cpu;
s->g_cpu = first_cpu;
create_default_process(s);
s->processes[0].attached = true;
s->c_cpu = gdb_first_attached_cpu(s);
s->g_cpu = s->c_cpu;
s->fd = fd;
gdb_has_xml = false;
@ -1933,8 +2372,19 @@ static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
static void gdb_chr_event(void *opaque, int event)
{
int i;
GDBState *s = (GDBState *) opaque;
switch (event) {
case CHR_EVENT_OPENED:
/* Start with first process attached, others detached */
for (i = 0; i < s->process_num; i++) {
s->processes[i].attached = !i;
}
s->c_cpu = gdb_first_attached_cpu(s);
s->g_cpu = s->c_cpu;
vm_stop(RUN_STATE_PAUSED);
gdb_has_xml = false;
break;
@ -2004,6 +2454,66 @@ static const TypeInfo char_gdb_type_info = {
.class_init = char_gdb_class_init,
};
static int find_cpu_clusters(Object *child, void *opaque)
{
if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
GDBState *s = (GDBState *) opaque;
CPUClusterState *cluster = CPU_CLUSTER(child);
GDBProcess *process;
s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
process = &s->processes[s->process_num - 1];
/*
* GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
* runtime, we enforce here that the machine does not use a cluster ID
* that would lead to PID 0.
*/
assert(cluster->cluster_id != UINT32_MAX);
process->pid = cluster->cluster_id + 1;
process->attached = false;
process->target_xml[0] = '\0';
return 0;
}
return object_child_foreach(child, find_cpu_clusters, opaque);
}
static int pid_order(const void *a, const void *b)
{
GDBProcess *pa = (GDBProcess *) a;
GDBProcess *pb = (GDBProcess *) b;
if (pa->pid < pb->pid) {
return -1;
} else if (pa->pid > pb->pid) {
return 1;
} else {
return 0;
}
}
static void create_processes(GDBState *s)
{
object_child_foreach(object_get_root(), find_cpu_clusters, s);
if (s->processes) {
/* Sort by PID */
qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
}
create_default_process(s);
}
static void cleanup_processes(GDBState *s)
{
g_free(s->processes);
s->process_num = 0;
s->processes = NULL;
}
int gdbserver_start(const char *device)
{
trace_gdbstub_op_start(device);
@ -2060,15 +2570,17 @@ int gdbserver_start(const char *device)
} else {
qemu_chr_fe_deinit(&s->chr, true);
mon_chr = s->mon_chr;
cleanup_processes(s);
memset(s, 0, sizeof(GDBState));
s->mon_chr = mon_chr;
}
s->c_cpu = first_cpu;
s->g_cpu = first_cpu;
create_processes(s);
if (chr) {
qemu_chr_fe_init(&s->chr, chr, &error_abort);
qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
gdb_chr_event, NULL, NULL, NULL, true);
gdb_chr_event, NULL, s, NULL, true);
}
s->state = chr ? RS_IDLE : RS_INACTIVE;
s->mon_chr = mon_chr;

View File

@ -22,6 +22,7 @@
#include "hw/sysbus.h"
#include "hw/devices.h"
#include "hw/arm/allwinner-a10.h"
#include "hw/misc/unimp.h"
static void aw_a10_init(Object *obj)
{
@ -85,6 +86,11 @@ static void aw_a10_realize(DeviceState *dev, Error **errp)
sysbus_connect_irq(sysbusdev, 4, s->irq[67]);
sysbus_connect_irq(sysbusdev, 5, s->irq[68]);
memory_region_init_ram(&s->sram_a, OBJECT(dev), "sram A", 48 * KiB,
&error_fatal);
memory_region_add_subregion(get_system_memory(), 0x00000000, &s->sram_a);
create_unimplemented_device("a10-sram-ctrl", 0x01c00000, 4 * KiB);
/* FIXME use qdev NIC properties instead of nd_table[] */
if (nd_table[0].used) {
qemu_check_nic_model(&nd_table[0], TYPE_AW_EMAC);

View File

@ -285,11 +285,6 @@ void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename, int mem_size)
big_endian = 0;
#endif
if (!kernel_filename && !qtest_enabled()) {
error_report("Guest image must be specified (using -kernel)");
exit(1);
}
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
asidx = ARMASIdx_S;
} else {

View File

@ -30,8 +30,9 @@
* Documentation/arm/Booting and Documentation/arm64/booting.txt
* They have different preferred image load offsets from system RAM base.
*/
#define KERNEL_ARGS_ADDR 0x100
#define KERNEL_LOAD_ADDR 0x00010000
#define KERNEL_ARGS_ADDR 0x100
#define KERNEL_NOLOAD_ADDR 0x02000000
#define KERNEL_LOAD_ADDR 0x00010000
#define KERNEL64_LOAD_ADDR 0x00080000
#define ARM64_TEXT_OFFSET_OFFSET 8
@ -1082,7 +1083,8 @@ void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
}
entry = elf_entry;
if (kernel_size < 0) {
kernel_size = load_uimage_as(info->kernel_filename, &entry, NULL,
uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
&is_linux, NULL, NULL, as);
}
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {

View File

@ -21,35 +21,46 @@
#include "qemu/log.h"
#include "cpu.h"
#include "hw/arm/nrf51.h"
#include "hw/arm/nrf51_soc.h"
#define IOMEM_BASE 0x40000000
#define IOMEM_SIZE 0x20000000
#define FICR_BASE 0x10000000
#define FICR_SIZE 0x000000fc
#define FLASH_BASE 0x00000000
#define SRAM_BASE 0x20000000
#define PRIVATE_BASE 0xF0000000
#define PRIVATE_SIZE 0x10000000
/*
* The size and base is for the NRF51822 part. If other parts
* are supported in the future, add a sub-class of NRF51SoC for
* the specific variants
*/
#define NRF51822_FLASH_SIZE (256 * 1024)
#define NRF51822_SRAM_SIZE (16 * 1024)
#define NRF51822_FLASH_SIZE (256 * NRF51_PAGE_SIZE)
#define NRF51822_SRAM_SIZE (16 * NRF51_PAGE_SIZE)
#define BASE_TO_IRQ(base) ((base >> 12) & 0x1F)
static uint64_t clock_read(void *opaque, hwaddr addr, unsigned int size)
{
qemu_log_mask(LOG_UNIMP, "%s: 0x%" HWADDR_PRIx " [%u]\n",
__func__, addr, size);
return 1;
}
static void clock_write(void *opaque, hwaddr addr, uint64_t data,
unsigned int size)
{
qemu_log_mask(LOG_UNIMP, "%s: 0x%" HWADDR_PRIx " <- 0x%" PRIx64 " [%u]\n",
__func__, addr, data, size);
}
static const MemoryRegionOps clock_ops = {
.read = clock_read,
.write = clock_write
};
static void nrf51_soc_realize(DeviceState *dev_soc, Error **errp)
{
NRF51State *s = NRF51_SOC(dev_soc);
MemoryRegion *mr;
Error *err = NULL;
uint8_t i = 0;
hwaddr base_addr = 0;
if (!s->board_memory) {
error_setg(errp, "memory property was not set");
@ -76,14 +87,14 @@ static void nrf51_soc_realize(DeviceState *dev_soc, Error **errp)
error_propagate(errp, err);
return;
}
memory_region_add_subregion(&s->container, FLASH_BASE, &s->flash);
memory_region_add_subregion(&s->container, NRF51_FLASH_BASE, &s->flash);
memory_region_init_ram(&s->sram, NULL, "nrf51.sram", s->sram_size, &err);
if (err) {
error_propagate(errp, err);
return;
}
memory_region_add_subregion(&s->container, SRAM_BASE, &s->sram);
memory_region_add_subregion(&s->container, NRF51_SRAM_BASE, &s->sram);
/* UART */
object_property_set_bool(OBJECT(&s->uart), true, "realized", &err);
@ -92,19 +103,71 @@ static void nrf51_soc_realize(DeviceState *dev_soc, Error **errp)
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->uart), 0);
memory_region_add_subregion_overlap(&s->container, UART_BASE, mr, 0);
memory_region_add_subregion_overlap(&s->container, NRF51_UART_BASE, mr, 0);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->uart), 0,
qdev_get_gpio_in(DEVICE(&s->cpu),
BASE_TO_IRQ(UART_BASE)));
BASE_TO_IRQ(NRF51_UART_BASE)));
create_unimplemented_device("nrf51_soc.io", IOMEM_BASE, IOMEM_SIZE);
create_unimplemented_device("nrf51_soc.ficr", FICR_BASE, FICR_SIZE);
/* RNG */
object_property_set_bool(OBJECT(&s->rng), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->rng), 0);
memory_region_add_subregion_overlap(&s->container, NRF51_RNG_BASE, mr, 0);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->rng), 0,
qdev_get_gpio_in(DEVICE(&s->cpu),
BASE_TO_IRQ(NRF51_RNG_BASE)));
/* GPIO */
object_property_set_bool(OBJECT(&s->gpio), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->gpio), 0);
memory_region_add_subregion_overlap(&s->container, NRF51_GPIO_BASE, mr, 0);
/* Pass all GPIOs to the SOC layer so they are available to the board */
qdev_pass_gpios(DEVICE(&s->gpio), dev_soc, NULL);
/* TIMER */
for (i = 0; i < NRF51_NUM_TIMERS; i++) {
object_property_set_bool(OBJECT(&s->timer[i]), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
base_addr = NRF51_TIMER_BASE + i * NRF51_TIMER_SIZE;
sysbus_mmio_map(SYS_BUS_DEVICE(&s->timer[i]), 0, base_addr);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer[i]), 0,
qdev_get_gpio_in(DEVICE(&s->cpu),
BASE_TO_IRQ(base_addr)));
}
/* STUB Peripherals */
memory_region_init_io(&s->clock, NULL, &clock_ops, NULL,
"nrf51_soc.clock", 0x1000);
memory_region_add_subregion_overlap(&s->container,
NRF51_IOMEM_BASE, &s->clock, -1);
create_unimplemented_device("nrf51_soc.io", NRF51_IOMEM_BASE,
NRF51_IOMEM_SIZE);
create_unimplemented_device("nrf51_soc.ficr", NRF51_FICR_BASE,
NRF51_FICR_SIZE);
create_unimplemented_device("nrf51_soc.private",
PRIVATE_BASE, PRIVATE_SIZE);
NRF51_PRIVATE_BASE, NRF51_PRIVATE_SIZE);
}
static void nrf51_soc_init(Object *obj)
{
uint8_t i = 0;
NRF51State *s = NRF51_SOC(obj);
memory_region_init(&s->container, obj, "nrf51-container", UINT64_MAX);
@ -119,6 +182,18 @@ static void nrf51_soc_init(Object *obj)
TYPE_NRF51_UART);
object_property_add_alias(obj, "serial0", OBJECT(&s->uart), "chardev",
&error_abort);
sysbus_init_child_obj(obj, "rng", &s->rng, sizeof(s->rng),
TYPE_NRF51_RNG);
sysbus_init_child_obj(obj, "gpio", &s->gpio, sizeof(s->gpio),
TYPE_NRF51_GPIO);
for (i = 0; i < NRF51_NUM_TIMERS; i++) {
sysbus_init_child_obj(obj, "timer[*]", &s->timer[i],
sizeof(s->timer[i]), TYPE_NRF51_TIMER);
}
}
static Property nrf51_soc_properties[] = {

View File

@ -130,6 +130,7 @@ static void fdt_add_gic_nodes(VersalVirt *s)
2, MM_GIC_APU_REDIST_0_SIZE);
qemu_fdt_setprop_cell(s->fdt, nodename, "#interrupt-cells", 3);
qemu_fdt_setprop_string(s->fdt, nodename, "compatible", "arm,gic-v3");
g_free(nodename);
}
static void fdt_add_timer_nodes(VersalVirt *s)
@ -364,6 +365,7 @@ static void create_virtio_regions(VersalVirt *s)
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic_irq);
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_add_subregion(&s->soc.mr_ps, base, mr);
g_free(name);
}
for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) {

View File

@ -178,12 +178,19 @@ static void xlnx_zynqmp_create_rpu(XlnxZynqMPState *s, const char *boot_cpu,
int i;
int num_rpus = MIN(smp_cpus - XLNX_ZYNQMP_NUM_APU_CPUS, XLNX_ZYNQMP_NUM_RPU_CPUS);
object_initialize_child(OBJECT(s), "rpu-cluster", &s->rpu_cluster,
sizeof(s->rpu_cluster), TYPE_CPU_CLUSTER,
&error_abort, NULL);
qdev_prop_set_uint32(DEVICE(&s->rpu_cluster), "cluster-id", 1);
qdev_init_nofail(DEVICE(&s->rpu_cluster));
for (i = 0; i < num_rpus; i++) {
char *name;
object_initialize(&s->rpu_cpu[i], sizeof(s->rpu_cpu[i]),
"cortex-r5f-" TYPE_ARM_CPU);
object_property_add_child(OBJECT(s), "rpu-cpu[*]",
object_property_add_child(OBJECT(&s->rpu_cluster), "rpu-cpu[*]",
OBJECT(&s->rpu_cpu[i]), &error_abort);
name = object_get_canonical_path_component(OBJECT(&s->rpu_cpu[i]));
@ -213,10 +220,16 @@ static void xlnx_zynqmp_init(Object *obj)
int i;
int num_apus = MIN(smp_cpus, XLNX_ZYNQMP_NUM_APU_CPUS);
object_initialize_child(obj, "apu-cluster", &s->apu_cluster,
sizeof(s->apu_cluster), TYPE_CPU_CLUSTER,
&error_abort, NULL);
qdev_prop_set_uint32(DEVICE(&s->apu_cluster), "cluster-id", 0);
for (i = 0; i < num_apus; i++) {
object_initialize_child(obj, "apu-cpu[*]", &s->apu_cpu[i],
sizeof(s->apu_cpu[i]),
"cortex-a53-" TYPE_ARM_CPU, &error_abort, NULL);
object_initialize_child(OBJECT(&s->apu_cluster), "apu-cpu[*]",
&s->apu_cpu[i], sizeof(s->apu_cpu[i]),
"cortex-a53-" TYPE_ARM_CPU, &error_abort,
NULL);
}
sysbus_init_child_obj(obj, "gic", &s->gic, sizeof(s->gic),
@ -333,6 +346,8 @@ static void xlnx_zynqmp_realize(DeviceState *dev, Error **errp)
qdev_prop_set_bit(DEVICE(&s->gic),
"has-virtualization-extensions", s->virt);
qdev_init_nofail(DEVICE(&s->apu_cluster));
/* Realize APUs before realizing the GIC. KVM requires this. */
for (i = 0; i < num_apus; i++) {
char *name;

View File

@ -613,13 +613,26 @@ static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
goto out;
if (hdr->ih_type != image_type) {
fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
image_type);
goto out;
if (!(image_type == IH_TYPE_KERNEL &&
hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
image_type);
goto out;
}
}
/* TODO: Implement other image types. */
switch (hdr->ih_type) {
case IH_TYPE_KERNEL_NOLOAD:
if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
fprintf(stderr, "this image format (kernel_noload) cannot be "
"loaded on this machine type");
goto out;
}
hdr->ih_load = *loadaddr + sizeof(*hdr);
hdr->ih_ep += hdr->ih_load;
/* fall through */
case IH_TYPE_KERNEL:
address = hdr->ih_load;
if (translate_fn) {

View File

@ -124,6 +124,7 @@
#define IH_TYPE_SCRIPT 6 /* Script file */
#define IH_TYPE_FILESYSTEM 7 /* Filesystem Image (any type) */
#define IH_TYPE_FLATDT 8 /* Binary Flat Device Tree Blob */
#define IH_TYPE_KERNEL_NOLOAD 14 /* OS Kernel Image (noload) */
/*
* Compression Types

View File

@ -2,4 +2,4 @@ obj-$(CONFIG_ARM11MPCORE) += arm11mpcore.o
obj-$(CONFIG_REALVIEW) += realview_mpcore.o
obj-$(CONFIG_A9MPCORE) += a9mpcore.o
obj-$(CONFIG_A15MPCORE) += a15mpcore.o
common-obj-y += core.o
common-obj-y += core.o cluster.o

50
hw/cpu/cluster.c Normal file
View File

@ -0,0 +1,50 @@
/*
* QEMU CPU cluster
*
* Copyright (c) 2018 GreenSocs SAS
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#include "qemu/osdep.h"
#include "hw/cpu/cluster.h"
#include "qapi/error.h"
#include "qemu/module.h"
static Property cpu_cluster_properties[] = {
DEFINE_PROP_UINT32("cluster-id", CPUClusterState, cluster_id, 0),
DEFINE_PROP_END_OF_LIST()
};
static void cpu_cluster_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->props = cpu_cluster_properties;
}
static const TypeInfo cpu_cluster_type_info = {
.name = TYPE_CPU_CLUSTER,
.parent = TYPE_DEVICE,
.instance_size = sizeof(CPUClusterState),
.class_init = cpu_cluster_class_init,
};
static void cpu_cluster_register_types(void)
{
type_register_static(&cpu_cluster_type_info);
}
type_init(cpu_cluster_register_types)

View File

@ -8,3 +8,4 @@ common-obj-$(CONFIG_GPIO_KEY) += gpio_key.o
obj-$(CONFIG_OMAP) += omap_gpio.o
obj-$(CONFIG_IMX) += imx_gpio.o
obj-$(CONFIG_RASPI) += bcm2835_gpio.o
obj-$(CONFIG_NRF51_SOC) += nrf51_gpio.o

300
hw/gpio/nrf51_gpio.c Normal file
View File

@ -0,0 +1,300 @@
/*
* nRF51 System-on-Chip general purpose input/output register definition
*
* Reference Manual: http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf
* Product Spec: http://infocenter.nordicsemi.com/pdf/nRF51822_PS_v3.1.pdf
*
* Copyright 2018 Steffen Görtz <contrib@steffen-goertz.de>
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "hw/gpio/nrf51_gpio.h"
#include "trace.h"
/*
* Check if the output driver is connected to the direction switch
* given the current configuration and logic level.
* It is not differentiated between standard and "high"(-power) drive modes.
*/
static bool is_connected(uint32_t config, uint32_t level)
{
bool state;
uint32_t drive_config = extract32(config, 8, 3);
switch (drive_config) {
case 0 ... 3:
state = true;
break;
case 4 ... 5:
state = level != 0;
break;
case 6 ... 7:
state = level == 0;
break;
default:
g_assert_not_reached();
break;
}
return state;
}
static void update_output_irq(NRF51GPIOState *s, size_t i,
bool connected, bool level)
{
int64_t irq_level = connected ? level : -1;
bool old_connected = extract32(s->old_out_connected, i, 1);
bool old_level = extract32(s->old_out, i, 1);
if ((old_connected != connected) || (old_level != level)) {
qemu_set_irq(s->output[i], irq_level);
trace_nrf51_gpio_update_output_irq(i, irq_level);
}
s->old_out = deposit32(s->old_out, i, 1, level);
s->old_out_connected = deposit32(s->old_out_connected, i, 1, connected);
}
static void update_state(NRF51GPIOState *s)
{
uint32_t pull;
size_t i;
bool connected_out, dir, connected_in, out, input;
for (i = 0; i < NRF51_GPIO_PINS; i++) {
pull = extract32(s->cnf[i], 2, 2);
dir = extract32(s->cnf[i], 0, 1);
connected_in = extract32(s->in_mask, i, 1);
out = extract32(s->out, i, 1);
input = !extract32(s->cnf[i], 1, 1);
connected_out = is_connected(s->cnf[i], out) && dir;
update_output_irq(s, i, connected_out, out);
/* Pin both driven externally and internally */
if (connected_out && connected_in) {
qemu_log_mask(LOG_GUEST_ERROR, "GPIO pin %zu short circuited\n", i);
}
/*
* Input buffer disconnected from internal/external drives, so
* pull-up/pull-down becomes relevant
*/
if (!input || (input && !connected_in && !connected_out)) {
if (pull == NRF51_GPIO_PULLDOWN) {
s->in = deposit32(s->in, i, 1, 0);
} else if (pull == NRF51_GPIO_PULLUP) {
s->in = deposit32(s->in, i, 1, 1);
}
}
/* Self stimulation through internal output driver */
if (connected_out && !connected_in && input) {
s->in = deposit32(s->in, i, 1, out);
}
}
}
/*
* Direction is exposed in both the DIR register and the DIR bit
* of each PINs CNF configuration register. Reflect bits for pins in DIR
* to individual pin configuration registers.
*/
static void reflect_dir_bit_in_cnf(NRF51GPIOState *s)
{
size_t i;
uint32_t value = s->dir;
for (i = 0; i < NRF51_GPIO_PINS; i++) {
s->cnf[i] = (s->cnf[i] & ~(1UL)) | ((value >> i) & 0x01);
}
}
static uint64_t nrf51_gpio_read(void *opaque, hwaddr offset, unsigned int size)
{
NRF51GPIOState *s = NRF51_GPIO(opaque);
uint64_t r = 0;
size_t idx;
switch (offset) {
case NRF51_GPIO_REG_OUT ... NRF51_GPIO_REG_OUTCLR:
r = s->out;
break;
case NRF51_GPIO_REG_IN:
r = s->in;
break;
case NRF51_GPIO_REG_DIR ... NRF51_GPIO_REG_DIRCLR:
r = s->dir;
break;
case NRF51_GPIO_REG_CNF_START ... NRF51_GPIO_REG_CNF_END:
idx = (offset - NRF51_GPIO_REG_CNF_START) / 4;
r = s->cnf[idx];
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: bad read offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
}
trace_nrf51_gpio_read(offset, r);
return r;
}
static void nrf51_gpio_write(void *opaque, hwaddr offset,
uint64_t value, unsigned int size)
{
NRF51GPIOState *s = NRF51_GPIO(opaque);
size_t idx;
trace_nrf51_gpio_write(offset, value);
switch (offset) {
case NRF51_GPIO_REG_OUT:
s->out = value;
break;
case NRF51_GPIO_REG_OUTSET:
s->out |= value;
break;
case NRF51_GPIO_REG_OUTCLR:
s->out &= ~value;
break;
case NRF51_GPIO_REG_DIR:
s->dir = value;
reflect_dir_bit_in_cnf(s);
break;
case NRF51_GPIO_REG_DIRSET:
s->dir |= value;
reflect_dir_bit_in_cnf(s);
break;
case NRF51_GPIO_REG_DIRCLR:
s->dir &= ~value;
reflect_dir_bit_in_cnf(s);
break;
case NRF51_GPIO_REG_CNF_START ... NRF51_GPIO_REG_CNF_END:
idx = (offset - NRF51_GPIO_REG_CNF_START) / 4;
s->cnf[idx] = value;
/*
* direction is exposed in both the DIR register and the DIR bit
* of each PINs CNF configuration register.
*/
s->dir = (s->dir & ~(1UL << idx)) | ((value & 0x01) << idx);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: bad write offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
}
update_state(s);
}
static const MemoryRegionOps gpio_ops = {
.read = nrf51_gpio_read,
.write = nrf51_gpio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl.min_access_size = 4,
.impl.max_access_size = 4,
};
static void nrf51_gpio_set(void *opaque, int line, int value)
{
NRF51GPIOState *s = NRF51_GPIO(opaque);
trace_nrf51_gpio_set(line, value);
assert(line >= 0 && line < NRF51_GPIO_PINS);
s->in_mask = deposit32(s->in_mask, line, 1, value >= 0);
if (value >= 0) {
s->in = deposit32(s->in, line, 1, value != 0);
}
update_state(s);
}
static void nrf51_gpio_reset(DeviceState *dev)
{
NRF51GPIOState *s = NRF51_GPIO(dev);
size_t i;
s->out = 0;
s->old_out = 0;
s->old_out_connected = 0;
s->in = 0;
s->in_mask = 0;
s->dir = 0;
for (i = 0; i < NRF51_GPIO_PINS; i++) {
s->cnf[i] = 0x00000002;
}
}
static const VMStateDescription vmstate_nrf51_gpio = {
.name = TYPE_NRF51_GPIO,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(out, NRF51GPIOState),
VMSTATE_UINT32(in, NRF51GPIOState),
VMSTATE_UINT32(in_mask, NRF51GPIOState),
VMSTATE_UINT32(dir, NRF51GPIOState),
VMSTATE_UINT32_ARRAY(cnf, NRF51GPIOState, NRF51_GPIO_PINS),
VMSTATE_UINT32(old_out, NRF51GPIOState),
VMSTATE_UINT32(old_out_connected, NRF51GPIOState),
VMSTATE_END_OF_LIST()
}
};
static void nrf51_gpio_init(Object *obj)
{
NRF51GPIOState *s = NRF51_GPIO(obj);
memory_region_init_io(&s->mmio, obj, &gpio_ops, s,
TYPE_NRF51_GPIO, NRF51_GPIO_SIZE);
sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
qdev_init_gpio_in(DEVICE(s), nrf51_gpio_set, NRF51_GPIO_PINS);
qdev_init_gpio_out(DEVICE(s), s->output, NRF51_GPIO_PINS);
}
static void nrf51_gpio_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &vmstate_nrf51_gpio;
dc->reset = nrf51_gpio_reset;
dc->desc = "nRF51 GPIO";
}
static const TypeInfo nrf51_gpio_info = {
.name = TYPE_NRF51_GPIO,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(NRF51GPIOState),
.instance_init = nrf51_gpio_init,
.class_init = nrf51_gpio_class_init
};
static void nrf51_gpio_register_types(void)
{
type_register_static(&nrf51_gpio_info);
}
type_init(nrf51_gpio_register_types)

7
hw/gpio/trace-events Normal file
View File

@ -0,0 +1,7 @@
# See docs/devel/tracing.txt for syntax documentation.
# hw/gpio/nrf51_gpio.c
nrf51_gpio_read(uint64_t offset, uint64_t r) "offset 0x%" PRIx64 " value 0x%" PRIx64
nrf51_gpio_write(uint64_t offset, uint64_t value) "offset 0x%" PRIx64 " value 0x%" PRIx64
nrf51_gpio_set(int64_t line, int64_t value) "line %" PRIi64 " value %" PRIi64
nrf51_gpio_update_output_irq(int64_t line, int64_t value) "line %" PRIi64 " value %" PRIi64

View File

@ -156,7 +156,7 @@ void microblaze_load_kernel(MicroBlazeCPU *cpu, hwaddr ddr_base,
/* If it wasn't an ELF image, try an u-boot image. */
if (kernel_size < 0) {
hwaddr uentry, loadaddr;
hwaddr uentry, loadaddr = LOAD_UIMAGE_LOADADDR_INVALID;
kernel_size = load_uimage(kernel_filename, &uentry, &loadaddr, 0,
NULL, NULL);

View File

@ -74,3 +74,4 @@ obj-$(CONFIG_PVPANIC) += pvpanic.o
obj-$(CONFIG_AUX) += auxbus.o
obj-$(CONFIG_ASPEED_SOC) += aspeed_scu.o aspeed_sdmc.o
obj-$(CONFIG_MSF2) += msf2-sysreg.o
obj-$(CONFIG_NRF51_SOC) += nrf51_rng.o

262
hw/misc/nrf51_rng.c Normal file
View File

@ -0,0 +1,262 @@
/*
* nRF51 Random Number Generator
*
* Reference Manual: http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.1.pdf
*
* Copyright 2018 Steffen Görtz <contrib@steffen-goertz.de>
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "hw/arm/nrf51.h"
#include "hw/misc/nrf51_rng.h"
#include "crypto/random.h"
static void update_irq(NRF51RNGState *s)
{
bool irq = s->interrupt_enabled && s->event_valrdy;
qemu_set_irq(s->irq, irq);
}
static uint64_t rng_read(void *opaque, hwaddr offset, unsigned int size)
{
NRF51RNGState *s = NRF51_RNG(opaque);
uint64_t r = 0;
switch (offset) {
case NRF51_RNG_EVENT_VALRDY:
r = s->event_valrdy;
break;
case NRF51_RNG_REG_SHORTS:
r = s->shortcut_stop_on_valrdy;
break;
case NRF51_RNG_REG_INTEN:
case NRF51_RNG_REG_INTENSET:
case NRF51_RNG_REG_INTENCLR:
r = s->interrupt_enabled;
break;
case NRF51_RNG_REG_CONFIG:
r = s->filter_enabled;
break;
case NRF51_RNG_REG_VALUE:
r = s->value;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: bad read offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
}
return r;
}
static int64_t calc_next_timeout(NRF51RNGState *s)
{
int64_t timeout = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL);
if (s->filter_enabled) {
timeout += s->period_filtered_us;
} else {
timeout += s->period_unfiltered_us;
}
return timeout;
}
static void rng_update_timer(NRF51RNGState *s)
{
if (s->active) {
timer_mod(&s->timer, calc_next_timeout(s));
} else {
timer_del(&s->timer);
}
}
static void rng_write(void *opaque, hwaddr offset,
uint64_t value, unsigned int size)
{
NRF51RNGState *s = NRF51_RNG(opaque);
switch (offset) {
case NRF51_RNG_TASK_START:
if (value == NRF51_TRIGGER_TASK) {
s->active = 1;
rng_update_timer(s);
}
break;
case NRF51_RNG_TASK_STOP:
if (value == NRF51_TRIGGER_TASK) {
s->active = 0;
rng_update_timer(s);
}
break;
case NRF51_RNG_EVENT_VALRDY:
if (value == NRF51_EVENT_CLEAR) {
s->event_valrdy = 0;
}
break;
case NRF51_RNG_REG_SHORTS:
s->shortcut_stop_on_valrdy =
(value & BIT_MASK(NRF51_RNG_REG_SHORTS_VALRDY_STOP)) ? 1 : 0;
break;
case NRF51_RNG_REG_INTEN:
s->interrupt_enabled =
(value & BIT_MASK(NRF51_RNG_REG_INTEN_VALRDY)) ? 1 : 0;
break;
case NRF51_RNG_REG_INTENSET:
if (value & BIT_MASK(NRF51_RNG_REG_INTEN_VALRDY)) {
s->interrupt_enabled = 1;
}
break;
case NRF51_RNG_REG_INTENCLR:
if (value & BIT_MASK(NRF51_RNG_REG_INTEN_VALRDY)) {
s->interrupt_enabled = 0;
}
break;
case NRF51_RNG_REG_CONFIG:
s->filter_enabled =
(value & BIT_MASK(NRF51_RNG_REG_CONFIG_DECEN)) ? 1 : 0;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: bad write offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
}
update_irq(s);
}
static const MemoryRegionOps rng_ops = {
.read = rng_read,
.write = rng_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl.min_access_size = 4,
.impl.max_access_size = 4
};
static void nrf51_rng_timer_expire(void *opaque)
{
NRF51RNGState *s = NRF51_RNG(opaque);
qcrypto_random_bytes(&s->value, 1, &error_abort);
s->event_valrdy = 1;
qemu_set_irq(s->eep_valrdy, 1);
if (s->shortcut_stop_on_valrdy) {
s->active = 0;
}
rng_update_timer(s);
update_irq(s);
}
static void nrf51_rng_tep_start(void *opaque, int n, int level)
{
NRF51RNGState *s = NRF51_RNG(opaque);
if (level) {
s->active = 1;
rng_update_timer(s);
}
}
static void nrf51_rng_tep_stop(void *opaque, int n, int level)
{
NRF51RNGState *s = NRF51_RNG(opaque);
if (level) {
s->active = 0;
rng_update_timer(s);
}
}
static void nrf51_rng_init(Object *obj)
{
NRF51RNGState *s = NRF51_RNG(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
memory_region_init_io(&s->mmio, obj, &rng_ops, s,
TYPE_NRF51_RNG, NRF51_RNG_SIZE);
sysbus_init_mmio(sbd, &s->mmio);
timer_init_us(&s->timer, QEMU_CLOCK_VIRTUAL, nrf51_rng_timer_expire, s);
sysbus_init_irq(sbd, &s->irq);
/* Tasks */
qdev_init_gpio_in_named(DEVICE(s), nrf51_rng_tep_start, "tep_start", 1);
qdev_init_gpio_in_named(DEVICE(s), nrf51_rng_tep_stop, "tep_stop", 1);
/* Events */
qdev_init_gpio_out_named(DEVICE(s), &s->eep_valrdy, "eep_valrdy", 1);
}
static void nrf51_rng_reset(DeviceState *dev)
{
NRF51RNGState *s = NRF51_RNG(dev);
s->value = 0;
s->active = 0;
s->event_valrdy = 0;
s->shortcut_stop_on_valrdy = 0;
s->interrupt_enabled = 0;
s->filter_enabled = 0;
rng_update_timer(s);
}
static Property nrf51_rng_properties[] = {
DEFINE_PROP_UINT16("period_unfiltered_us", NRF51RNGState,
period_unfiltered_us, 167),
DEFINE_PROP_UINT16("period_filtered_us", NRF51RNGState,
period_filtered_us, 660),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vmstate_rng = {
.name = "nrf51_soc.rng",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(active, NRF51RNGState),
VMSTATE_UINT32(event_valrdy, NRF51RNGState),
VMSTATE_UINT32(shortcut_stop_on_valrdy, NRF51RNGState),
VMSTATE_UINT32(interrupt_enabled, NRF51RNGState),
VMSTATE_UINT32(filter_enabled, NRF51RNGState),
VMSTATE_END_OF_LIST()
}
};
static void nrf51_rng_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->props = nrf51_rng_properties;
dc->vmsd = &vmstate_rng;
dc->reset = nrf51_rng_reset;
}
static const TypeInfo nrf51_rng_info = {
.name = TYPE_NRF51_RNG,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(NRF51RNGState),
.instance_init = nrf51_rng_init,
.class_init = nrf51_rng_class_init
};
static void nrf51_rng_register_types(void)
{
type_register_static(&nrf51_rng_info);
}
type_init(nrf51_rng_register_types)

View File

@ -150,7 +150,7 @@ static MemTxResult tz_mpc_reg_read(void *opaque, hwaddr addr,
r = s->ctrl;
break;
case A_BLK_MAX:
r = s->blk_max;
r = s->blk_max - 1;
break;
case A_BLK_CFG:
/* We are never in "init in progress state", so this just indicates

View File

@ -161,7 +161,7 @@ void nios2_load_kernel(Nios2CPU *cpu, hwaddr ddr_base,
/* If it wasn't an ELF image, try an u-boot image. */
if (kernel_size < 0) {
hwaddr uentry, loadaddr;
hwaddr uentry, loadaddr = LOAD_UIMAGE_LOADADDR_INVALID;
kernel_size = load_uimage(kernel_filename, &uentry, &loadaddr, 0,
NULL, NULL);

View File

@ -995,6 +995,7 @@ void ppce500_init(MachineState *machine)
* Hrm. No ELF image? Try a uImage, maybe someone is giving us an
* ePAPR compliant kernel
*/
loadaddr = LOAD_UIMAGE_LOADADDR_INVALID;
payload_size = load_uimage(filename, &bios_entry, &loadaddr, NULL,
NULL, NULL);
if (payload_size < 0) {

View File

@ -179,7 +179,7 @@ static void bamboo_init(MachineState *machine)
CPUPPCState *env;
uint64_t elf_entry;
uint64_t elf_lowaddr;
hwaddr loadaddr = 0;
hwaddr loadaddr = LOAD_UIMAGE_LOADADDR_INVALID;
target_long initrd_size = 0;
DeviceState *dev;
int success;

View File

@ -402,7 +402,7 @@ static void sam460ex_init(MachineState *machine)
CPUPPCState *env;
PPC4xxI2CState *i2c[2];
hwaddr entry = UBOOT_ENTRY;
hwaddr loadaddr = 0;
hwaddr loadaddr = LOAD_UIMAGE_LOADADDR_INVALID;
target_long initrd_size = 0;
DeviceState *dev;
SysBusDevice *sbdev;

View File

@ -23,6 +23,7 @@ common-obj-$(CONFIG_IMX) += imx_gpt.o
common-obj-$(CONFIG_LM32) += lm32_timer.o
common-obj-$(CONFIG_MILKYMIST) += milkymist-sysctl.o
common-obj-$(CONFIG_XLNX_ZYNQMP) += xlnx-zynqmp-rtc.o
common-obj-$(CONFIG_NRF51_SOC) += nrf51_timer.o
obj-$(CONFIG_ALTERA_TIMER) += altera_timer.o
obj-$(CONFIG_EXYNOS4) += exynos4210_mct.o

393
hw/timer/nrf51_timer.c Normal file
View File

@ -0,0 +1,393 @@
/*
* nRF51 System-on-Chip Timer peripheral
*
* Reference Manual: http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf
* Product Spec: http://infocenter.nordicsemi.com/pdf/nRF51822_PS_v3.1.pdf
*
* Copyright 2018 Steffen Görtz <contrib@steffen-goertz.de>
* Copyright (c) 2019 Red Hat, Inc.
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "hw/arm/nrf51.h"
#include "hw/timer/nrf51_timer.h"
#include "trace.h"
#define TIMER_CLK_FREQ 16000000UL
static uint32_t const bitwidths[] = {16, 8, 24, 32};
static uint32_t ns_to_ticks(NRF51TimerState *s, int64_t ns)
{
uint32_t freq = TIMER_CLK_FREQ >> s->prescaler;
return muldiv64(ns, freq, NANOSECONDS_PER_SECOND);
}
static int64_t ticks_to_ns(NRF51TimerState *s, uint32_t ticks)
{
uint32_t freq = TIMER_CLK_FREQ >> s->prescaler;
return muldiv64(ticks, NANOSECONDS_PER_SECOND, freq);
}
/* Returns number of ticks since last call */
static uint32_t update_counter(NRF51TimerState *s, int64_t now)
{
uint32_t ticks = ns_to_ticks(s, now - s->update_counter_ns);
s->counter = (s->counter + ticks) % BIT(bitwidths[s->bitmode]);
s->update_counter_ns = now;
return ticks;
}
/* Assumes s->counter is up-to-date */
static void rearm_timer(NRF51TimerState *s, int64_t now)
{
int64_t min_ns = INT64_MAX;
size_t i;
for (i = 0; i < NRF51_TIMER_REG_COUNT; i++) {
int64_t delta_ns;
if (s->events_compare[i]) {
continue; /* already expired, ignore it for now */
}
if (s->cc[i] <= s->counter) {
delta_ns = ticks_to_ns(s, BIT(bitwidths[s->bitmode]) -
s->counter + s->cc[i]);
} else {
delta_ns = ticks_to_ns(s, s->cc[i] - s->counter);
}
if (delta_ns < min_ns) {
min_ns = delta_ns;
}
}
if (min_ns != INT64_MAX) {
timer_mod_ns(&s->timer, now + min_ns);
}
}
static void update_irq(NRF51TimerState *s)
{
bool flag = false;
size_t i;
for (i = 0; i < NRF51_TIMER_REG_COUNT; i++) {
flag |= s->events_compare[i] && extract32(s->inten, 16 + i, 1);
}
qemu_set_irq(s->irq, flag);
}
static void timer_expire(void *opaque)
{
NRF51TimerState *s = NRF51_TIMER(opaque);
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint32_t cc_remaining[NRF51_TIMER_REG_COUNT];
bool should_stop = false;
uint32_t ticks;
size_t i;
for (i = 0; i < NRF51_TIMER_REG_COUNT; i++) {
if (s->cc[i] > s->counter) {
cc_remaining[i] = s->cc[i] - s->counter;
} else {
cc_remaining[i] = BIT(bitwidths[s->bitmode]) -
s->counter + s->cc[i];
}
}
ticks = update_counter(s, now);
for (i = 0; i < NRF51_TIMER_REG_COUNT; i++) {
if (cc_remaining[i] <= ticks) {
s->events_compare[i] = 1;
if (s->shorts & BIT(i)) {
s->timer_start_ns = now;
s->update_counter_ns = s->timer_start_ns;
s->counter = 0;
}
should_stop |= s->shorts & BIT(i + 8);
}
}
update_irq(s);
if (should_stop) {
s->running = false;
timer_del(&s->timer);
} else {
rearm_timer(s, now);
}
}
static void counter_compare(NRF51TimerState *s)
{
uint32_t counter = s->counter;
size_t i;
for (i = 0; i < NRF51_TIMER_REG_COUNT; i++) {
if (counter == s->cc[i]) {
s->events_compare[i] = 1;
if (s->shorts & BIT(i)) {
s->counter = 0;
}
}
}
}
static uint64_t nrf51_timer_read(void *opaque, hwaddr offset, unsigned int size)
{
NRF51TimerState *s = NRF51_TIMER(opaque);
uint64_t r = 0;
switch (offset) {
case NRF51_TIMER_EVENT_COMPARE_0 ... NRF51_TIMER_EVENT_COMPARE_3:
r = s->events_compare[(offset - NRF51_TIMER_EVENT_COMPARE_0) / 4];
break;
case NRF51_TIMER_REG_SHORTS:
r = s->shorts;
break;
case NRF51_TIMER_REG_INTENSET:
r = s->inten;
break;
case NRF51_TIMER_REG_INTENCLR:
r = s->inten;
break;
case NRF51_TIMER_REG_MODE:
r = s->mode;
break;
case NRF51_TIMER_REG_BITMODE:
r = s->bitmode;
break;
case NRF51_TIMER_REG_PRESCALER:
r = s->prescaler;
break;
case NRF51_TIMER_REG_CC0 ... NRF51_TIMER_REG_CC3:
r = s->cc[(offset - NRF51_TIMER_REG_CC0) / 4];
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: bad read offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
}
trace_nrf51_timer_read(offset, r, size);
return r;
}
static void nrf51_timer_write(void *opaque, hwaddr offset,
uint64_t value, unsigned int size)
{
NRF51TimerState *s = NRF51_TIMER(opaque);
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
size_t idx;
trace_nrf51_timer_write(offset, value, size);
switch (offset) {
case NRF51_TIMER_TASK_START:
if (value == NRF51_TRIGGER_TASK && s->mode == NRF51_TIMER_TIMER) {
s->running = true;
s->timer_start_ns = now - ticks_to_ns(s, s->counter);
s->update_counter_ns = s->timer_start_ns;
rearm_timer(s, now);
}
break;
case NRF51_TIMER_TASK_STOP:
case NRF51_TIMER_TASK_SHUTDOWN:
if (value == NRF51_TRIGGER_TASK) {
s->running = false;
timer_del(&s->timer);
}
break;
case NRF51_TIMER_TASK_COUNT:
if (value == NRF51_TRIGGER_TASK && s->mode == NRF51_TIMER_COUNTER) {
s->counter = (s->counter + 1) % BIT(bitwidths[s->bitmode]);
counter_compare(s);
}
break;
case NRF51_TIMER_TASK_CLEAR:
if (value == NRF51_TRIGGER_TASK) {
s->timer_start_ns = now;
s->update_counter_ns = s->timer_start_ns;
s->counter = 0;
if (s->running) {
rearm_timer(s, now);
}
}
break;
case NRF51_TIMER_TASK_CAPTURE_0 ... NRF51_TIMER_TASK_CAPTURE_3:
if (value == NRF51_TRIGGER_TASK) {
if (s->running) {
timer_expire(s); /* update counter and all state */
}
idx = (offset - NRF51_TIMER_TASK_CAPTURE_0) / 4;
s->cc[idx] = s->counter;
}
break;
case NRF51_TIMER_EVENT_COMPARE_0 ... NRF51_TIMER_EVENT_COMPARE_3:
if (value == NRF51_EVENT_CLEAR) {
s->events_compare[(offset - NRF51_TIMER_EVENT_COMPARE_0) / 4] = 0;
if (s->running) {
timer_expire(s); /* update counter and all state */
}
}
break;
case NRF51_TIMER_REG_SHORTS:
s->shorts = value & NRF51_TIMER_REG_SHORTS_MASK;
break;
case NRF51_TIMER_REG_INTENSET:
s->inten |= value & NRF51_TIMER_REG_INTEN_MASK;
break;
case NRF51_TIMER_REG_INTENCLR:
s->inten &= ~(value & NRF51_TIMER_REG_INTEN_MASK);
break;
case NRF51_TIMER_REG_MODE:
s->mode = value;
break;
case NRF51_TIMER_REG_BITMODE:
if (s->mode == NRF51_TIMER_TIMER && s->running) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: erroneous change of BITMODE while timer is running\n",
__func__);
}
s->bitmode = value & NRF51_TIMER_REG_BITMODE_MASK;
break;
case NRF51_TIMER_REG_PRESCALER:
if (s->mode == NRF51_TIMER_TIMER && s->running) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: erroneous change of PRESCALER while timer is running\n",
__func__);
}
s->prescaler = value & NRF51_TIMER_REG_PRESCALER_MASK;
break;
case NRF51_TIMER_REG_CC0 ... NRF51_TIMER_REG_CC3:
if (s->running) {
timer_expire(s); /* update counter */
}
idx = (offset - NRF51_TIMER_REG_CC0) / 4;
s->cc[idx] = value % BIT(bitwidths[s->bitmode]);
if (s->running) {
rearm_timer(s, now);
}
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: bad write offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
}
update_irq(s);
}
static const MemoryRegionOps rng_ops = {
.read = nrf51_timer_read,
.write = nrf51_timer_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl.min_access_size = 4,
.impl.max_access_size = 4,
};
static void nrf51_timer_init(Object *obj)
{
NRF51TimerState *s = NRF51_TIMER(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
memory_region_init_io(&s->iomem, obj, &rng_ops, s,
TYPE_NRF51_TIMER, NRF51_TIMER_SIZE);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
timer_init_ns(&s->timer, QEMU_CLOCK_VIRTUAL, timer_expire, s);
}
static void nrf51_timer_reset(DeviceState *dev)
{
NRF51TimerState *s = NRF51_TIMER(dev);
timer_del(&s->timer);
s->timer_start_ns = 0x00;
s->update_counter_ns = 0x00;
s->counter = 0x00;
s->running = false;
memset(s->events_compare, 0x00, sizeof(s->events_compare));
memset(s->cc, 0x00, sizeof(s->cc));
s->shorts = 0x00;
s->inten = 0x00;
s->mode = 0x00;
s->bitmode = 0x00;
s->prescaler = 0x00;
}
static int nrf51_timer_post_load(void *opaque, int version_id)
{
NRF51TimerState *s = NRF51_TIMER(opaque);
if (s->running && s->mode == NRF51_TIMER_TIMER) {
timer_expire(s);
}
return 0;
}
static const VMStateDescription vmstate_nrf51_timer = {
.name = TYPE_NRF51_TIMER,
.version_id = 1,
.post_load = nrf51_timer_post_load,
.fields = (VMStateField[]) {
VMSTATE_TIMER(timer, NRF51TimerState),
VMSTATE_INT64(timer_start_ns, NRF51TimerState),
VMSTATE_INT64(update_counter_ns, NRF51TimerState),
VMSTATE_UINT32(counter, NRF51TimerState),
VMSTATE_BOOL(running, NRF51TimerState),
VMSTATE_UINT8_ARRAY(events_compare, NRF51TimerState,
NRF51_TIMER_REG_COUNT),
VMSTATE_UINT32_ARRAY(cc, NRF51TimerState, NRF51_TIMER_REG_COUNT),
VMSTATE_UINT32(shorts, NRF51TimerState),
VMSTATE_UINT32(inten, NRF51TimerState),
VMSTATE_UINT32(mode, NRF51TimerState),
VMSTATE_UINT32(bitmode, NRF51TimerState),
VMSTATE_UINT32(prescaler, NRF51TimerState),
VMSTATE_END_OF_LIST()
}
};
static void nrf51_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = nrf51_timer_reset;
dc->vmsd = &vmstate_nrf51_timer;
}
static const TypeInfo nrf51_timer_info = {
.name = TYPE_NRF51_TIMER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(NRF51TimerState),
.instance_init = nrf51_timer_init,
.class_init = nrf51_timer_class_init
};
static void nrf51_timer_register_types(void)
{
type_register_static(&nrf51_timer_info);
}
type_init(nrf51_timer_register_types)

View File

@ -72,3 +72,8 @@ sun4v_rtc_write(uint64_t addr, uint64_t value) "write: addr 0x%" PRIx64 " value
# hw/timer/xlnx-zynqmp-rtc.c
xlnx_zynqmp_rtc_gettime(int year, int month, int day, int hour, int min, int sec) "Get time from host: %d-%d-%d %2d:%02d:%02d"
# hw/timer/nrf51_timer.c
nrf51_timer_read(uint64_t addr, uint32_t value, unsigned size) "read addr 0x%" PRIx64 " data 0x%" PRIx32 " size %u"
nrf51_timer_write(uint64_t addr, uint32_t value, unsigned size) "write addr 0x%" PRIx64 " data 0x%" PRIx32 " size %u"

View File

@ -35,6 +35,7 @@ typedef struct AwA10State {
AwA10PICState intc;
AwEmacState emac;
AllwinnerAHCIState sata;
MemoryRegion sram_a;
} AwA10State;
#define ALLWINNER_H_

45
include/hw/arm/nrf51.h Normal file
View File

@ -0,0 +1,45 @@
/*
* Nordic Semiconductor nRF51 Series SOC Common Defines
*
* This file hosts generic defines used in various nRF51 peripheral devices.
*
* Reference Manual: http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf
* Product Spec: http://infocenter.nordicsemi.com/pdf/nRF51822_PS_v3.1.pdf
*
* Copyright 2018 Steffen Görtz <contrib@steffen-goertz.de>
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#ifndef NRF51_H
#define NRF51_H
#define NRF51_FLASH_BASE 0x00000000
#define NRF51_FICR_BASE 0x10000000
#define NRF51_FICR_SIZE 0x00000100
#define NRF51_UICR_BASE 0x10001000
#define NRF51_SRAM_BASE 0x20000000
#define NRF51_IOMEM_BASE 0x40000000
#define NRF51_IOMEM_SIZE 0x20000000
#define NRF51_UART_BASE 0x40002000
#define NRF51_TIMER_BASE 0x40008000
#define NRF51_TIMER_SIZE 0x00001000
#define NRF51_RNG_BASE 0x4000D000
#define NRF51_NVMC_BASE 0x4001E000
#define NRF51_GPIO_BASE 0x50000000
#define NRF51_PRIVATE_BASE 0xF0000000
#define NRF51_PRIVATE_SIZE 0x10000000
#define NRF51_PAGE_SIZE 1024
/* Trigger */
#define NRF51_TRIGGER_TASK 0x01
/* Events */
#define NRF51_EVENT_CLEAR 0x00
#endif

View File

@ -13,11 +13,16 @@
#include "hw/sysbus.h"
#include "hw/arm/armv7m.h"
#include "hw/char/nrf51_uart.h"
#include "hw/misc/nrf51_rng.h"
#include "hw/gpio/nrf51_gpio.h"
#include "hw/timer/nrf51_timer.h"
#define TYPE_NRF51_SOC "nrf51-soc"
#define NRF51_SOC(obj) \
OBJECT_CHECK(NRF51State, (obj), TYPE_NRF51_SOC)
#define NRF51_NUM_TIMERS 3
typedef struct NRF51State {
/*< private >*/
SysBusDevice parent_obj;
@ -26,10 +31,14 @@ typedef struct NRF51State {
ARMv7MState cpu;
NRF51UARTState uart;
NRF51RNGState rng;
NRF51GPIOState gpio;
NRF51TimerState timer[NRF51_NUM_TIMERS];
MemoryRegion iomem;
MemoryRegion sram;
MemoryRegion flash;
MemoryRegion clock;
uint32_t sram_size;
uint32_t flash_size;

View File

@ -31,6 +31,7 @@
#include "hw/display/xlnx_dp.h"
#include "hw/intc/xlnx-zynqmp-ipi.h"
#include "hw/timer/xlnx-zynqmp-rtc.h"
#include "hw/cpu/cluster.h"
#define TYPE_XLNX_ZYNQMP "xlnx,zynqmp"
#define XLNX_ZYNQMP(obj) OBJECT_CHECK(XlnxZynqMPState, (obj), \
@ -77,6 +78,8 @@ typedef struct XlnxZynqMPState {
DeviceState parent_obj;
/*< public >*/
CPUClusterState apu_cluster;
CPUClusterState rpu_cluster;
ARMCPU apu_cpu[XLNX_ZYNQMP_NUM_APU_CPUS];
ARMCPU rpu_cpu[XLNX_ZYNQMP_NUM_RPU_CPUS];
GICState gic;

View File

@ -16,7 +16,6 @@
#include "hw/registerfields.h"
#define UART_FIFO_LENGTH 6
#define UART_BASE 0x40002000
#define UART_SIZE 0x1000
#define TYPE_NRF51_UART "nrf51_soc.uart"

58
include/hw/cpu/cluster.h Normal file
View File

@ -0,0 +1,58 @@
/*
* QEMU CPU cluster
*
* Copyright (c) 2018 GreenSocs SAS
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#ifndef HW_CPU_CLUSTER_H
#define HW_CPU_CLUSTER_H
#include "qemu/osdep.h"
#include "hw/qdev.h"
/*
* CPU Cluster type
*
* A cluster is a group of CPUs which are all identical and have the same view
* of the rest of the system. It is mainly an internal QEMU representation and
* does not necessarily match with the notion of clusters on the real hardware.
*
* If CPUs are not identical (for example, Cortex-A53 and Cortex-A57 CPUs in an
* Arm big.LITTLE system) they should be in different clusters. If the CPUs do
* not have the same view of memory (for example the main CPU and a management
* controller processor) they should be in different clusters.
*/
#define TYPE_CPU_CLUSTER "cpu-cluster"
#define CPU_CLUSTER(obj) \
OBJECT_CHECK(CPUClusterState, (obj), TYPE_CPU_CLUSTER)
/**
* CPUClusterState:
* @cluster_id: The cluster ID. This value is for internal use only and should
* not be exposed directly to the user or to the guest.
*
* State of a CPU cluster.
*/
typedef struct CPUClusterState {
/*< private >*/
DeviceState parent_obj;
/*< public >*/
uint32_t cluster_id;
} CPUClusterState;
#endif

View File

@ -0,0 +1,69 @@
/*
* nRF51 System-on-Chip general purpose input/output register definition
*
* QEMU interface:
* + sysbus MMIO regions 0: GPIO registers
* + Unnamed GPIO inputs 0-31: Set tri-state input level for GPIO pin.
* Level -1: Externally Disconnected/Floating; Pull-up/down will be regarded
* Level 0: Input externally driven LOW
* Level 1: Input externally driven HIGH
* + Unnamed GPIO outputs 0-31:
* Level -1: Disconnected/Floating
* Level 0: Driven LOW
* Level 1: Driven HIGH
*
* Accuracy of the peripheral model:
* + The nRF51 GPIO output driver supports two modes, standard and high-current
* mode. These different drive modes are not modeled and handled the same.
* + Pin SENSEing is not modeled/implemented.
*
* Copyright 2018 Steffen Görtz <contrib@steffen-goertz.de>
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*
*/
#ifndef NRF51_GPIO_H
#define NRF51_GPIO_H
#include "hw/sysbus.h"
#define TYPE_NRF51_GPIO "nrf51_soc.gpio"
#define NRF51_GPIO(obj) OBJECT_CHECK(NRF51GPIOState, (obj), TYPE_NRF51_GPIO)
#define NRF51_GPIO_PINS 32
#define NRF51_GPIO_SIZE 0x1000
#define NRF51_GPIO_REG_OUT 0x504
#define NRF51_GPIO_REG_OUTSET 0x508
#define NRF51_GPIO_REG_OUTCLR 0x50C
#define NRF51_GPIO_REG_IN 0x510
#define NRF51_GPIO_REG_DIR 0x514
#define NRF51_GPIO_REG_DIRSET 0x518
#define NRF51_GPIO_REG_DIRCLR 0x51C
#define NRF51_GPIO_REG_CNF_START 0x700
#define NRF51_GPIO_REG_CNF_END 0x77F
#define NRF51_GPIO_PULLDOWN 1
#define NRF51_GPIO_PULLUP 3
typedef struct NRF51GPIOState {
SysBusDevice parent_obj;
MemoryRegion mmio;
qemu_irq irq;
uint32_t out;
uint32_t in;
uint32_t in_mask;
uint32_t dir;
uint32_t cnf[NRF51_GPIO_PINS];
uint32_t old_out;
uint32_t old_out_connected;
qemu_irq output[NRF51_GPIO_PINS];
} NRF51GPIOState;
#endif

View File

@ -175,10 +175,15 @@ void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp);
int load_aout(const char *filename, hwaddr addr, int max_sz,
int bswap_needed, hwaddr target_page_size);
#define LOAD_UIMAGE_LOADADDR_INVALID (-1)
/** load_uimage_as:
* @filename: Path of uimage file
* @ep: Populated with program entry point. Ignored if NULL.
* @loadaddr: Populated with the load address. Ignored if NULL.
* @loadaddr: load address if none specified in the image or when loading a
* ramdisk. Populated with the load address. Ignored if NULL or
* LOAD_UIMAGE_LOADADDR_INVALID (images which do not specify a load
* address will not be loadable).
* @is_linux: Is set to true if the image loaded is Linux. Ignored if NULL.
* @translate_fn: optional function to translate load addresses
* @translate_opaque: opaque data passed to @translate_fn

View File

@ -0,0 +1,83 @@
/*
* nRF51 Random Number Generator
*
* QEMU interface:
* + Property "period_unfiltered_us": Time between two biased values in
* microseconds.
* + Property "period_filtered_us": Time between two unbiased values in
* microseconds.
* + sysbus MMIO regions 0: Memory Region with tasks, events and registers
* to be mapped to the peripherals instance address by the SOC.
* + Named GPIO output "irq": Interrupt line of the peripheral. Must be
* connected to the associated peripheral interrupt line of the NVIC.
* + Named GPIO output "eep_valrdy": Event set when new random value is ready
* to be read.
* + Named GPIO input "tep_start": Task that triggers start of continuous
* generation of random values.
* + Named GPIO input "tep_stop": Task that ends continuous generation of
* random values.
*
* Accuracy of the peripheral model:
* + Stochastic properties of different configurations of the random source
* are not modeled.
* + Generation of unfiltered and filtered random values take at least the
* average generation time stated in the production specification;
* non-deterministic generation times are not modeled.
*
* Copyright 2018 Steffen Görtz <contrib@steffen-goertz.de>
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*
*/
#ifndef NRF51_RNG_H
#define NRF51_RNG_H
#include "hw/sysbus.h"
#include "qemu/timer.h"
#define TYPE_NRF51_RNG "nrf51_soc.rng"
#define NRF51_RNG(obj) OBJECT_CHECK(NRF51RNGState, (obj), TYPE_NRF51_RNG)
#define NRF51_RNG_SIZE 0x1000
#define NRF51_RNG_TASK_START 0x000
#define NRF51_RNG_TASK_STOP 0x004
#define NRF51_RNG_EVENT_VALRDY 0x100
#define NRF51_RNG_REG_SHORTS 0x200
#define NRF51_RNG_REG_SHORTS_VALRDY_STOP 0
#define NRF51_RNG_REG_INTEN 0x300
#define NRF51_RNG_REG_INTEN_VALRDY 0
#define NRF51_RNG_REG_INTENSET 0x304
#define NRF51_RNG_REG_INTENCLR 0x308
#define NRF51_RNG_REG_CONFIG 0x504
#define NRF51_RNG_REG_CONFIG_DECEN 0
#define NRF51_RNG_REG_VALUE 0x508
typedef struct {
SysBusDevice parent_obj;
MemoryRegion mmio;
qemu_irq irq;
/* Event End Points */
qemu_irq eep_valrdy;
QEMUTimer timer;
/* Time between generation of successive unfiltered values in us */
uint16_t period_unfiltered_us;
/* Time between generation of successive filtered values in us */
uint16_t period_filtered_us;
uint8_t value;
uint32_t active;
uint32_t event_valrdy;
uint32_t shortcut_stop_on_valrdy;
uint32_t interrupt_enabled;
uint32_t filter_enabled;
} NRF51RNGState;
#endif /* NRF51_RNG_H_ */

View File

@ -0,0 +1,80 @@
/*
* nRF51 System-on-Chip Timer peripheral
*
* QEMU interface:
* + sysbus MMIO regions 0: GPIO registers
* + sysbus irq
*
* Copyright 2018 Steffen Görtz <contrib@steffen-goertz.de>
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#ifndef NRF51_TIMER_H
#define NRF51_TIMER_H
#include "hw/sysbus.h"
#include "qemu/timer.h"
#define TYPE_NRF51_TIMER "nrf51_soc.timer"
#define NRF51_TIMER(obj) OBJECT_CHECK(NRF51TimerState, (obj), TYPE_NRF51_TIMER)
#define NRF51_TIMER_REG_COUNT 4
#define NRF51_TIMER_TASK_START 0x000
#define NRF51_TIMER_TASK_STOP 0x004
#define NRF51_TIMER_TASK_COUNT 0x008
#define NRF51_TIMER_TASK_CLEAR 0x00C
#define NRF51_TIMER_TASK_SHUTDOWN 0x010
#define NRF51_TIMER_TASK_CAPTURE_0 0x040
#define NRF51_TIMER_TASK_CAPTURE_3 0x04C
#define NRF51_TIMER_EVENT_COMPARE_0 0x140
#define NRF51_TIMER_EVENT_COMPARE_1 0x144
#define NRF51_TIMER_EVENT_COMPARE_2 0x148
#define NRF51_TIMER_EVENT_COMPARE_3 0x14C
#define NRF51_TIMER_REG_SHORTS 0x200
#define NRF51_TIMER_REG_SHORTS_MASK 0xf0f
#define NRF51_TIMER_REG_INTENSET 0x304
#define NRF51_TIMER_REG_INTENCLR 0x308
#define NRF51_TIMER_REG_INTEN_MASK 0xf0000
#define NRF51_TIMER_REG_MODE 0x504
#define NRF51_TIMER_REG_MODE_MASK 0x01
#define NRF51_TIMER_TIMER 0
#define NRF51_TIMER_COUNTER 1
#define NRF51_TIMER_REG_BITMODE 0x508
#define NRF51_TIMER_REG_BITMODE_MASK 0x03
#define NRF51_TIMER_WIDTH_16 0
#define NRF51_TIMER_WIDTH_8 1
#define NRF51_TIMER_WIDTH_24 2
#define NRF51_TIMER_WIDTH_32 3
#define NRF51_TIMER_REG_PRESCALER 0x510
#define NRF51_TIMER_REG_PRESCALER_MASK 0x0F
#define NRF51_TIMER_REG_CC0 0x540
#define NRF51_TIMER_REG_CC3 0x54C
typedef struct NRF51TimerState {
SysBusDevice parent_obj;
MemoryRegion iomem;
qemu_irq irq;
QEMUTimer timer;
int64_t timer_start_ns;
int64_t update_counter_ns;
uint32_t counter;
bool running;
uint8_t events_compare[NRF51_TIMER_REG_COUNT];
uint32_t cc[NRF51_TIMER_REG_COUNT];
uint32_t shorts;
uint32_t inten;
uint32_t mode;
uint32_t bitmode;
uint32_t prescaler;
} NRF51TimerState;
#endif

43
qtest.c
View File

@ -164,6 +164,17 @@ static bool qtest_opened;
* where NUM is an IRQ number. For the PC, interrupts can be intercepted
* simply with "irq_intercept_in ioapic" (note that IRQ0 comes out with
* NUM=0 even though it is remapped to GSI 2).
*
* Setting interrupt level:
*
* > set_irq_in QOM-PATH NAME NUM LEVEL
* < OK
*
* where NAME is the name of the irq/gpio list, NUM is an IRQ number and
* LEVEL is an signed integer IRQ level.
*
* Forcibly set the given interrupt pin to the given level.
*
*/
static int hex2nib(char ch)
@ -326,7 +337,39 @@ static void qtest_process_command(CharBackend *chr, gchar **words)
irq_intercept_dev = dev;
qtest_send_prefix(chr);
qtest_send(chr, "OK\n");
} else if (strcmp(words[0], "set_irq_in") == 0) {
DeviceState *dev;
qemu_irq irq;
char *name;
int ret;
int num;
int level;
g_assert(words[1] && words[2] && words[3] && words[4]);
dev = DEVICE(object_resolve_path(words[1], NULL));
if (!dev) {
qtest_send_prefix(chr);
qtest_send(chr, "FAIL Unknown device\n");
return;
}
if (strcmp(words[2], "unnamed-gpio-in") == 0) {
name = NULL;
} else {
name = words[2];
}
ret = qemu_strtoi(words[3], NULL, 0, &num);
g_assert(!ret);
ret = qemu_strtoi(words[4], NULL, 0, &level);
g_assert(!ret);
irq = qdev_get_gpio_in_named(dev, name, num);
qemu_set_irq(irq, level);
qtest_send_prefix(chr);
qtest_send(chr, "OK\n");
} else if (strcmp(words[0], "outb") == 0 ||
strcmp(words[0], "outw") == 0 ||
strcmp(words[0], "outl") == 0) {

View File

@ -2946,102 +2946,40 @@ static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
* We put flags which are shared between 32 and 64 bit mode at the top
* of the word, and flags which apply to only one mode at the bottom.
*/
#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
#define ARM_TBFLAG_MMUIDX_SHIFT 28
#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
/* Target EL if we take a floating-point-disabled exception */
#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
/* Bit usage when in AArch32 state: */
#define ARM_TBFLAG_THUMB_SHIFT 0
#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN_SHIFT 1
#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_VFPEN_SHIFT 7
#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC_SHIFT 8
#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
#define ARM_TBFLAG_SCTLR_B_SHIFT 16
#define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
FIELD(TBFLAG_A32, THUMB, 0, 1)
FIELD(TBFLAG_A32, VECLEN, 1, 3)
FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
FIELD(TBFLAG_A32, VFPEN, 7, 1)
FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
/* We store the bottom two bits of the CPAR as TB flags and handle
* checks on the other bits at runtime
*/
#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
/* Indicates whether cp register reads and writes by guest code should access
* the secure or nonsecure bank of banked registers; note that this is not
* the same thing as the current security state of the processor!
*/
#define ARM_TBFLAG_NS_SHIFT 19
#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
#define ARM_TBFLAG_BE_DATA_SHIFT 20
#define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
FIELD(TBFLAG_A32, NS, 19, 1)
/* For M profile only, Handler (ie not Thread) mode */
#define ARM_TBFLAG_HANDLER_SHIFT 21
#define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
FIELD(TBFLAG_A32, HANDLER, 21, 1)
/* For M profile only, whether we should generate stack-limit checks */
#define ARM_TBFLAG_STACKCHECK_SHIFT 22
#define ARM_TBFLAG_STACKCHECK_MASK (1 << ARM_TBFLAG_STACKCHECK_SHIFT)
FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
/* Bit usage when in AArch64 state */
#define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
#define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
#define ARM_TBFLAG_SVEEXC_EL_SHIFT 2
#define ARM_TBFLAG_SVEEXC_EL_MASK (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
#define ARM_TBFLAG_ZCR_LEN_SHIFT 4
#define ARM_TBFLAG_ZCR_LEN_MASK (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
/* some convenience accessor macros */
#define ARM_TBFLAG_AARCH64_STATE(F) \
(((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
#define ARM_TBFLAG_MMUIDX(F) \
(((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
#define ARM_TBFLAG_SS_ACTIVE(F) \
(((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS(F) \
(((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
#define ARM_TBFLAG_FPEXC_EL(F) \
(((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
#define ARM_TBFLAG_THUMB(F) \
(((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN(F) \
(((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE(F) \
(((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_VFPEN(F) \
(((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC(F) \
(((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
#define ARM_TBFLAG_SCTLR_B(F) \
(((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
#define ARM_TBFLAG_XSCALE_CPAR(F) \
(((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
#define ARM_TBFLAG_NS(F) \
(((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
#define ARM_TBFLAG_BE_DATA(F) \
(((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
#define ARM_TBFLAG_HANDLER(F) \
(((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
#define ARM_TBFLAG_STACKCHECK(F) \
(((F) & ARM_TBFLAG_STACKCHECK_MASK) >> ARM_TBFLAG_STACKCHECK_SHIFT)
#define ARM_TBFLAG_TBI0(F) \
(((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
#define ARM_TBFLAG_TBI1(F) \
(((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
#define ARM_TBFLAG_SVEEXC_EL(F) \
(((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
#define ARM_TBFLAG_ZCR_LEN(F) \
(((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
FIELD(TBFLAG_A64, TBI0, 0, 1)
FIELD(TBFLAG_A64, TBI1, 1, 1)
FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
static inline bool bswap_code(bool sctlr_b)
{

View File

@ -12955,16 +12955,18 @@ void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
int current_el = arm_current_el(env);
int fp_el = fp_exception_el(env, current_el);
uint32_t flags;
uint32_t flags = 0;
if (is_a64(env)) {
ARMCPU *cpu = arm_env_get_cpu(env);
*pc = env->pc;
flags = ARM_TBFLAG_AARCH64_STATE_MASK;
flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
/* Get control bits for tagged addresses */
flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
flags = FIELD_DP32(flags, TBFLAG_A64, TBI0,
arm_regime_tbi0(env, mmu_idx));
flags = FIELD_DP32(flags, TBFLAG_A64, TBI1,
arm_regime_tbi1(env, mmu_idx));
if (cpu_isar_feature(aa64_sve, cpu)) {
int sve_el = sve_exception_el(env, current_el);
@ -12978,28 +12980,25 @@ void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
} else {
zcr_len = sve_zcr_len_for_el(env, current_el);
}
flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
}
} else {
*pc = env->regs[15];
flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
| (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
| (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
| (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
| (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
if (!(access_secure_reg(env))) {
flags |= ARM_TBFLAG_NS_MASK;
}
flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
|| arm_el_is_aa64(env, 1)) {
flags |= ARM_TBFLAG_VFPEN_MASK;
flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
}
flags |= (extract32(env->cp15.c15_cpar, 0, 2)
<< ARM_TBFLAG_XSCALE_CPAR_SHIFT);
flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar);
}
flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
/* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
* states defined in the ARM ARM for software singlestep:
@ -13009,24 +13008,24 @@ void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
* 1 1 Active-not-pending
*/
if (arm_singlestep_active(env)) {
flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
if (is_a64(env)) {
if (env->pstate & PSTATE_SS) {
flags |= ARM_TBFLAG_PSTATE_SS_MASK;
flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
}
} else {
if (env->uncached_cpsr & PSTATE_SS) {
flags |= ARM_TBFLAG_PSTATE_SS_MASK;
flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
}
}
}
if (arm_cpu_data_is_big_endian(env)) {
flags |= ARM_TBFLAG_BE_DATA_MASK;
flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
}
flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
if (arm_v7m_is_handler_mode(env)) {
flags |= ARM_TBFLAG_HANDLER_MASK;
flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
}
/* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
@ -13036,7 +13035,7 @@ void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
arm_feature(env, ARM_FEATURE_M) &&
!((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
(env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
flags |= ARM_TBFLAG_STACKCHECK_MASK;
flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
}
*pflags = flags;

View File

@ -99,6 +99,7 @@
# Two operand with governing predicate, flags setting
@pd_pg_pn_s ........ . s:1 ...... .. pg:4 . rn:4 . rd:4 &rpr_s
@pd_pg_pn_s0 ........ . . ...... .. pg:4 . rn:4 . rd:4 &rpr_s s=0
# Three operand with unused vector element size
@rd_rn_rm_e0 ........ ... rm:5 ... ... rn:5 rd:5 &rrr_esz esz=0
@ -667,8 +668,8 @@ BRKPB 00100101 0. 00 .... 11 .... 0 .... 1 .... @pd_pg_pn_pm_s
# SVE partition break condition
BRKA_z 00100101 0. 01000001 .... 0 .... 0 .... @pd_pg_pn_s
BRKB_z 00100101 1. 01000001 .... 0 .... 0 .... @pd_pg_pn_s
BRKA_m 00100101 0. 01000001 .... 0 .... 1 .... @pd_pg_pn_s
BRKB_m 00100101 1. 01000001 .... 0 .... 1 .... @pd_pg_pn_s
BRKA_m 00100101 00 01000001 .... 0 .... 1 .... @pd_pg_pn_s0
BRKB_m 00100101 10 01000001 .... 0 .... 1 .... @pd_pg_pn_s0
# SVE propagate break to next partition
BRKN 00100101 0. 01100001 .... 0 .... 0 .... @pd_pg_pn_s

View File

@ -13380,7 +13380,8 @@ static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
DisasContext *dc = container_of(dcbase, DisasContext, base);
CPUARMState *env = cpu->env_ptr;
ARMCPU *arm_cpu = arm_env_get_cpu(env);
int bound;
uint32_t tb_flags = dc->base.tb->flags;
int bound, core_mmu_idx;
dc->isar = &arm_cpu->isar;
dc->pc = dc->base.pc_first;
@ -13394,19 +13395,20 @@ static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
!arm_el_is_aa64(env, 3);
dc->thumb = 0;
dc->sctlr_b = 0;
dc->be_data = ARM_TBFLAG_BE_DATA(dc->base.tb->flags) ? MO_BE : MO_LE;
dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
dc->condexec_mask = 0;
dc->condexec_cond = 0;
dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(dc->base.tb->flags));
dc->tbi0 = ARM_TBFLAG_TBI0(dc->base.tb->flags);
dc->tbi1 = ARM_TBFLAG_TBI1(dc->base.tb->flags);
core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx);
dc->tbi0 = FIELD_EX32(tb_flags, TBFLAG_A64, TBI0);
dc->tbi1 = FIELD_EX32(tb_flags, TBFLAG_A64, TBI1);
dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
#if !defined(CONFIG_USER_ONLY)
dc->user = (dc->current_el == 0);
#endif
dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(dc->base.tb->flags);
dc->sve_excp_el = ARM_TBFLAG_SVEEXC_EL(dc->base.tb->flags);
dc->sve_len = (ARM_TBFLAG_ZCR_LEN(dc->base.tb->flags) + 1) * 16;
dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
dc->sve_excp_el = FIELD_EX32(tb_flags, TBFLAG_A64, SVEEXC_EL);
dc->sve_len = (FIELD_EX32(tb_flags, TBFLAG_A64, ZCR_LEN) + 1) * 16;
dc->vec_len = 0;
dc->vec_stride = 0;
dc->cp_regs = arm_cpu->cp_regs;
@ -13427,8 +13429,8 @@ static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
* emit code to generate a software step exception
* end the TB
*/
dc->ss_active = ARM_TBFLAG_SS_ACTIVE(dc->base.tb->flags);
dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(dc->base.tb->flags);
dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
dc->is_ldex = false;
dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);

View File

@ -9733,6 +9733,8 @@ static void disas_arm_insn(DisasContext *s, unsigned int insn)
rd = (insn >> 12) & 0xf;
if (insn & (1 << 23)) {
/* load/store exclusive */
bool is_ld = extract32(insn, 20, 1);
bool is_lasr = !extract32(insn, 8, 1);
int op2 = (insn >> 8) & 3;
op1 = (insn >> 21) & 0x3;
@ -9760,11 +9762,12 @@ static void disas_arm_insn(DisasContext *s, unsigned int insn)
addr = tcg_temp_local_new_i32();
load_reg_var(s, addr, rn);
/* Since the emulation does not have barriers,
the acquire/release semantics need no special
handling */
if (is_lasr && !is_ld) {
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
}
if (op2 == 0) {
if (insn & (1 << 20)) {
if (is_ld) {
tmp = tcg_temp_new_i32();
switch (op1) {
case 0: /* lda */
@ -9810,7 +9813,7 @@ static void disas_arm_insn(DisasContext *s, unsigned int insn)
}
tcg_temp_free_i32(tmp);
}
} else if (insn & (1 << 20)) {
} else if (is_ld) {
switch (op1) {
case 0: /* ldrex */
gen_load_exclusive(s, rd, 15, addr, 2);
@ -9847,6 +9850,10 @@ static void disas_arm_insn(DisasContext *s, unsigned int insn)
}
}
tcg_temp_free_i32(addr);
if (is_lasr && is_ld) {
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
}
} else if ((insn & 0x00300f00) == 0) {
/* 0bcccc_0001_0x00_xxxx_xxxx_0000_1001_xxxx
* - SWP, SWPB
@ -10862,6 +10869,8 @@ static void disas_thumb2_insn(DisasContext *s, uint32_t insn)
tcg_gen_addi_i32(tmp, tmp, s->pc);
store_reg(s, 15, tmp);
} else {
bool is_lasr = false;
bool is_ld = extract32(insn, 20, 1);
int op2 = (insn >> 6) & 0x3;
op = (insn >> 4) & 0x3;
switch (op2) {
@ -10883,12 +10892,18 @@ static void disas_thumb2_insn(DisasContext *s, uint32_t insn)
case 3:
/* Load-acquire/store-release exclusive */
ARCH(8);
is_lasr = true;
break;
}
if (is_lasr && !is_ld) {
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
}
addr = tcg_temp_local_new_i32();
load_reg_var(s, addr, rn);
if (!(op2 & 1)) {
if (insn & (1 << 20)) {
if (is_ld) {
tmp = tcg_temp_new_i32();
switch (op) {
case 0: /* ldab */
@ -10927,12 +10942,16 @@ static void disas_thumb2_insn(DisasContext *s, uint32_t insn)
}
tcg_temp_free_i32(tmp);
}
} else if (insn & (1 << 20)) {
} else if (is_ld) {
gen_load_exclusive(s, rs, rd, addr, op);
} else {
gen_store_exclusive(s, rm, rs, rd, addr, op);
}
tcg_temp_free_i32(addr);
if (is_lasr && is_ld) {
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
}
}
} else {
/* Load/store multiple, RFE, SRS. */
@ -13021,6 +13040,8 @@ static void arm_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
DisasContext *dc = container_of(dcbase, DisasContext, base);
CPUARMState *env = cs->env_ptr;
ARMCPU *cpu = arm_env_get_cpu(env);
uint32_t tb_flags = dc->base.tb->flags;
uint32_t condexec, core_mmu_idx;
dc->isar = &cpu->isar;
dc->pc = dc->base.pc_first;
@ -13032,26 +13053,28 @@ static void arm_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
*/
dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
!arm_el_is_aa64(env, 3);
dc->thumb = ARM_TBFLAG_THUMB(dc->base.tb->flags);
dc->sctlr_b = ARM_TBFLAG_SCTLR_B(dc->base.tb->flags);
dc->be_data = ARM_TBFLAG_BE_DATA(dc->base.tb->flags) ? MO_BE : MO_LE;
dc->condexec_mask = (ARM_TBFLAG_CONDEXEC(dc->base.tb->flags) & 0xf) << 1;
dc->condexec_cond = ARM_TBFLAG_CONDEXEC(dc->base.tb->flags) >> 4;
dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(dc->base.tb->flags));
dc->thumb = FIELD_EX32(tb_flags, TBFLAG_A32, THUMB);
dc->sctlr_b = FIELD_EX32(tb_flags, TBFLAG_A32, SCTLR_B);
dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
condexec = FIELD_EX32(tb_flags, TBFLAG_A32, CONDEXEC);
dc->condexec_mask = (condexec & 0xf) << 1;
dc->condexec_cond = condexec >> 4;
core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx);
dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
#if !defined(CONFIG_USER_ONLY)
dc->user = (dc->current_el == 0);
#endif
dc->ns = ARM_TBFLAG_NS(dc->base.tb->flags);
dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(dc->base.tb->flags);
dc->vfp_enabled = ARM_TBFLAG_VFPEN(dc->base.tb->flags);
dc->vec_len = ARM_TBFLAG_VECLEN(dc->base.tb->flags);
dc->vec_stride = ARM_TBFLAG_VECSTRIDE(dc->base.tb->flags);
dc->c15_cpar = ARM_TBFLAG_XSCALE_CPAR(dc->base.tb->flags);
dc->v7m_handler_mode = ARM_TBFLAG_HANDLER(dc->base.tb->flags);
dc->ns = FIELD_EX32(tb_flags, TBFLAG_A32, NS);
dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
dc->vfp_enabled = FIELD_EX32(tb_flags, TBFLAG_A32, VFPEN);
dc->vec_len = FIELD_EX32(tb_flags, TBFLAG_A32, VECLEN);
dc->vec_stride = FIELD_EX32(tb_flags, TBFLAG_A32, VECSTRIDE);
dc->c15_cpar = FIELD_EX32(tb_flags, TBFLAG_A32, XSCALE_CPAR);
dc->v7m_handler_mode = FIELD_EX32(tb_flags, TBFLAG_A32, HANDLER);
dc->v8m_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
regime_is_secure(env, dc->mmu_idx);
dc->v8m_stackcheck = ARM_TBFLAG_STACKCHECK(dc->base.tb->flags);
dc->v8m_stackcheck = FIELD_EX32(tb_flags, TBFLAG_A32, STACKCHECK);
dc->cp_regs = cpu->cp_regs;
dc->features = env->features;
@ -13070,8 +13093,8 @@ static void arm_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
* emit code to generate a software step exception
* end the TB
*/
dc->ss_active = ARM_TBFLAG_SS_ACTIVE(dc->base.tb->flags);
dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(dc->base.tb->flags);
dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
dc->is_ldex = false;
dc->ss_same_el = false; /* Can't be true since EL_d must be AArch64 */
@ -13516,11 +13539,11 @@ void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb)
DisasContext dc;
const TranslatorOps *ops = &arm_translator_ops;
if (ARM_TBFLAG_THUMB(tb->flags)) {
if (FIELD_EX32(tb->flags, TBFLAG_A32, THUMB)) {
ops = &thumb_translator_ops;
}
#ifdef TARGET_AARCH64
if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
if (FIELD_EX32(tb->flags, TBFLAG_ANY, AARCH64_STATE)) {
ops = &aarch64_translator_ops;
}
#endif

View File

@ -277,6 +277,7 @@ check-qtest-sparc64-y += tests/boot-serial-test$(EXESUF)
check-qtest-arm-y += tests/tmp105-test$(EXESUF)
check-qtest-arm-y += tests/pca9552-test$(EXESUF)
check-qtest-arm-y += tests/ds1338-test$(EXESUF)
check-qtest-arm-y += tests/microbit-test$(EXESUF)
check-qtest-arm-y += tests/m25p80-test$(EXESUF)
check-qtest-arm-y += tests/virtio-blk-test$(EXESUF)
check-qtest-arm-y += tests/test-arm-mptimer$(EXESUF)
@ -708,6 +709,7 @@ tests/pxe-test$(EXESUF): tests/pxe-test.o tests/boot-sector.o $(libqos-obj-y)
tests/tmp105-test$(EXESUF): tests/tmp105-test.o $(libqos-omap-obj-y)
tests/pca9552-test$(EXESUF): tests/pca9552-test.o $(libqos-omap-obj-y)
tests/ds1338-test$(EXESUF): tests/ds1338-test.o $(libqos-imx-obj-y)
tests/microbit-test$(EXESUF): tests/microbit-test.o
tests/m25p80-test$(EXESUF): tests/m25p80-test.o
tests/i440fx-test$(EXESUF): tests/i440fx-test.o $(libqos-pc-obj-y)
tests/q35-test$(EXESUF): tests/q35-test.o $(libqos-pc-obj-y)

View File

@ -753,6 +753,16 @@ void qtest_irq_intercept_in(QTestState *s, const char *qom_path)
qtest_rsp(s, 0);
}
void qtest_set_irq_in(QTestState *s, const char *qom_path, const char *name,
int num, int level)
{
if (!name) {
name = "unnamed-gpio-in";
}
qtest_sendf(s, "set_irq_in %s %s %d %d\n", qom_path, name, num, level);
qtest_rsp(s, 0);
}
static void qtest_out(QTestState *s, const char *cmd, uint16_t addr, uint32_t value)
{
qtest_sendf(s, "%s 0x%x 0x%x\n", cmd, addr, value);

View File

@ -230,6 +230,19 @@ void qtest_irq_intercept_in(QTestState *s, const char *string);
*/
void qtest_irq_intercept_out(QTestState *s, const char *string);
/**
* qtest_set_irq_in:
* @s: QTestState instance to operate on.
* @string: QOM path of a device
* @name: IRQ name
* @irq: IRQ number
* @level: IRQ level
*
* Force given device/irq GPIO-in pin to the given level.
*/
void qtest_set_irq_in(QTestState *s, const char *string, const char *name,
int irq, int level);
/**
* qtest_outb:
* @s: #QTestState instance to operate on.

255
tests/microbit-test.c Normal file
View File

@ -0,0 +1,255 @@
/*
* QTest testcase for Microbit board using the Nordic Semiconductor nRF51 SoC.
*
* nRF51:
* Reference Manual: http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf
* Product Spec: http://infocenter.nordicsemi.com/pdf/nRF51822_PS_v3.1.pdf
*
* Microbit Board: http://microbit.org/
*
* Copyright 2018 Steffen Görtz <contrib@steffen-goertz.de>
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "exec/hwaddr.h"
#include "libqtest.h"
#include "hw/arm/nrf51.h"
#include "hw/gpio/nrf51_gpio.h"
#include "hw/timer/nrf51_timer.h"
static void test_nrf51_gpio(void)
{
size_t i;
uint32_t actual, expected;
struct {
hwaddr addr;
uint32_t expected;
} const reset_state[] = {
{NRF51_GPIO_REG_OUT, 0x00000000}, {NRF51_GPIO_REG_OUTSET, 0x00000000},
{NRF51_GPIO_REG_OUTCLR, 0x00000000}, {NRF51_GPIO_REG_IN, 0x00000000},
{NRF51_GPIO_REG_DIR, 0x00000000}, {NRF51_GPIO_REG_DIRSET, 0x00000000},
{NRF51_GPIO_REG_DIRCLR, 0x00000000}
};
/* Check reset state */
for (i = 0; i < ARRAY_SIZE(reset_state); i++) {
expected = reset_state[i].expected;
actual = readl(NRF51_GPIO_BASE + reset_state[i].addr);
g_assert_cmpuint(actual, ==, expected);
}
for (i = 0; i < NRF51_GPIO_PINS; i++) {
expected = 0x00000002;
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START + i * 4);
g_assert_cmpuint(actual, ==, expected);
}
/* Check dir bit consistency between dir and cnf */
/* Check set via DIRSET */
expected = 0x80000001;
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_DIRSET, expected);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_DIR);
g_assert_cmpuint(actual, ==, expected);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START) & 0x01;
g_assert_cmpuint(actual, ==, 0x01);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_END) & 0x01;
g_assert_cmpuint(actual, ==, 0x01);
/* Check clear via DIRCLR */
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_DIRCLR, 0x80000001);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_DIR);
g_assert_cmpuint(actual, ==, 0x00000000);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START) & 0x01;
g_assert_cmpuint(actual, ==, 0x00);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_END) & 0x01;
g_assert_cmpuint(actual, ==, 0x00);
/* Check set via DIR */
expected = 0x80000001;
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_DIR, expected);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_DIR);
g_assert_cmpuint(actual, ==, expected);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START) & 0x01;
g_assert_cmpuint(actual, ==, 0x01);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_END) & 0x01;
g_assert_cmpuint(actual, ==, 0x01);
/* Reset DIR */
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_DIR, 0x00000000);
/* Check Input propagates */
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START, 0x00);
qtest_set_irq_in(global_qtest, "/machine/nrf51", "unnamed-gpio-in", 0, 0);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_IN) & 0x01;
g_assert_cmpuint(actual, ==, 0x00);
qtest_set_irq_in(global_qtest, "/machine/nrf51", "unnamed-gpio-in", 0, 1);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_IN) & 0x01;
g_assert_cmpuint(actual, ==, 0x01);
qtest_set_irq_in(global_qtest, "/machine/nrf51", "unnamed-gpio-in", 0, -1);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_IN) & 0x01;
g_assert_cmpuint(actual, ==, 0x01);
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START, 0x02);
/* Check pull-up working */
qtest_set_irq_in(global_qtest, "/machine/nrf51", "unnamed-gpio-in", 0, 0);
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START, 0b0000);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_IN) & 0x01;
g_assert_cmpuint(actual, ==, 0x00);
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START, 0b1110);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_IN) & 0x01;
g_assert_cmpuint(actual, ==, 0x01);
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START, 0x02);
/* Check pull-down working */
qtest_set_irq_in(global_qtest, "/machine/nrf51", "unnamed-gpio-in", 0, 1);
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START, 0b0000);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_IN) & 0x01;
g_assert_cmpuint(actual, ==, 0x01);
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START, 0b0110);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_IN) & 0x01;
g_assert_cmpuint(actual, ==, 0x00);
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START, 0x02);
qtest_set_irq_in(global_qtest, "/machine/nrf51", "unnamed-gpio-in", 0, -1);
/* Check Output propagates */
irq_intercept_out("/machine/nrf51");
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START, 0b0011);
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_OUTSET, 0x01);
g_assert_true(get_irq(0));
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_OUTCLR, 0x01);
g_assert_false(get_irq(0));
/* Check self-stimulation */
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START, 0b01);
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_OUTSET, 0x01);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_IN) & 0x01;
g_assert_cmpuint(actual, ==, 0x01);
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_OUTCLR, 0x01);
actual = readl(NRF51_GPIO_BASE + NRF51_GPIO_REG_IN) & 0x01;
g_assert_cmpuint(actual, ==, 0x00);
/*
* Check short-circuit - generates an guest_error which must be checked
* manually as long as qtest can not scan qemu_log messages
*/
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_CNF_START, 0b01);
writel(NRF51_GPIO_BASE + NRF51_GPIO_REG_OUTSET, 0x01);
qtest_set_irq_in(global_qtest, "/machine/nrf51", "unnamed-gpio-in", 0, 0);
}
static void timer_task(hwaddr task)
{
writel(NRF51_TIMER_BASE + task, NRF51_TRIGGER_TASK);
}
static void timer_clear_event(hwaddr event)
{
writel(NRF51_TIMER_BASE + event, NRF51_EVENT_CLEAR);
}
static void timer_set_bitmode(uint8_t mode)
{
writel(NRF51_TIMER_BASE + NRF51_TIMER_REG_BITMODE, mode);
}
static void timer_set_prescaler(uint8_t prescaler)
{
writel(NRF51_TIMER_BASE + NRF51_TIMER_REG_PRESCALER, prescaler);
}
static void timer_set_cc(size_t idx, uint32_t value)
{
writel(NRF51_TIMER_BASE + NRF51_TIMER_REG_CC0 + idx * 4, value);
}
static void timer_assert_events(uint32_t ev0, uint32_t ev1, uint32_t ev2,
uint32_t ev3)
{
g_assert(readl(NRF51_TIMER_BASE + NRF51_TIMER_EVENT_COMPARE_0) == ev0);
g_assert(readl(NRF51_TIMER_BASE + NRF51_TIMER_EVENT_COMPARE_1) == ev1);
g_assert(readl(NRF51_TIMER_BASE + NRF51_TIMER_EVENT_COMPARE_2) == ev2);
g_assert(readl(NRF51_TIMER_BASE + NRF51_TIMER_EVENT_COMPARE_3) == ev3);
}
static void test_nrf51_timer(void)
{
uint32_t steps_to_overflow = 408;
/* Compare Match */
timer_task(NRF51_TIMER_TASK_STOP);
timer_task(NRF51_TIMER_TASK_CLEAR);
timer_clear_event(NRF51_TIMER_EVENT_COMPARE_0);
timer_clear_event(NRF51_TIMER_EVENT_COMPARE_1);
timer_clear_event(NRF51_TIMER_EVENT_COMPARE_2);
timer_clear_event(NRF51_TIMER_EVENT_COMPARE_3);
timer_set_bitmode(NRF51_TIMER_WIDTH_16); /* 16 MHz Timer */
timer_set_prescaler(0);
/* Swept over in first step */
timer_set_cc(0, 2);
/* Barely miss on first step */
timer_set_cc(1, 162);
/* Spot on on third step */
timer_set_cc(2, 480);
timer_assert_events(0, 0, 0, 0);
timer_task(NRF51_TIMER_TASK_START);
clock_step(10000);
timer_assert_events(1, 0, 0, 0);
/* Swept over on first overflow */
timer_set_cc(3, 114);
clock_step(10000);
timer_assert_events(1, 1, 0, 0);
clock_step(10000);
timer_assert_events(1, 1, 1, 0);
/* Wrap time until internal counter overflows */
while (steps_to_overflow--) {
timer_assert_events(1, 1, 1, 0);
clock_step(10000);
}
timer_assert_events(1, 1, 1, 1);
timer_clear_event(NRF51_TIMER_EVENT_COMPARE_0);
timer_clear_event(NRF51_TIMER_EVENT_COMPARE_1);
timer_clear_event(NRF51_TIMER_EVENT_COMPARE_2);
timer_clear_event(NRF51_TIMER_EVENT_COMPARE_3);
timer_assert_events(0, 0, 0, 0);
timer_task(NRF51_TIMER_TASK_STOP);
/* Test Proposal: Stop/Shutdown */
/* Test Proposal: Shortcut Compare -> Clear */
/* Test Proposal: Shortcut Compare -> Stop */
/* Test Proposal: Counter Mode */
}
int main(int argc, char **argv)
{
int ret;
g_test_init(&argc, &argv, NULL);
global_qtest = qtest_initf("-machine microbit");
qtest_add_func("/microbit/nrf51/gpio", test_nrf51_gpio);
qtest_add_func("/microbit/nrf51/timer", test_nrf51_timer);
ret = g_test_run();
qtest_quit(global_qtest);
return ret;
}