From b9a0f1194a06bbc36aefe9f2f0866a8651843e62 Mon Sep 17 00:00:00 2001 From: Nicholas Piggin Date: Tue, 8 Aug 2023 14:19:48 +1000 Subject: [PATCH] hw/ppc: Round up the decrementer interval when converting to ns MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit The rule of timers is typically that they should never expire before the timeout, but some time afterward. Rounding timer intervals up when doing conversion is the right thing to do. Under most circumstances it is impossible observe the decrementer interrupt before the dec register has triggered. However with icount timing, problems can arise. For example setting DEC to 0 can schedule the timer for now, causing it to fire before any more instructions have been executed and DEC is still 0. Signed-off-by: Nicholas Piggin Signed-off-by: Cédric Le Goater (cherry picked from commit eab0888418ab44344864965193cf6cd194ab6858) Signed-off-by: Michael Tokarev --- hw/ppc/ppc.c | 31 +++++++++++++++++++------------ 1 file changed, 19 insertions(+), 12 deletions(-) diff --git a/hw/ppc/ppc.c b/hw/ppc/ppc.c index 7392870e0e..1996a03b57 100644 --- a/hw/ppc/ppc.c +++ b/hw/ppc/ppc.c @@ -490,14 +490,26 @@ void ppce500_set_mpic_proxy(bool enabled) /*****************************************************************************/ /* PowerPC time base and decrementer emulation */ +/* + * Conversion between QEMU_CLOCK_VIRTUAL ns and timebase (TB) ticks: + * TB ticks are arrived at by multiplying tb_freq then dividing by + * ns per second, and rounding down. TB ticks drive all clocks and + * timers in the target machine. + * + * Converting TB intervals to ns for the purpose of setting a + * QEMU_CLOCK_VIRTUAL timer should go the other way, but rounding + * up. Rounding down could cause the timer to fire before the TB + * value has been reached. + */ static uint64_t ns_to_tb(uint32_t freq, int64_t clock) { return muldiv64(clock, freq, NANOSECONDS_PER_SECOND); } -static int64_t tb_to_ns(uint32_t freq, uint64_t tb) +/* virtual clock in TB ticks, not adjusted by TB offset */ +static int64_t tb_to_ns_round_up(uint32_t freq, uint64_t tb) { - return muldiv64(tb, NANOSECONDS_PER_SECOND, freq); + return muldiv64_round_up(tb, NANOSECONDS_PER_SECOND, freq); } uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset) @@ -855,7 +867,7 @@ static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp, /* Calculate the next timer event */ now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); - next = now + tb_to_ns(tb_env->decr_freq, value); + next = now + tb_to_ns_round_up(tb_env->decr_freq, value); *nextp = next; /* Adjust timer */ @@ -1144,9 +1156,7 @@ static void cpu_4xx_fit_cb (void *opaque) /* Cannot occur, but makes gcc happy */ return; } - next = now + tb_to_ns(tb_env->tb_freq, next); - if (next == now) - next++; + next = now + tb_to_ns_round_up(tb_env->tb_freq, next); timer_mod(ppc40x_timer->fit_timer, next); env->spr[SPR_40x_TSR] |= 1 << 26; if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) { @@ -1172,11 +1182,10 @@ static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp) } else { trace_ppc4xx_pit_start(ppc40x_timer->pit_reload); now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); - next = now + tb_to_ns(tb_env->decr_freq, ppc40x_timer->pit_reload); + next = now + tb_to_ns_round_up(tb_env->decr_freq, + ppc40x_timer->pit_reload); if (is_excp) next += tb_env->decr_next - now; - if (next == now) - next++; timer_mod(tb_env->decr_timer, next); tb_env->decr_next = next; } @@ -1231,9 +1240,7 @@ static void cpu_4xx_wdt_cb (void *opaque) /* Cannot occur, but makes gcc happy */ return; } - next = now + tb_to_ns(tb_env->decr_freq, next); - if (next == now) - next++; + next = now + tb_to_ns_round_up(tb_env->decr_freq, next); trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { case 0x0: