Handle on-chip DMA controllers in one place, convert OMAP DMA to use it.

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4920 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
balrog 2008-07-21 20:40:22 +00:00
parent 51fec3cc7e
commit afbb5194d4
7 changed files with 900 additions and 168 deletions

View File

@ -594,7 +594,7 @@ OBJS+= pxa2xx_lcd.o pxa2xx_mmci.o pxa2xx_pcmcia.o pxa2xx_keypad.o
OBJS+= pflash_cfi01.o gumstix.o OBJS+= pflash_cfi01.o gumstix.o
OBJS+= zaurus.o ide.o serial.o nand.o ecc.o spitz.o tosa.o tc6393xb.o OBJS+= zaurus.o ide.o serial.o nand.o ecc.o spitz.o tosa.o tc6393xb.o
OBJS+= omap1.o omap_lcdc.o omap_dma.o omap_clk.o omap_mmc.o omap_i2c.o OBJS+= omap1.o omap_lcdc.o omap_dma.o omap_clk.o omap_mmc.o omap_i2c.o
OBJS+= omap2.o omap_dss.o OBJS+= omap2.o omap_dss.o soc_dma.o
OBJS+= palm.o tsc210x.o OBJS+= palm.o tsc210x.o
OBJS+= nseries.o blizzard.o onenand.o vga.o cbus.o tusb6010.o usb-musb.o OBJS+= nseries.o blizzard.o onenand.o vga.o cbus.o tusb6010.o usb-musb.o
OBJS+= tsc2005.o OBJS+= tsc2005.o

View File

@ -417,14 +417,14 @@ enum omap_dma_model {
omap_dma_4, omap_dma_4,
}; };
struct omap_dma_s; struct soc_dma_s;
struct omap_dma_s *omap_dma_init(target_phys_addr_t base, qemu_irq *irqs, struct soc_dma_s *omap_dma_init(target_phys_addr_t base, qemu_irq *irqs,
qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk, qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk,
enum omap_dma_model model); enum omap_dma_model model);
struct omap_dma_s *omap_dma4_init(target_phys_addr_t base, qemu_irq *irqs, struct soc_dma_s *omap_dma4_init(target_phys_addr_t base, qemu_irq *irqs,
struct omap_mpu_state_s *mpu, int fifo, struct omap_mpu_state_s *mpu, int fifo,
int chans, omap_clk iclk, omap_clk fclk); int chans, omap_clk iclk, omap_clk fclk);
void omap_dma_reset(struct omap_dma_s *s); void omap_dma_reset(struct soc_dma_s *s);
struct dma_irq_map { struct dma_irq_map {
int ih; int ih;
@ -494,7 +494,7 @@ struct omap_dma_lcd_channel_s {
ram_addr_t phys_framebuffer[2]; ram_addr_t phys_framebuffer[2];
qemu_irq irq; qemu_irq irq;
struct omap_mpu_state_s *mpu; struct omap_mpu_state_s *mpu;
} *omap_dma_get_lcdch(struct omap_dma_s *s); } *omap_dma_get_lcdch(struct soc_dma_s *s);
/* /*
* DMA request numbers for OMAP1 * DMA request numbers for OMAP1
@ -882,7 +882,7 @@ struct omap_mpu_state_s {
/* MPU private TIPB peripherals */ /* MPU private TIPB peripherals */
struct omap_intr_handler_s *ih[2]; struct omap_intr_handler_s *ih[2];
struct omap_dma_s *dma; struct soc_dma_s *dma;
struct omap_mpu_timer_s *timer[3]; struct omap_mpu_timer_s *timer[3];
struct omap_watchdog_timer_s *wdt; struct omap_watchdog_timer_s *wdt;

View File

@ -24,6 +24,7 @@
#include "sysemu.h" #include "sysemu.h"
#include "qemu-timer.h" #include "qemu-timer.h"
#include "qemu-char.h" #include "qemu-char.h"
#include "soc_dma.h"
/* We use pc-style serial ports. */ /* We use pc-style serial ports. */
#include "pc.h" #include "pc.h"
@ -4704,6 +4705,12 @@ struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
s->port[local ].addr_valid = omap_validate_local_addr; s->port[local ].addr_valid = omap_validate_local_addr;
s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr; s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
/* Register SDRAM and SRAM DMA ports for fast transfers. */
soc_dma_port_add_mem_ram(s->dma,
emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
soc_dma_port_add_mem_ram(s->dma,
imif_base, OMAP_IMIF_BASE, s->sram_size);
s->timer[0] = omap_mpu_timer_init(0xfffec500, s->timer[0] = omap_mpu_timer_init(0xfffec500,
s->irq[0][OMAP_INT_TIMER1], s->irq[0][OMAP_INT_TIMER1],
omap_findclk(s, "mputim_ck")); omap_findclk(s, "mputim_ck"));

View File

@ -26,6 +26,7 @@
#include "qemu-timer.h" #include "qemu-timer.h"
#include "qemu-char.h" #include "qemu-char.h"
#include "flash.h" #include "flash.h"
#include "soc_dma.h"
#include "audio/audio.h" #include "audio/audio.h"
/* GP timers */ /* GP timers */
@ -4493,6 +4494,10 @@ struct omap_mpu_state_s *omap2420_mpu_init(unsigned long sdram_size,
omap_findclk(s, "sdma_fclk")); omap_findclk(s, "sdma_fclk"));
s->port->addr_valid = omap2_validate_addr; s->port->addr_valid = omap2_validate_addr;
/* Register SDRAM and SRAM ports for fast DMA transfers. */
soc_dma_port_add_mem_ram(s->dma, q2_base, OMAP2_Q2_BASE, s->sdram_size);
soc_dma_port_add_mem_ram(s->dma, sram_base, OMAP2_SRAM_BASE, s->sram_size);
s->uart[0] = omap2_uart_init(omap_l4ta(s->l4, 19), s->uart[0] = omap2_uart_init(omap_l4ta(s->l4, 19),
s->irq[0][OMAP_INT_24XX_UART1_IRQ], s->irq[0][OMAP_INT_24XX_UART1_IRQ],
omap_findclk(s, "uart1_fclk"), omap_findclk(s, "uart1_fclk"),

View File

@ -23,6 +23,7 @@
#include "qemu-timer.h" #include "qemu-timer.h"
#include "omap.h" #include "omap.h"
#include "irq.h" #include "irq.h"
#include "soc_dma.h"
struct omap_dma_channel_s { struct omap_dma_channel_s {
/* transfer data */ /* transfer data */
@ -66,6 +67,7 @@ struct omap_dma_channel_s {
int pending_request; int pending_request;
int waiting_end_prog; int waiting_end_prog;
uint16_t cpc; uint16_t cpc;
int set_update;
/* sync type */ /* sync type */
int fs; int fs;
@ -89,6 +91,8 @@ struct omap_dma_channel_s {
int pck_elements; int pck_elements;
} active_set; } active_set;
struct soc_dma_ch_s *dma;
/* unused parameters */ /* unused parameters */
int write_mode; int write_mode;
int priority; int priority;
@ -99,12 +103,11 @@ struct omap_dma_channel_s {
}; };
struct omap_dma_s { struct omap_dma_s {
QEMUTimer *tm; struct soc_dma_s *dma;
struct omap_mpu_state_s *mpu; struct omap_mpu_state_s *mpu;
target_phys_addr_t base; target_phys_addr_t base;
omap_clk clk; omap_clk clk;
int64_t delay;
uint64_t drq;
qemu_irq irq[4]; qemu_irq irq[4];
void (*intr_update)(struct omap_dma_s *s); void (*intr_update)(struct omap_dma_s *s);
enum omap_dma_model model; enum omap_dma_model model;
@ -115,7 +118,6 @@ struct omap_dma_s {
uint32_t caps[5]; uint32_t caps[5];
uint32_t irqen[4]; uint32_t irqen[4];
uint32_t irqstat[4]; uint32_t irqstat[4];
int run_count;
int chans; int chans;
struct omap_dma_channel_s ch[32]; struct omap_dma_channel_s ch[32];
@ -139,11 +141,10 @@ static inline void omap_dma_interrupts_update(struct omap_dma_s *s)
return s->intr_update(s); return s->intr_update(s);
} }
static void omap_dma_channel_load(struct omap_dma_s *s, static void omap_dma_channel_load(struct omap_dma_channel_s *ch)
struct omap_dma_channel_s *ch)
{ {
struct omap_dma_reg_set_s *a = &ch->active_set; struct omap_dma_reg_set_s *a = &ch->active_set;
int i; int i, normal;
int omap_3_1 = !ch->omap_3_1_compatible_disable; int omap_3_1 = !ch->omap_3_1_compatible_disable;
/* /*
@ -189,20 +190,50 @@ static void omap_dma_channel_load(struct omap_dma_s *s,
default: default:
break; break;
} }
normal = !ch->transparent_copy && !ch->constant_fill &&
/* FIFO is big-endian so either (ch->endian[n] == 1) OR
* (ch->endian_lock[n] == 1) mean no endianism conversion. */
(ch->endian[0] | ch->endian_lock[0]) ==
(ch->endian[1] | ch->endian_lock[1]);
for (i = 0; i < 2; i ++) {
/* TODO: for a->frame_delta[i] > 0 still use the fast path, just
* limit min_elems in omap_dma_transfer_setup to the nearest frame
* end. */
if (!a->elem_delta[i] && normal &&
(a->frames == 1 || !a->frame_delta[i]))
ch->dma->type[i] = soc_dma_access_const;
else if (a->elem_delta[i] == ch->data_type && normal &&
(a->frames == 1 || !a->frame_delta[i]))
ch->dma->type[i] = soc_dma_access_linear;
else
ch->dma->type[i] = soc_dma_access_other;
ch->dma->vaddr[i] = ch->addr[i];
}
soc_dma_ch_update(ch->dma);
} }
static void omap_dma_activate_channel(struct omap_dma_s *s, static void omap_dma_activate_channel(struct omap_dma_s *s,
struct omap_dma_channel_s *ch) struct omap_dma_channel_s *ch)
{ {
if (!ch->active) { if (!ch->active) {
ch->active = 1; if (ch->set_update) {
if (ch->sync) /* It's not clear when the active set is supposed to be
ch->status |= SYNC; * loaded from registers. We're already loading it when the
s->run_count ++; * channel is enabled, and for some guests this is not enough
* but that may be also because of a race condition (no
* delays in qemu) in the guest code, which we're just
* working around here. */
omap_dma_channel_load(ch);
ch->set_update = 0;
} }
if (s->delay && !qemu_timer_pending(s->tm)) ch->active = 1;
qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay); soc_dma_set_request(ch->dma, 1);
if (ch->sync)
ch->status |= SYNC;
}
} }
static void omap_dma_deactivate_channel(struct omap_dma_s *s, static void omap_dma_deactivate_channel(struct omap_dma_s *s,
@ -219,17 +250,14 @@ static void omap_dma_deactivate_channel(struct omap_dma_s *s,
/* Don't deactive the channel if it is synchronized and the DMA request is /* Don't deactive the channel if it is synchronized and the DMA request is
active */ active */
if (ch->sync && ch->enable && (s->drq & (1 << ch->sync))) if (ch->sync && ch->enable && (s->dma->drqbmp & (1 << ch->sync)))
return; return;
if (ch->active) { if (ch->active) {
ch->active = 0; ch->active = 0;
ch->status &= ~SYNC; ch->status &= ~SYNC;
s->run_count --; soc_dma_set_request(ch->dma, 0);
} }
if (!s->run_count)
qemu_del_timer(s->tm);
} }
static void omap_dma_enable_channel(struct omap_dma_s *s, static void omap_dma_enable_channel(struct omap_dma_s *s,
@ -238,11 +266,11 @@ static void omap_dma_enable_channel(struct omap_dma_s *s,
if (!ch->enable) { if (!ch->enable) {
ch->enable = 1; ch->enable = 1;
ch->waiting_end_prog = 0; ch->waiting_end_prog = 0;
omap_dma_channel_load(s, ch); omap_dma_channel_load(ch);
/* TODO: theoretically if ch->sync && ch->prefetch && /* TODO: theoretically if ch->sync && ch->prefetch &&
* !s->drq[ch->sync], we should also activate and fetch from source * !s->dma->drqbmp[ch->sync], we should also activate and fetch
* and then stall until signalled. */ * from source and then stall until signalled. */
if ((!ch->sync) || (s->drq & (1 << ch->sync))) if ((!ch->sync) || (s->dma->drqbmp & (1 << ch->sync)))
omap_dma_activate_channel(s, ch); omap_dma_activate_channel(s, ch);
} }
} }
@ -338,38 +366,17 @@ static void omap_dma_process_request(struct omap_dma_s *s, int request)
omap_dma_interrupts_update(s); omap_dma_interrupts_update(s);
} }
static void omap_dma_channel_run(struct omap_dma_s *s) static void omap_dma_transfer_generic(struct soc_dma_ch_s *dma)
{ {
int n = s->chans;
uint16_t status;
uint8_t value[4]; uint8_t value[4];
struct omap_dma_port_if_s *src_p, *dest_p; struct omap_dma_channel_s *ch = dma->opaque;
struct omap_dma_reg_set_s *a; struct omap_dma_reg_set_s *a = &ch->active_set;
struct omap_dma_channel_s *ch; int bytes = dma->bytes;
#ifdef MULTI_REQ
for (ch = s->ch; n; n --, ch ++) { uint16_t status = ch->status;
if (!ch->active)
continue;
a = &ch->active_set;
src_p = &s->mpu->port[ch->port[0]];
dest_p = &s->mpu->port[ch->port[1]];
if ((!ch->constant_fill && !src_p->addr_valid(s->mpu, a->src)) ||
(!dest_p->addr_valid(s->mpu, a->dest))) {
#if 0
/* Bus time-out */
if (ch->interrupts & TIMEOUT_INTR)
ch->status |= TIMEOUT_INTR;
omap_dma_deactivate_channel(s, ch);
continue;
#endif #endif
printf("%s: Bus time-out in DMA%i operation\n",
__FUNCTION__, s->chans - n);
}
status = ch->status; do {
while (status == ch->status && ch->active) {
/* Transfer a single element */ /* Transfer a single element */
/* FIXME: check the endianness */ /* FIXME: check the endianness */
if (!ch->constant_fill) if (!ch->constant_fill)
@ -377,14 +384,27 @@ static void omap_dma_channel_run(struct omap_dma_s *s)
else else
*(uint32_t *) value = ch->color; *(uint32_t *) value = ch->color;
if (!ch->transparent_copy || if (!ch->transparent_copy || *(uint32_t *) value != ch->color)
*(uint32_t *) value != ch->color)
cpu_physical_memory_write(a->dest, value, ch->data_type); cpu_physical_memory_write(a->dest, value, ch->data_type);
a->src += a->elem_delta[0]; a->src += a->elem_delta[0];
a->dest += a->elem_delta[1]; a->dest += a->elem_delta[1];
a->element ++; a->element ++;
#ifndef MULTI_REQ
if (a->element == a->elements) {
/* End of Frame */
a->element = 0;
a->src += a->frame_delta[0];
a->dest += a->frame_delta[1];
a->frame ++;
/* If the channel is async, update cpc */
if (!ch->sync)
ch->cpc = a->dest & 0xffff;
}
} while ((bytes -= ch->data_type));
#else
/* If the channel is element synchronized, deactivate it */ /* If the channel is element synchronized, deactivate it */
if (ch->sync && !ch->fs && !ch->bs) if (ch->sync && !ch->fs && !ch->bs)
omap_dma_deactivate_channel(s, ch); omap_dma_deactivate_channel(s, ch);
@ -448,7 +468,7 @@ static void omap_dma_channel_run(struct omap_dma_s *s)
if (!ch->auto_init) if (!ch->auto_init)
omap_dma_disable_channel(s, ch); omap_dma_disable_channel(s, ch);
else if (ch->repeat || ch->end_prog) else if (ch->repeat || ch->end_prog)
omap_dma_channel_load(s, ch); omap_dma_channel_load(ch);
else { else {
ch->waiting_end_prog = 1; ch->waiting_end_prog = 1;
omap_dma_deactivate_channel(s, ch); omap_dma_deactivate_channel(s, ch);
@ -459,19 +479,206 @@ static void omap_dma_channel_run(struct omap_dma_s *s)
ch->status |= END_BLOCK_INTR; ch->status |= END_BLOCK_INTR;
} }
} }
} while (status == ch->status && ch->active);
omap_dma_interrupts_update(s);
#endif
}
enum {
omap_dma_intr_element_sync,
omap_dma_intr_last_frame,
omap_dma_intr_half_frame,
omap_dma_intr_frame,
omap_dma_intr_frame_sync,
omap_dma_intr_packet,
omap_dma_intr_packet_sync,
omap_dma_intr_block,
__omap_dma_intr_last,
};
static void omap_dma_transfer_setup(struct soc_dma_ch_s *dma)
{
struct omap_dma_port_if_s *src_p, *dest_p;
struct omap_dma_reg_set_s *a;
struct omap_dma_channel_s *ch = dma->opaque;
struct omap_dma_s *s = dma->dma->opaque;
int frames, min_elems, elements[__omap_dma_intr_last];
a = &ch->active_set;
src_p = &s->mpu->port[ch->port[0]];
dest_p = &s->mpu->port[ch->port[1]];
if ((!ch->constant_fill && !src_p->addr_valid(s->mpu, a->src)) ||
(!dest_p->addr_valid(s->mpu, a->dest))) {
#if 0
/* Bus time-out */
if (ch->interrupts & TIMEOUT_INTR)
ch->status |= TIMEOUT_INTR;
omap_dma_deactivate_channel(s, ch);
continue;
#endif
printf("%s: Bus time-out in DMA%i operation\n",
__FUNCTION__, dma->num);
} }
min_elems = INT_MAX;
/* Check all the conditions that terminate the transfer starting
* with those that can occur the soonest. */
#define INTR_CHECK(cond, id, nelements) \
if (cond) { \
elements[id] = nelements; \
if (elements[id] < min_elems) \
min_elems = elements[id]; \
} else \
elements[id] = INT_MAX;
/* Elements */
INTR_CHECK(
ch->sync && !ch->fs && !ch->bs,
omap_dma_intr_element_sync,
1)
/* Frames */
/* TODO: for transfers where entire frames can be read and written
* using memcpy() but a->frame_delta is non-zero, try to still do
* transfers using soc_dma but limit min_elems to a->elements - ...
* See also the TODO in omap_dma_channel_load. */
INTR_CHECK(
(ch->interrupts & LAST_FRAME_INTR) &&
((a->frame < a->frames - 1) || !a->element),
omap_dma_intr_last_frame,
(a->frames - a->frame - 2) * a->elements +
(a->elements - a->element + 1))
INTR_CHECK(
ch->interrupts & HALF_FRAME_INTR,
omap_dma_intr_half_frame,
(a->elements >> 1) +
(a->element >= (a->elements >> 1) ? a->elements : 0) -
a->element)
INTR_CHECK(
ch->sync && ch->fs && (ch->interrupts & END_FRAME_INTR),
omap_dma_intr_frame,
a->elements - a->element)
INTR_CHECK(
ch->sync && ch->fs && !ch->bs,
omap_dma_intr_frame_sync,
a->elements - a->element)
/* Packets */
INTR_CHECK(
ch->fs && ch->bs &&
(ch->interrupts & END_PKT_INTR) && !ch->src_sync,
omap_dma_intr_packet,
a->pck_elements - a->pck_element)
INTR_CHECK(
ch->fs && ch->bs && ch->sync,
omap_dma_intr_packet_sync,
a->pck_elements - a->pck_element)
/* Blocks */
INTR_CHECK(
1,
omap_dma_intr_block,
(a->frames - a->frame - 1) * a->elements +
(a->elements - a->element))
dma->bytes = min_elems * ch->data_type;
/* Set appropriate interrupts and/or deactivate channels */
#ifdef MULTI_REQ
/* TODO: should all of this only be done if dma->update, and otherwise
* inside omap_dma_transfer_generic below - check what's faster. */
if (dma->update) {
#endif
/* If the channel is element synchronized, deactivate it */
if (min_elems == elements[omap_dma_intr_element_sync])
omap_dma_deactivate_channel(s, ch);
/* If it is the last frame, set the LAST_FRAME interrupt */
if (min_elems == elements[omap_dma_intr_last_frame])
ch->status |= LAST_FRAME_INTR;
/* If exactly half of the frame was reached, set the HALF_FRAME
interrupt */
if (min_elems == elements[omap_dma_intr_half_frame])
ch->status |= HALF_FRAME_INTR;
/* If a full packet has been transferred, set the END_PKT interrupt */
if (min_elems == elements[omap_dma_intr_packet])
ch->status |= END_PKT_INTR;
/* If the channel is packet-synchronized, deactivate it */
if (min_elems == elements[omap_dma_intr_packet_sync])
omap_dma_deactivate_channel(s, ch);
/* If the channel is frame synchronized, deactivate it */
if (min_elems == elements[omap_dma_intr_frame_sync])
omap_dma_deactivate_channel(s, ch);
/* Set the END_FRAME interrupt */
if (min_elems == elements[omap_dma_intr_frame])
ch->status |= END_FRAME_INTR;
if (min_elems == elements[omap_dma_intr_block]) {
/* End of Block */
/* Disable the channel */
if (ch->omap_3_1_compatible_disable) {
omap_dma_disable_channel(s, ch);
if (ch->link_enabled)
omap_dma_enable_channel(s, &s->ch[ch->link_next_ch]);
} else {
if (!ch->auto_init)
omap_dma_disable_channel(s, ch);
else if (ch->repeat || ch->end_prog)
omap_dma_channel_load(ch);
else {
ch->waiting_end_prog = 1;
omap_dma_deactivate_channel(s, ch);
}
}
if (ch->interrupts & END_BLOCK_INTR)
ch->status |= END_BLOCK_INTR;
}
/* Update packet number */
if (ch->fs && ch->bs) {
a->pck_element += min_elems;
a->pck_element %= a->pck_elements;
}
/* TODO: check if we really need to update anything here or perhaps we
* can skip part of this. */
#ifndef MULTI_REQ
if (dma->update) {
#endif
a->element += min_elems;
frames = a->element / a->elements;
a->element = a->element % a->elements;
a->frame += frames;
a->src += min_elems * a->elem_delta[0] + frames * a->frame_delta[0];
a->dest += min_elems * a->elem_delta[1] + frames * a->frame_delta[1];
/* If the channel is async, update cpc */
if (!ch->sync && frames)
ch->cpc = a->dest & 0xffff;
} }
omap_dma_interrupts_update(s); omap_dma_interrupts_update(s);
if (s->run_count && s->delay)
qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay);
} }
void omap_dma_reset(struct omap_dma_s *s) void omap_dma_reset(struct soc_dma_s *dma)
{ {
int i; int i;
struct omap_dma_s *s = dma->opaque;
qemu_del_timer(s->tm); soc_dma_reset(s->dma);
if (s->model < omap_dma_4) if (s->model < omap_dma_4)
s->gcr = 0x0004; s->gcr = 0x0004;
else else
@ -479,8 +686,6 @@ void omap_dma_reset(struct omap_dma_s *s)
s->ocp = 0x00000000; s->ocp = 0x00000000;
memset(&s->irqstat, 0, sizeof(s->irqstat)); memset(&s->irqstat, 0, sizeof(s->irqstat));
memset(&s->irqen, 0, sizeof(s->irqen)); memset(&s->irqen, 0, sizeof(s->irqen));
s->drq = 0x00000000;
s->run_count = 0;
s->lcd_ch.src = emiff; s->lcd_ch.src = emiff;
s->lcd_ch.condition = 0; s->lcd_ch.condition = 0;
s->lcd_ch.interrupts = 0; s->lcd_ch.interrupts = 0;
@ -1161,7 +1366,7 @@ static int omap_dma_sys_write(struct omap_dma_s *s, int offset, uint16_t value)
case 0x408: /* DMA_GRST */ case 0x408: /* DMA_GRST */
if (value & 0x1) if (value & 0x1)
omap_dma_reset(s); omap_dma_reset(s->dma);
break; break;
default: default:
@ -1338,27 +1543,25 @@ static void omap_dma_request(void *opaque, int drq, int req)
struct omap_dma_s *s = (struct omap_dma_s *) opaque; struct omap_dma_s *s = (struct omap_dma_s *) opaque;
/* The request pins are level triggered in QEMU. */ /* The request pins are level triggered in QEMU. */
if (req) { if (req) {
if (~s->drq & (1 << drq)) { if (~s->dma->drqbmp & (1 << drq)) {
s->drq |= 1 << drq; s->dma->drqbmp |= 1 << drq;
omap_dma_process_request(s, drq); omap_dma_process_request(s, drq);
} }
} else } else
s->drq &= ~(1 << drq); s->dma->drqbmp &= ~(1 << drq);
} }
/* XXX: this won't be needed once soc_dma knows about clocks. */
static void omap_dma_clk_update(void *opaque, int line, int on) static void omap_dma_clk_update(void *opaque, int line, int on)
{ {
struct omap_dma_s *s = (struct omap_dma_s *) opaque; struct omap_dma_s *s = (struct omap_dma_s *) opaque;
int i;
if (on) { s->dma->freq = omap_clk_getrate(s->clk);
/* TODO: make a clever calculation */
s->delay = ticks_per_sec >> 8; for (i = 0; i < s->chans; i ++)
if (s->run_count) if (s->ch[i].active)
qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay); soc_dma_set_request(s->ch[i].dma, on);
} else {
s->delay = 0;
qemu_del_timer(s->tm);
}
} }
static void omap_dma_setcaps(struct omap_dma_s *s) static void omap_dma_setcaps(struct omap_dma_s *s)
@ -1407,7 +1610,7 @@ static void omap_dma_setcaps(struct omap_dma_s *s)
} }
} }
struct omap_dma_s *omap_dma_init(target_phys_addr_t base, qemu_irq *irqs, struct soc_dma_s *omap_dma_init(target_phys_addr_t base, qemu_irq *irqs,
qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk, qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk,
enum omap_dma_model model) enum omap_dma_model model)
{ {
@ -1428,24 +1631,37 @@ struct omap_dma_s *omap_dma_init(target_phys_addr_t base, qemu_irq *irqs,
s->clk = clk; s->clk = clk;
s->lcd_ch.irq = lcd_irq; s->lcd_ch.irq = lcd_irq;
s->lcd_ch.mpu = mpu; s->lcd_ch.mpu = mpu;
omap_dma_setcaps(s);
s->dma = soc_dma_init((model <= omap_dma_3_1) ? 9 : 16);
s->dma->freq = omap_clk_getrate(clk);
s->dma->transfer_fn = omap_dma_transfer_generic;
s->dma->setup_fn = omap_dma_transfer_setup;
s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 32);
s->dma->opaque = s;
while (num_irqs --) while (num_irqs --)
s->ch[num_irqs].irq = irqs[num_irqs]; s->ch[num_irqs].irq = irqs[num_irqs];
for (i = 0; i < 3; i ++) { for (i = 0; i < 3; i ++) {
s->ch[i].sibling = &s->ch[i + 6]; s->ch[i].sibling = &s->ch[i + 6];
s->ch[i + 6].sibling = &s->ch[i]; s->ch[i + 6].sibling = &s->ch[i];
} }
s->tm = qemu_new_timer(vm_clock, (QEMUTimerCB *) omap_dma_channel_run, s); for (i = (model <= omap_dma_3_1) ? 8 : 15; i >= 0; i --) {
s->ch[i].dma = &s->dma->ch[i];
s->dma->ch[i].opaque = &s->ch[i];
}
omap_dma_setcaps(s);
omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]); omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
mpu->drq = qemu_allocate_irqs(omap_dma_request, s, 32); omap_dma_reset(s->dma);
omap_dma_reset(s);
omap_dma_clk_update(s, 0, 1); omap_dma_clk_update(s, 0, 1);
iomemtype = cpu_register_io_memory(0, omap_dma_readfn, iomemtype = cpu_register_io_memory(0, omap_dma_readfn,
omap_dma_writefn, s); omap_dma_writefn, s);
cpu_register_physical_memory(s->base, memsize, iomemtype); cpu_register_physical_memory(s->base, memsize, iomemtype);
return s; mpu->drq = s->dma->drq;
return s->dma;
} }
static void omap_dma_interrupts_4_update(struct omap_dma_s *s) static void omap_dma_interrupts_4_update(struct omap_dma_s *s)
@ -1646,7 +1862,7 @@ static void omap_dma4_write(void *opaque, target_phys_addr_t addr,
case 0x2c: /* DMA4_OCP_SYSCONFIG */ case 0x2c: /* DMA4_OCP_SYSCONFIG */
if (value & 2) /* SOFTRESET */ if (value & 2) /* SOFTRESET */
omap_dma_reset(s); omap_dma_reset(s->dma);
s->ocp = value & 0x3321; s->ocp = value & 0x3321;
if (((s->ocp >> 12) & 3) == 3) /* MIDLEMODE */ if (((s->ocp >> 12) & 3) == 3) /* MIDLEMODE */
fprintf(stderr, "%s: invalid DMA power mode\n", __FUNCTION__); fprintf(stderr, "%s: invalid DMA power mode\n", __FUNCTION__);
@ -1728,7 +1944,7 @@ static void omap_dma4_write(void *opaque, target_phys_addr_t addr,
ch->endian[1] =(value >> 19) & 1; ch->endian[1] =(value >> 19) & 1;
ch->endian_lock[1] =(value >> 18) & 1; ch->endian_lock[1] =(value >> 18) & 1;
if (ch->endian[0] != ch->endian[1]) if (ch->endian[0] != ch->endian[1])
fprintf(stderr, "%s: DMA endianned conversion enable attempt\n", fprintf(stderr, "%s: DMA endiannes conversion enable attempt\n",
__FUNCTION__); __FUNCTION__);
ch->write_mode = (value >> 16) & 3; ch->write_mode = (value >> 16) & 3;
ch->burst[1] = (value & 0xc000) >> 14; ch->burst[1] = (value & 0xc000) >> 14;
@ -1746,35 +1962,43 @@ static void omap_dma4_write(void *opaque, target_phys_addr_t addr,
break; break;
case 0x14: /* DMA4_CEN */ case 0x14: /* DMA4_CEN */
ch->set_update = 1;
ch->elements = value & 0xffffff; ch->elements = value & 0xffffff;
break; break;
case 0x18: /* DMA4_CFN */ case 0x18: /* DMA4_CFN */
ch->frames = value & 0xffff; ch->frames = value & 0xffff;
ch->set_update = 1;
break; break;
case 0x1c: /* DMA4_CSSA */ case 0x1c: /* DMA4_CSSA */
ch->addr[0] = (target_phys_addr_t) (uint32_t) value; ch->addr[0] = (target_phys_addr_t) (uint32_t) value;
ch->set_update = 1;
break; break;
case 0x20: /* DMA4_CDSA */ case 0x20: /* DMA4_CDSA */
ch->addr[1] = (target_phys_addr_t) (uint32_t) value; ch->addr[1] = (target_phys_addr_t) (uint32_t) value;
ch->set_update = 1;
break; break;
case 0x24: /* DMA4_CSEI */ case 0x24: /* DMA4_CSEI */
ch->element_index[0] = (int16_t) value; ch->element_index[0] = (int16_t) value;
ch->set_update = 1;
break; break;
case 0x28: /* DMA4_CSFI */ case 0x28: /* DMA4_CSFI */
ch->frame_index[0] = (int32_t) value; ch->frame_index[0] = (int32_t) value;
ch->set_update = 1;
break; break;
case 0x2c: /* DMA4_CDEI */ case 0x2c: /* DMA4_CDEI */
ch->element_index[1] = (int16_t) value; ch->element_index[1] = (int16_t) value;
ch->set_update = 1;
break; break;
case 0x30: /* DMA4_CDFI */ case 0x30: /* DMA4_CDFI */
ch->frame_index[1] = (int32_t) value; ch->frame_index[1] = (int32_t) value;
ch->set_update = 1;
break; break;
case 0x44: /* DMA4_COLOR */ case 0x44: /* DMA4_COLOR */
@ -1806,11 +2030,11 @@ static CPUWriteMemoryFunc *omap_dma4_writefn[] = {
omap_dma4_write, omap_dma4_write,
}; };
struct omap_dma_s *omap_dma4_init(target_phys_addr_t base, qemu_irq *irqs, struct soc_dma_s *omap_dma4_init(target_phys_addr_t base, qemu_irq *irqs,
struct omap_mpu_state_s *mpu, int fifo, struct omap_mpu_state_s *mpu, int fifo,
int chans, omap_clk iclk, omap_clk fclk) int chans, omap_clk iclk, omap_clk fclk)
{ {
int iomemtype; int iomemtype, i;
struct omap_dma_s *s = (struct omap_dma_s *) struct omap_dma_s *s = (struct omap_dma_s *)
qemu_mallocz(sizeof(struct omap_dma_s)); qemu_mallocz(sizeof(struct omap_dma_s));
@ -1819,23 +2043,38 @@ struct omap_dma_s *omap_dma4_init(target_phys_addr_t base, qemu_irq *irqs,
s->chans = chans; s->chans = chans;
s->mpu = mpu; s->mpu = mpu;
s->clk = fclk; s->clk = fclk;
s->dma = soc_dma_init(s->chans);
s->dma->freq = omap_clk_getrate(fclk);
s->dma->transfer_fn = omap_dma_transfer_generic;
s->dma->setup_fn = omap_dma_transfer_setup;
s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 64);
s->dma->opaque = s;
for (i = 0; i < s->chans; i ++) {
s->ch[i].dma = &s->dma->ch[i];
s->dma->ch[i].opaque = &s->ch[i];
}
memcpy(&s->irq, irqs, sizeof(s->irq)); memcpy(&s->irq, irqs, sizeof(s->irq));
s->intr_update = omap_dma_interrupts_4_update; s->intr_update = omap_dma_interrupts_4_update;
omap_dma_setcaps(s); omap_dma_setcaps(s);
s->tm = qemu_new_timer(vm_clock, (QEMUTimerCB *) omap_dma_channel_run, s);
omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]); omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
mpu->drq = qemu_allocate_irqs(omap_dma_request, s, 64); omap_dma_reset(s->dma);
omap_dma_reset(s); omap_dma_clk_update(s, 0, !!s->dma->freq);
omap_dma_clk_update(s, 0, 1);
iomemtype = cpu_register_io_memory(0, omap_dma4_readfn, iomemtype = cpu_register_io_memory(0, omap_dma4_readfn,
omap_dma4_writefn, s); omap_dma4_writefn, s);
cpu_register_physical_memory(s->base, 0x1000, iomemtype); cpu_register_physical_memory(s->base, 0x1000, iomemtype);
return s; mpu->drq = s->dma->drq;
return s->dma;
} }
struct omap_dma_lcd_channel_s *omap_dma_get_lcdch(struct omap_dma_s *s) struct omap_dma_lcd_channel_s *omap_dma_get_lcdch(struct soc_dma_s *dma)
{ {
struct omap_dma_s *s = dma->opaque;
return &s->lcd_ch; return &s->lcd_ch;
} }

366
hw/soc_dma.c Normal file
View File

@ -0,0 +1,366 @@
/*
* On-chip DMA controller framework.
*
* Copyright (C) 2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include "qemu-common.h"
#include "qemu-timer.h"
#include "soc_dma.h"
void transfer_mem2mem(struct soc_dma_ch_s *ch)
{
memcpy(ch->paddr[0], ch->paddr[1], ch->bytes);
ch->paddr[0] += ch->bytes;
ch->paddr[1] += ch->bytes;
}
void transfer_mem2fifo(struct soc_dma_ch_s *ch)
{
ch->io_fn[1](ch->io_opaque[1], ch->paddr[0], ch->bytes);
ch->paddr[0] += ch->bytes;
}
void transfer_fifo2mem(struct soc_dma_ch_s *ch)
{
ch->io_fn[0](ch->io_opaque[0], ch->paddr[1], ch->bytes);
ch->paddr[1] += ch->bytes;
}
/* This is further optimisable but isn't very important because often
* DMA peripherals forbid this kind of transfers and even when they don't,
* oprating systems may not need to use them. */
static void *fifo_buf;
static int fifo_size;
void transfer_fifo2fifo(struct soc_dma_ch_s *ch)
{
if (ch->bytes < fifo_size)
fifo_buf = realloc(fifo_buf, fifo_size = ch->bytes);
/* Implement as transfer_fifo2linear + transfer_linear2fifo. */
ch->io_fn[0](ch->io_opaque[0], fifo_buf, ch->bytes);
ch->io_fn[1](ch->io_opaque[1], fifo_buf, ch->bytes);
}
struct dma_s {
struct soc_dma_s soc;
int chnum;
uint64_t ch_enable_mask;
int64_t channel_freq;
int enabled_count;
struct memmap_entry_s {
enum soc_dma_port_type type;
target_phys_addr_t addr;
union {
struct {
void *opaque;
soc_dma_io_t fn;
int out;
} fifo;
struct {
void *base;
size_t size;
} mem;
} u;
} *memmap;
int memmap_size;
struct soc_dma_ch_s ch[0];
};
static void soc_dma_ch_schedule(struct soc_dma_ch_s *ch, int delay_bytes)
{
int64_t now = qemu_get_clock(vm_clock);
struct dma_s *dma = (struct dma_s *) ch->dma;
qemu_mod_timer(ch->timer, now + delay_bytes / dma->channel_freq);
}
static void soc_dma_ch_run(void *opaque)
{
struct soc_dma_ch_s *ch = (struct soc_dma_ch_s *) opaque;
ch->running = 1;
ch->dma->setup_fn(ch);
ch->transfer_fn(ch);
ch->running = 0;
if (ch->enable)
soc_dma_ch_schedule(ch, ch->bytes);
ch->bytes = 0;
}
static inline struct memmap_entry_s *soc_dma_lookup(struct dma_s *dma,
target_phys_addr_t addr)
{
struct memmap_entry_s *lo;
int hi;
lo = dma->memmap;
hi = dma->memmap_size;
while (hi > 1) {
hi /= 2;
if (lo[hi].addr <= addr)
lo += hi;
}
return lo;
}
static inline enum soc_dma_port_type soc_dma_ch_update_type(
struct soc_dma_ch_s *ch, int port)
{
struct dma_s *dma = (struct dma_s *) ch->dma;
struct memmap_entry_s *entry = soc_dma_lookup(dma, ch->vaddr[port]);
if (entry->type == soc_dma_port_fifo) {
while (entry < dma->memmap + dma->memmap_size &&
entry->u.fifo.out != port)
entry ++;
if (entry->addr != ch->vaddr[port] || entry->u.fifo.out != port)
return soc_dma_port_other;
if (ch->type[port] != soc_dma_access_const)
return soc_dma_port_other;
ch->io_fn[port] = entry->u.fifo.fn;
ch->io_opaque[port] = entry->u.fifo.opaque;
return soc_dma_port_fifo;
} else if (entry->type == soc_dma_port_mem) {
if (entry->addr > ch->vaddr[port] ||
entry->addr + entry->u.mem.size <= ch->vaddr[port])
return soc_dma_port_other;
/* TODO: support constant memory address for source port as used for
* drawing solid rectangles by PalmOS(R). */
if (ch->type[port] != soc_dma_access_const)
return soc_dma_port_other;
ch->paddr[port] = (uint8_t *) entry->u.mem.base +
(ch->vaddr[port] - entry->addr);
/* TODO: save bytes left to the end of the mapping somewhere so we
* can check we're not reading beyond it. */
return soc_dma_port_mem;
} else
return soc_dma_port_other;
}
void soc_dma_ch_update(struct soc_dma_ch_s *ch)
{
enum soc_dma_port_type src, dst;
src = soc_dma_ch_update_type(ch, 0);
if (src == soc_dma_port_other) {
ch->update = 0;
ch->transfer_fn = ch->dma->transfer_fn;
return;
}
dst = soc_dma_ch_update_type(ch, 1);
/* TODO: use src and dst as array indices. */
if (src == soc_dma_port_mem && dst == soc_dma_port_mem)
ch->transfer_fn = transfer_mem2mem;
else if (src == soc_dma_port_mem && dst == soc_dma_port_fifo)
ch->transfer_fn = transfer_mem2fifo;
else if (src == soc_dma_port_fifo && dst == soc_dma_port_mem)
ch->transfer_fn = transfer_fifo2mem;
else if (src == soc_dma_port_fifo && dst == soc_dma_port_fifo)
ch->transfer_fn = transfer_fifo2fifo;
else
ch->transfer_fn = ch->dma->transfer_fn;
ch->update = (dst != soc_dma_port_other);
}
static void soc_dma_ch_freq_update(struct dma_s *s)
{
if (s->enabled_count)
/* We completely ignore channel priorities and stuff */
s->channel_freq = s->soc.freq / s->enabled_count;
else
/* TODO: Signal that we want to disable the functional clock and let
* the platform code decide what to do with it, i.e. check that
* auto-idle is enabled in the clock controller and if we are stopping
* the clock, do the same with any parent clocks that had only one
* user keeping them on and auto-idle enabled. */;
}
void soc_dma_set_request(struct soc_dma_ch_s *ch, int level)
{
struct dma_s *dma = (struct dma_s *) ch->dma;
dma->enabled_count += level - ch->enable;
if (level)
dma->ch_enable_mask |= 1 << ch->num;
else
dma->ch_enable_mask &= ~(1 << ch->num);
if (level != ch->enable) {
soc_dma_ch_freq_update(dma);
ch->enable = level;
if (!ch->enable)
qemu_del_timer(ch->timer);
else if (!ch->running)
soc_dma_ch_run(ch);
else
soc_dma_ch_schedule(ch, 1);
}
}
void soc_dma_reset(struct soc_dma_s *soc)
{
struct dma_s *s = (struct dma_s *) soc;
s->soc.drqbmp = 0;
s->ch_enable_mask = 0;
s->enabled_count = 0;
soc_dma_ch_freq_update(s);
}
/* TODO: take a functional-clock argument */
struct soc_dma_s *soc_dma_init(int n)
{
int i;
struct dma_s *s = qemu_mallocz(sizeof(*s) + n * sizeof(*s->ch));
s->chnum = n;
s->soc.ch = s->ch;
for (i = 0; i < n; i ++) {
s->ch[i].dma = &s->soc;
s->ch[i].num = i;
s->ch[i].timer = qemu_new_timer(vm_clock, soc_dma_ch_run, &s->ch[i]);
}
soc_dma_reset(&s->soc);
return &s->soc;
}
void soc_dma_port_add_fifo(struct soc_dma_s *soc, target_phys_addr_t virt_base,
soc_dma_io_t fn, void *opaque, int out)
{
struct memmap_entry_s *entry;
struct dma_s *dma = (struct dma_s *) soc;
dma->memmap = realloc(dma->memmap, sizeof(*entry) *
(dma->memmap_size + 1));
entry = soc_dma_lookup(dma, virt_base);
if (dma->memmap_size) {
if (entry->type == soc_dma_port_mem) {
if (entry->addr <= virt_base &&
entry->addr + entry->u.mem.size > virt_base) {
fprintf(stderr, "%s: FIFO at " TARGET_FMT_lx
" collides with RAM region at " TARGET_FMT_lx
"-" TARGET_FMT_lx "\n", __FUNCTION__,
(target_ulong) virt_base,
(target_ulong) entry->addr, (target_ulong)
(entry->addr + entry->u.mem.size));
exit(-1);
}
if (entry->addr <= virt_base)
entry ++;
} else
while (entry < dma->memmap + dma->memmap_size &&
entry->addr <= virt_base) {
if (entry->addr == virt_base && entry->u.fifo.out == out) {
fprintf(stderr, "%s: FIFO at " TARGET_FMT_lx
" collides FIFO at " TARGET_FMT_lx "\n",
__FUNCTION__, (target_ulong) virt_base,
(target_ulong) entry->addr);
exit(-1);
}
entry ++;
}
memmove(entry + 1, entry,
(uint8_t *) (dma->memmap + dma->memmap_size ++) -
(uint8_t *) entry);
} else
dma->memmap_size ++;
entry->addr = virt_base;
entry->type = soc_dma_port_fifo;
entry->u.fifo.fn = fn;
entry->u.fifo.opaque = opaque;
entry->u.fifo.out = out;
}
void soc_dma_port_add_mem(struct soc_dma_s *soc, uint8_t *phys_base,
target_phys_addr_t virt_base, size_t size)
{
struct memmap_entry_s *entry;
struct dma_s *dma = (struct dma_s *) soc;
dma->memmap = realloc(dma->memmap, sizeof(*entry) *
(dma->memmap_size + 1));
entry = soc_dma_lookup(dma, virt_base);
if (dma->memmap_size) {
if (entry->type == soc_dma_port_mem) {
if ((entry->addr >= virt_base && entry->addr < virt_base + size) ||
(entry->addr <= virt_base &&
entry->addr + entry->u.mem.size > virt_base)) {
fprintf(stderr, "%s: RAM at " TARGET_FMT_lx "-" TARGET_FMT_lx
" collides with RAM region at " TARGET_FMT_lx
"-" TARGET_FMT_lx "\n", __FUNCTION__,
(target_ulong) virt_base,
(target_ulong) (virt_base + size),
(target_ulong) entry->addr, (target_ulong)
(entry->addr + entry->u.mem.size));
exit(-1);
}
if (entry->addr <= virt_base)
entry ++;
} else {
if (entry->addr >= virt_base &&
entry->addr < virt_base + size) {
fprintf(stderr, "%s: RAM at " TARGET_FMT_lx "-" TARGET_FMT_lx
" collides with FIFO at " TARGET_FMT_lx
"\n", __FUNCTION__,
(target_ulong) virt_base,
(target_ulong) (virt_base + size),
(target_ulong) entry->addr);
exit(-1);
}
while (entry < dma->memmap + dma->memmap_size &&
entry->addr <= virt_base)
entry ++;
}
memmove(entry + 1, entry,
(uint8_t *) (dma->memmap + dma->memmap_size ++) -
(uint8_t *) entry);
} else
dma->memmap_size ++;
entry->addr = virt_base;
entry->type = soc_dma_port_mem;
entry->u.mem.base = phys_base;
entry->u.mem.size = size;
}
/* TODO: port removal for ports like PCMCIA memory */

115
hw/soc_dma.h Normal file
View File

@ -0,0 +1,115 @@
/*
* On-chip DMA controller framework.
*
* Copyright (C) 2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
struct soc_dma_s;
struct soc_dma_ch_s;
typedef void (*soc_dma_io_t)(void *opaque, uint8_t *buf, int len);
typedef void (*soc_dma_transfer_t)(struct soc_dma_ch_s *ch);
enum soc_dma_port_type {
soc_dma_port_mem,
soc_dma_port_fifo,
soc_dma_port_other,
};
enum soc_dma_access_type {
soc_dma_access_const,
soc_dma_access_linear,
soc_dma_access_other,
};
struct soc_dma_ch_s {
/* Private */
struct soc_dma_s *dma;
int num;
QEMUTimer *timer;
/* Set by soc_dma.c */
int enable;
int update;
/* This should be set by dma->setup_fn(). */
int bytes;
/* Initialised by the DMA module, call soc_dma_ch_update after writing. */
enum soc_dma_access_type type[2];
target_phys_addr_t vaddr[2]; /* Updated by .transfer_fn(). */
/* Private */
void *paddr[2];
soc_dma_io_t io_fn[2];
void *io_opaque[2];
int running;
soc_dma_transfer_t transfer_fn;
/* Set and used by the DMA module. */
void *opaque;
};
struct soc_dma_s {
/* Following fields are set by the SoC DMA module and can be used
* by anybody. */
uint64_t drqbmp; /* Is zeroed by soc_dma_reset() */
qemu_irq *drq;
void *opaque;
int64_t freq;
soc_dma_transfer_t transfer_fn;
soc_dma_transfer_t setup_fn;
/* Set by soc_dma_init() for use by the DMA module. */
struct soc_dma_ch_s *ch;
};
/* Call to activate or stop a DMA channel. */
void soc_dma_set_request(struct soc_dma_ch_s *ch, int level);
/* Call after every write to one of the following fields and before
* calling soc_dma_set_request(ch, 1):
* ch->type[0...1],
* ch->vaddr[0...1],
* ch->paddr[0...1],
* or after a soc_dma_port_add_fifo() or soc_dma_port_add_mem(). */
void soc_dma_ch_update(struct soc_dma_ch_s *ch);
/* The SoC should call this when the DMA module is being reset. */
void soc_dma_reset(struct soc_dma_s *s);
struct soc_dma_s *soc_dma_init(int n);
void soc_dma_port_add_fifo(struct soc_dma_s *dma, target_phys_addr_t virt_base,
soc_dma_io_t fn, void *opaque, int out);
void soc_dma_port_add_mem(struct soc_dma_s *dma, uint8_t *phys_base,
target_phys_addr_t virt_base, size_t size);
static inline void soc_dma_port_add_fifo_in(struct soc_dma_s *dma,
target_phys_addr_t virt_base, soc_dma_io_t fn, void *opaque)
{
return soc_dma_port_add_fifo(dma, virt_base, fn, opaque, 0);
}
static inline void soc_dma_port_add_fifo_out(struct soc_dma_s *dma,
target_phys_addr_t virt_base, soc_dma_io_t fn, void *opaque)
{
return soc_dma_port_add_fifo(dma, virt_base, fn, opaque, 1);
}
static inline void soc_dma_port_add_mem_ram(struct soc_dma_s *dma,
ram_addr_t offset, target_phys_addr_t virt_base, size_t size)
{
return soc_dma_port_add_mem(dma, phys_ram_base + offset, virt_base, size);
}