target/arm: Factor out fault delivery code

We currently have some similar code in tlb_fill() and in
arm_cpu_do_unaligned_access() for delivering a data abort or prefetch
abort.  We're also going to want to do the same thing to handle
external aborts.  Factor out the common code into a new function
deliver_fault().

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
This commit is contained in:
Peter Maydell 2017-09-04 15:21:55 +01:00
parent 04e3aabde3
commit aac43da1d7

View File

@ -115,6 +115,51 @@ static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
return syn;
}
static void deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
uint32_t fsr, uint32_t fsc, ARMMMUFaultInfo *fi)
{
CPUARMState *env = &cpu->env;
int target_el;
bool same_el;
uint32_t syn, exc;
target_el = exception_target_el(env);
if (fi->stage2) {
target_el = 2;
env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
}
same_el = (arm_current_el(env) == target_el);
if (fsc == 0x3f) {
/* Caller doesn't have a long-format fault status code. This
* should only happen if this fault will never actually be reported
* to an EL that uses a syndrome register. Check that here.
* 0x3f is a (currently) reserved FSC code, in case the constructed
* syndrome does leak into the guest somehow.
*/
assert(target_el != 2 && !arm_el_is_aa64(env, target_el));
}
if (access_type == MMU_INST_FETCH) {
syn = syn_insn_abort(same_el, 0, fi->s1ptw, fsc);
exc = EXCP_PREFETCH_ABORT;
} else {
syn = merge_syn_data_abort(env->exception.syndrome, target_el,
same_el, fi->s1ptw,
access_type == MMU_DATA_STORE,
fsc);
if (access_type == MMU_DATA_STORE
&& arm_feature(env, ARM_FEATURE_V6)) {
fsr |= (1 << 11);
}
exc = EXCP_DATA_ABORT;
}
env->exception.vaddress = addr;
env->exception.fsr = fsr;
raise_exception(env, exc, syn, target_el);
}
/* try to fill the TLB and return an exception if error. If retaddr is
* NULL, it means that the function was called in C code (i.e. not
* from generated code or from helper.c)
@ -129,23 +174,13 @@ void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fsr, &fi);
if (unlikely(ret)) {
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint32_t syn, exc, fsc;
unsigned int target_el;
bool same_el;
uint32_t fsc;
if (retaddr) {
/* now we have a real cpu fault */
cpu_restore_state(cs, retaddr);
}
target_el = exception_target_el(env);
if (fi.stage2) {
target_el = 2;
env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
}
same_el = arm_current_el(env) == target_el;
if (fsr & (1 << 9)) {
/* LPAE format fault status register : bottom 6 bits are
* status code in the same form as needed for syndrome
@ -153,34 +188,15 @@ void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
fsc = extract32(fsr, 0, 6);
} else {
/* Short format FSR : this fault will never actually be reported
* to an EL that uses a syndrome register. Check that here,
* and use a (currently) reserved FSR code in case the constructed
* syndrome does leak into the guest somehow.
* to an EL that uses a syndrome register. Use a (currently)
* reserved FSR code in case the constructed syndrome does leak
* into the guest somehow. deliver_fault will assert that
* we don't target an EL using the syndrome.
*/
assert(target_el != 2 && !arm_el_is_aa64(env, target_el));
fsc = 0x3f;
}
/* For insn and data aborts we assume there is no instruction syndrome
* information; this is always true for exceptions reported to EL1.
*/
if (access_type == MMU_INST_FETCH) {
syn = syn_insn_abort(same_el, 0, fi.s1ptw, fsc);
exc = EXCP_PREFETCH_ABORT;
} else {
syn = merge_syn_data_abort(env->exception.syndrome, target_el,
same_el, fi.s1ptw,
access_type == MMU_DATA_STORE, fsc);
if (access_type == MMU_DATA_STORE
&& arm_feature(env, ARM_FEATURE_V6)) {
fsr |= (1 << 11);
}
exc = EXCP_DATA_ABORT;
}
env->exception.vaddress = addr;
env->exception.fsr = fsr;
raise_exception(env, exc, syn, target_el);
deliver_fault(cpu, addr, access_type, fsr, fsc, &fi);
}
}
@ -191,9 +207,8 @@ void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
int target_el;
bool same_el;
uint32_t syn;
uint32_t fsr, fsc;
ARMMMUFaultInfo fi = {};
ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
if (retaddr) {
@ -201,28 +216,17 @@ void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
cpu_restore_state(cs, retaddr);
}
target_el = exception_target_el(env);
same_el = (arm_current_el(env) == target_el);
env->exception.vaddress = vaddr;
/* the DFSR for an alignment fault depends on whether we're using
* the LPAE long descriptor format, or the short descriptor format
*/
if (arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
env->exception.fsr = (1 << 9) | 0x21;
fsr = (1 << 9) | 0x21;
} else {
env->exception.fsr = 0x1;
fsr = 0x1;
}
fsc = 0x21;
if (access_type == MMU_DATA_STORE && arm_feature(env, ARM_FEATURE_V6)) {
env->exception.fsr |= (1 << 11);
}
syn = merge_syn_data_abort(env->exception.syndrome, target_el,
same_el, 0, access_type == MMU_DATA_STORE,
0x21);
raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
deliver_fault(cpu, vaddr, access_type, fsr, fsc, &fi);
}
#endif /* !defined(CONFIG_USER_ONLY) */