Direct dispatch through MemoryRegion

Now that all mmio goes through MemoryRegions, we can convert
io_mem_opaque to be a MemoryRegion pointer, and remove the thunks
that convert from old-style CPU{Read,Write}MemoryFunc to MemoryRegionOps.

Signed-off-by: Avi Kivity <avi@redhat.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This commit is contained in:
Avi Kivity 2012-01-02 13:12:08 +02:00
parent 1ec9b909ff
commit a621f38de8
4 changed files with 53 additions and 118 deletions

View File

@ -302,9 +302,7 @@ extern void *tci_tb_ptr;
uint64_t io_mem_read(int index, target_phys_addr_t addr, unsigned size);
void io_mem_write(int index, target_phys_addr_t addr, uint64_t value,
unsigned size);
extern CPUWriteMemoryFunc *_io_mem_write[IO_MEM_NB_ENTRIES][4];
extern CPUReadMemoryFunc *_io_mem_read[IO_MEM_NB_ENTRIES][4];
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
extern struct MemoryRegion *io_mem_region[IO_MEM_NB_ENTRIES];
void tlb_fill(CPUState *env1, target_ulong addr, int is_write, int mmu_idx,
void *retaddr);

View File

@ -31,9 +31,8 @@ ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr);
void qemu_ram_free(ram_addr_t addr);
void qemu_ram_free_from_ptr(ram_addr_t addr);
int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
CPUWriteMemoryFunc * const *mem_write,
void *opaque);
struct MemoryRegion;
int cpu_register_io_memory(MemoryRegion *mr);
void cpu_unregister_io_memory(int table_address);
struct MemoryRegionSection;

38
exec.c
View File

@ -208,9 +208,7 @@ static void io_mem_init(void);
static void memory_map_init(void);
/* io memory support */
CPUWriteMemoryFunc *_io_mem_write[IO_MEM_NB_ENTRIES][4];
CPUReadMemoryFunc *_io_mem_read[IO_MEM_NB_ENTRIES][4];
void *io_mem_opaque[IO_MEM_NB_ENTRIES];
MemoryRegion *io_mem_region[IO_MEM_NB_ENTRIES];
static char io_mem_used[IO_MEM_NB_ENTRIES];
static MemoryRegion io_mem_watch;
#endif
@ -2563,8 +2561,10 @@ void cpu_register_physical_memory_log(MemoryRegionSection *section,
&p->phys_offset, orig_memory,
p->region_offset);
} else {
subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
MemoryRegion *mr
= io_mem_region[(orig_memory & ~TARGET_PAGE_MASK)
>> IO_MEM_SHIFT];
subpage = container_of(mr, subpage_t, iomem);
}
subpage_register(subpage, start_addr2, end_addr2, phys_offset,
region_offset);
@ -3427,13 +3427,8 @@ static int get_free_io_mem_idx(void)
modified. If it is zero, a new io zone is allocated. The return
value can be used with cpu_register_physical_memory(). (-1) is
returned if error. */
static int cpu_register_io_memory_fixed(int io_index,
CPUReadMemoryFunc * const *mem_read,
CPUWriteMemoryFunc * const *mem_write,
void *opaque)
static int cpu_register_io_memory_fixed(int io_index, MemoryRegion *mr)
{
int i;
if (io_index <= 0) {
io_index = get_free_io_mem_idx();
if (io_index == -1)
@ -3444,36 +3439,21 @@ static int cpu_register_io_memory_fixed(int io_index,
return -1;
}
for (i = 0; i < 3; ++i) {
assert(mem_read[i]);
_io_mem_read[io_index][i] = mem_read[i];
}
for (i = 0; i < 3; ++i) {
assert(mem_write[i]);
_io_mem_write[io_index][i] = mem_write[i];
}
io_mem_opaque[io_index] = opaque;
io_mem_region[io_index] = mr;
return (io_index << IO_MEM_SHIFT);
}
int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
CPUWriteMemoryFunc * const *mem_write,
void *opaque)
int cpu_register_io_memory(MemoryRegion *mr)
{
return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
return cpu_register_io_memory_fixed(0, mr);
}
void cpu_unregister_io_memory(int io_table_address)
{
int i;
int io_index = io_table_address >> IO_MEM_SHIFT;
for (i=0;i < 3; i++) {
_io_mem_read[io_index][i] = NULL;
_io_mem_write[io_index][i] = NULL;
}
io_mem_opaque[io_index] = NULL;
io_mem_region[io_index] = NULL;
io_mem_used[io_index] = 0;
}

118
memory.c
View File

@ -906,11 +906,10 @@ static bool memory_region_access_valid(MemoryRegion *mr,
return true;
}
static uint32_t memory_region_read_thunk_n(void *_mr,
static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size)
{
MemoryRegion *mr = _mr;
uint64_t data = 0;
if (!memory_region_access_valid(mr, addr, size, false)) {
@ -930,17 +929,45 @@ static uint32_t memory_region_read_thunk_n(void *_mr,
return data;
}
static void memory_region_write_thunk_n(void *_mr,
target_phys_addr_t addr,
unsigned size,
uint64_t data)
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
{
MemoryRegion *mr = _mr;
if (memory_region_wrong_endianness(mr)) {
switch (size) {
case 1:
break;
case 2:
*data = bswap16(*data);
break;
case 4:
*data = bswap32(*data);
default:
abort();
}
}
}
static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size)
{
uint64_t ret;
ret = memory_region_dispatch_read1(mr, addr, size);
adjust_endianness(mr, &ret, size);
return ret;
}
static void memory_region_dispatch_write(MemoryRegion *mr,
target_phys_addr_t addr,
uint64_t data,
unsigned size)
{
if (!memory_region_access_valid(mr, addr, size, true)) {
return; /* FIXME: better signalling */
}
adjust_endianness(mr, &data, size);
if (!mr->ops->write) {
mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
return;
@ -953,69 +980,6 @@ static void memory_region_write_thunk_n(void *_mr,
memory_region_write_accessor, mr);
}
static uint32_t memory_region_read_thunk_b(void *mr, target_phys_addr_t addr)
{
return memory_region_read_thunk_n(mr, addr, 1);
}
static uint32_t memory_region_read_thunk_w(void *mr, target_phys_addr_t addr)
{
uint32_t data;
data = memory_region_read_thunk_n(mr, addr, 2);
if (memory_region_wrong_endianness(mr)) {
data = bswap16(data);
}
return data;
}
static uint32_t memory_region_read_thunk_l(void *mr, target_phys_addr_t addr)
{
uint32_t data;
data = memory_region_read_thunk_n(mr, addr, 4);
if (memory_region_wrong_endianness(mr)) {
data = bswap32(data);
}
return data;
}
static void memory_region_write_thunk_b(void *mr, target_phys_addr_t addr,
uint32_t data)
{
memory_region_write_thunk_n(mr, addr, 1, data);
}
static void memory_region_write_thunk_w(void *mr, target_phys_addr_t addr,
uint32_t data)
{
if (memory_region_wrong_endianness(mr)) {
data = bswap16(data);
}
memory_region_write_thunk_n(mr, addr, 2, data);
}
static void memory_region_write_thunk_l(void *mr, target_phys_addr_t addr,
uint32_t data)
{
if (memory_region_wrong_endianness(mr)) {
data = bswap32(data);
}
memory_region_write_thunk_n(mr, addr, 4, data);
}
static CPUReadMemoryFunc * const memory_region_read_thunk[] = {
memory_region_read_thunk_b,
memory_region_read_thunk_w,
memory_region_read_thunk_l,
};
static CPUWriteMemoryFunc * const memory_region_write_thunk[] = {
memory_region_write_thunk_b,
memory_region_write_thunk_w,
memory_region_write_thunk_l,
};
void memory_region_init_io(MemoryRegion *mr,
const MemoryRegionOps *ops,
void *opaque,
@ -1027,9 +991,7 @@ void memory_region_init_io(MemoryRegion *mr,
mr->opaque = opaque;
mr->terminates = true;
mr->destructor = memory_region_destructor_iomem;
mr->ram_addr = cpu_register_io_memory(memory_region_read_thunk,
memory_region_write_thunk,
mr);
mr->ram_addr = cpu_register_io_memory(mr);
}
void memory_region_init_ram(MemoryRegion *mr,
@ -1078,9 +1040,7 @@ void memory_region_init_rom_device(MemoryRegion *mr,
mr->terminates = true;
mr->destructor = memory_region_destructor_rom_device;
mr->ram_addr = qemu_ram_alloc(size, mr);
mr->ram_addr |= cpu_register_io_memory(memory_region_read_thunk,
memory_region_write_thunk,
mr);
mr->ram_addr |= cpu_register_io_memory(mr);
mr->ram_addr |= IO_MEM_ROMD;
}
@ -1552,15 +1512,13 @@ void set_system_io_map(MemoryRegion *mr)
uint64_t io_mem_read(int io_index, target_phys_addr_t addr, unsigned size)
{
return _io_mem_read[io_index][bitops_ffsl(size)](io_mem_opaque[io_index],
addr);
return memory_region_dispatch_read(io_mem_region[io_index], addr, size);
}
void io_mem_write(int io_index, target_phys_addr_t addr,
uint64_t val, unsigned size)
{
_io_mem_write[io_index][bitops_ffsl(size)](io_mem_opaque[io_index],
addr, val);
memory_region_dispatch_write(io_mem_region[io_index], addr, val, size);
}
typedef struct MemoryRegionList MemoryRegionList;