target/riscv: Refactor some of the generic vector functionality
Take some functions/macros out of `vector_helper` and put them in a new module called `vector_internals`. This ensures they can be used by both vector and vector-crypto helpers (latter implemented in proceeding commits). Signed-off-by: Kiran Ostrolenk <kiran.ostrolenk@codethink.co.uk> Reviewed-by: Weiwei Li <liweiwei@iscas.ac.cn> Signed-off-by: Max Chou <max.chou@sifive.com> Acked-by: Alistair Francis <alistair.francis@wdc.com> Message-ID: <20230711165917.2629866-2-max.chou@sifive.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
This commit is contained in:
parent
9ea17007c4
commit
98f40dd2ed
@ -16,6 +16,7 @@ riscv_ss.add(files(
|
||||
'gdbstub.c',
|
||||
'op_helper.c',
|
||||
'vector_helper.c',
|
||||
'vector_internals.c',
|
||||
'bitmanip_helper.c',
|
||||
'translate.c',
|
||||
'm128_helper.c',
|
||||
|
@ -27,6 +27,7 @@
|
||||
#include "fpu/softfloat.h"
|
||||
#include "tcg/tcg-gvec-desc.h"
|
||||
#include "internals.h"
|
||||
#include "vector_internals.h"
|
||||
#include <math.h>
|
||||
|
||||
target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1,
|
||||
@ -73,68 +74,6 @@ target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1,
|
||||
return vl;
|
||||
}
|
||||
|
||||
/*
|
||||
* Note that vector data is stored in host-endian 64-bit chunks,
|
||||
* so addressing units smaller than that needs a host-endian fixup.
|
||||
*/
|
||||
#if HOST_BIG_ENDIAN
|
||||
#define H1(x) ((x) ^ 7)
|
||||
#define H1_2(x) ((x) ^ 6)
|
||||
#define H1_4(x) ((x) ^ 4)
|
||||
#define H2(x) ((x) ^ 3)
|
||||
#define H4(x) ((x) ^ 1)
|
||||
#define H8(x) ((x))
|
||||
#else
|
||||
#define H1(x) (x)
|
||||
#define H1_2(x) (x)
|
||||
#define H1_4(x) (x)
|
||||
#define H2(x) (x)
|
||||
#define H4(x) (x)
|
||||
#define H8(x) (x)
|
||||
#endif
|
||||
|
||||
static inline uint32_t vext_nf(uint32_t desc)
|
||||
{
|
||||
return FIELD_EX32(simd_data(desc), VDATA, NF);
|
||||
}
|
||||
|
||||
static inline uint32_t vext_vm(uint32_t desc)
|
||||
{
|
||||
return FIELD_EX32(simd_data(desc), VDATA, VM);
|
||||
}
|
||||
|
||||
/*
|
||||
* Encode LMUL to lmul as following:
|
||||
* LMUL vlmul lmul
|
||||
* 1 000 0
|
||||
* 2 001 1
|
||||
* 4 010 2
|
||||
* 8 011 3
|
||||
* - 100 -
|
||||
* 1/8 101 -3
|
||||
* 1/4 110 -2
|
||||
* 1/2 111 -1
|
||||
*/
|
||||
static inline int32_t vext_lmul(uint32_t desc)
|
||||
{
|
||||
return sextract32(FIELD_EX32(simd_data(desc), VDATA, LMUL), 0, 3);
|
||||
}
|
||||
|
||||
static inline uint32_t vext_vta(uint32_t desc)
|
||||
{
|
||||
return FIELD_EX32(simd_data(desc), VDATA, VTA);
|
||||
}
|
||||
|
||||
static inline uint32_t vext_vma(uint32_t desc)
|
||||
{
|
||||
return FIELD_EX32(simd_data(desc), VDATA, VMA);
|
||||
}
|
||||
|
||||
static inline uint32_t vext_vta_all_1s(uint32_t desc)
|
||||
{
|
||||
return FIELD_EX32(simd_data(desc), VDATA, VTA_ALL_1S);
|
||||
}
|
||||
|
||||
/*
|
||||
* Get the maximum number of elements can be operated.
|
||||
*
|
||||
@ -153,21 +92,6 @@ static inline uint32_t vext_max_elems(uint32_t desc, uint32_t log2_esz)
|
||||
return scale < 0 ? vlenb >> -scale : vlenb << scale;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get number of total elements, including prestart, body and tail elements.
|
||||
* Note that when LMUL < 1, the tail includes the elements past VLMAX that
|
||||
* are held in the same vector register.
|
||||
*/
|
||||
static inline uint32_t vext_get_total_elems(CPURISCVState *env, uint32_t desc,
|
||||
uint32_t esz)
|
||||
{
|
||||
uint32_t vlenb = simd_maxsz(desc);
|
||||
uint32_t sew = 1 << FIELD_EX64(env->vtype, VTYPE, VSEW);
|
||||
int8_t emul = ctzl(esz) - ctzl(sew) + vext_lmul(desc) < 0 ? 0 :
|
||||
ctzl(esz) - ctzl(sew) + vext_lmul(desc);
|
||||
return (vlenb << emul) / esz;
|
||||
}
|
||||
|
||||
static inline target_ulong adjust_addr(CPURISCVState *env, target_ulong addr)
|
||||
{
|
||||
return (addr & ~env->cur_pmmask) | env->cur_pmbase;
|
||||
@ -200,20 +124,6 @@ static void probe_pages(CPURISCVState *env, target_ulong addr,
|
||||
}
|
||||
}
|
||||
|
||||
/* set agnostic elements to 1s */
|
||||
static void vext_set_elems_1s(void *base, uint32_t is_agnostic, uint32_t cnt,
|
||||
uint32_t tot)
|
||||
{
|
||||
if (is_agnostic == 0) {
|
||||
/* policy undisturbed */
|
||||
return;
|
||||
}
|
||||
if (tot - cnt == 0) {
|
||||
return;
|
||||
}
|
||||
memset(base + cnt, -1, tot - cnt);
|
||||
}
|
||||
|
||||
static inline void vext_set_elem_mask(void *v0, int index,
|
||||
uint8_t value)
|
||||
{
|
||||
@ -223,18 +133,6 @@ static inline void vext_set_elem_mask(void *v0, int index,
|
||||
((uint64_t *)v0)[idx] = deposit64(old, pos, 1, value);
|
||||
}
|
||||
|
||||
/*
|
||||
* Earlier designs (pre-0.9) had a varying number of bits
|
||||
* per mask value (MLEN). In the 0.9 design, MLEN=1.
|
||||
* (Section 4.5)
|
||||
*/
|
||||
static inline int vext_elem_mask(void *v0, int index)
|
||||
{
|
||||
int idx = index / 64;
|
||||
int pos = index % 64;
|
||||
return (((uint64_t *)v0)[idx] >> pos) & 1;
|
||||
}
|
||||
|
||||
/* elements operations for load and store */
|
||||
typedef void vext_ldst_elem_fn(CPURISCVState *env, abi_ptr addr,
|
||||
uint32_t idx, void *vd, uintptr_t retaddr);
|
||||
@ -729,18 +627,11 @@ GEN_VEXT_ST_WHOLE(vs8r_v, int8_t, ste_b)
|
||||
* Vector Integer Arithmetic Instructions
|
||||
*/
|
||||
|
||||
/* expand macro args before macro */
|
||||
#define RVVCALL(macro, ...) macro(__VA_ARGS__)
|
||||
|
||||
/* (TD, T1, T2, TX1, TX2) */
|
||||
#define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t
|
||||
#define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t
|
||||
#define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t
|
||||
#define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t
|
||||
#define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
|
||||
#define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
|
||||
#define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
|
||||
#define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
|
||||
#define OP_SUS_B int8_t, uint8_t, int8_t, uint8_t, int8_t
|
||||
#define OP_SUS_H int16_t, uint16_t, int16_t, uint16_t, int16_t
|
||||
#define OP_SUS_W int32_t, uint32_t, int32_t, uint32_t, int32_t
|
||||
@ -764,16 +655,6 @@ GEN_VEXT_ST_WHOLE(vs8r_v, int8_t, ste_b)
|
||||
#define NOP_UUU_H uint16_t, uint16_t, uint32_t, uint16_t, uint32_t
|
||||
#define NOP_UUU_W uint32_t, uint32_t, uint64_t, uint32_t, uint64_t
|
||||
|
||||
/* operation of two vector elements */
|
||||
typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
|
||||
|
||||
#define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
|
||||
static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
|
||||
{ \
|
||||
TX1 s1 = *((T1 *)vs1 + HS1(i)); \
|
||||
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
|
||||
*((TD *)vd + HD(i)) = OP(s2, s1); \
|
||||
}
|
||||
#define DO_SUB(N, M) (N - M)
|
||||
#define DO_RSUB(N, M) (M - N)
|
||||
|
||||
@ -786,40 +667,6 @@ RVVCALL(OPIVV2, vsub_vv_h, OP_SSS_H, H2, H2, H2, DO_SUB)
|
||||
RVVCALL(OPIVV2, vsub_vv_w, OP_SSS_W, H4, H4, H4, DO_SUB)
|
||||
RVVCALL(OPIVV2, vsub_vv_d, OP_SSS_D, H8, H8, H8, DO_SUB)
|
||||
|
||||
static void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
|
||||
CPURISCVState *env, uint32_t desc,
|
||||
opivv2_fn *fn, uint32_t esz)
|
||||
{
|
||||
uint32_t vm = vext_vm(desc);
|
||||
uint32_t vl = env->vl;
|
||||
uint32_t total_elems = vext_get_total_elems(env, desc, esz);
|
||||
uint32_t vta = vext_vta(desc);
|
||||
uint32_t vma = vext_vma(desc);
|
||||
uint32_t i;
|
||||
|
||||
for (i = env->vstart; i < vl; i++) {
|
||||
if (!vm && !vext_elem_mask(v0, i)) {
|
||||
/* set masked-off elements to 1s */
|
||||
vext_set_elems_1s(vd, vma, i * esz, (i + 1) * esz);
|
||||
continue;
|
||||
}
|
||||
fn(vd, vs1, vs2, i);
|
||||
}
|
||||
env->vstart = 0;
|
||||
/* set tail elements to 1s */
|
||||
vext_set_elems_1s(vd, vta, vl * esz, total_elems * esz);
|
||||
}
|
||||
|
||||
/* generate the helpers for OPIVV */
|
||||
#define GEN_VEXT_VV(NAME, ESZ) \
|
||||
void HELPER(NAME)(void *vd, void *v0, void *vs1, \
|
||||
void *vs2, CPURISCVState *env, \
|
||||
uint32_t desc) \
|
||||
{ \
|
||||
do_vext_vv(vd, v0, vs1, vs2, env, desc, \
|
||||
do_##NAME, ESZ); \
|
||||
}
|
||||
|
||||
GEN_VEXT_VV(vadd_vv_b, 1)
|
||||
GEN_VEXT_VV(vadd_vv_h, 2)
|
||||
GEN_VEXT_VV(vadd_vv_w, 4)
|
||||
@ -829,18 +676,6 @@ GEN_VEXT_VV(vsub_vv_h, 2)
|
||||
GEN_VEXT_VV(vsub_vv_w, 4)
|
||||
GEN_VEXT_VV(vsub_vv_d, 8)
|
||||
|
||||
typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
|
||||
|
||||
/*
|
||||
* (T1)s1 gives the real operator type.
|
||||
* (TX1)(T1)s1 expands the operator type of widen or narrow operations.
|
||||
*/
|
||||
#define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
|
||||
static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
|
||||
{ \
|
||||
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
|
||||
*((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \
|
||||
}
|
||||
|
||||
RVVCALL(OPIVX2, vadd_vx_b, OP_SSS_B, H1, H1, DO_ADD)
|
||||
RVVCALL(OPIVX2, vadd_vx_h, OP_SSS_H, H2, H2, DO_ADD)
|
||||
@ -855,40 +690,6 @@ RVVCALL(OPIVX2, vrsub_vx_h, OP_SSS_H, H2, H2, DO_RSUB)
|
||||
RVVCALL(OPIVX2, vrsub_vx_w, OP_SSS_W, H4, H4, DO_RSUB)
|
||||
RVVCALL(OPIVX2, vrsub_vx_d, OP_SSS_D, H8, H8, DO_RSUB)
|
||||
|
||||
static void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
|
||||
CPURISCVState *env, uint32_t desc,
|
||||
opivx2_fn fn, uint32_t esz)
|
||||
{
|
||||
uint32_t vm = vext_vm(desc);
|
||||
uint32_t vl = env->vl;
|
||||
uint32_t total_elems = vext_get_total_elems(env, desc, esz);
|
||||
uint32_t vta = vext_vta(desc);
|
||||
uint32_t vma = vext_vma(desc);
|
||||
uint32_t i;
|
||||
|
||||
for (i = env->vstart; i < vl; i++) {
|
||||
if (!vm && !vext_elem_mask(v0, i)) {
|
||||
/* set masked-off elements to 1s */
|
||||
vext_set_elems_1s(vd, vma, i * esz, (i + 1) * esz);
|
||||
continue;
|
||||
}
|
||||
fn(vd, s1, vs2, i);
|
||||
}
|
||||
env->vstart = 0;
|
||||
/* set tail elements to 1s */
|
||||
vext_set_elems_1s(vd, vta, vl * esz, total_elems * esz);
|
||||
}
|
||||
|
||||
/* generate the helpers for OPIVX */
|
||||
#define GEN_VEXT_VX(NAME, ESZ) \
|
||||
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
|
||||
void *vs2, CPURISCVState *env, \
|
||||
uint32_t desc) \
|
||||
{ \
|
||||
do_vext_vx(vd, v0, s1, vs2, env, desc, \
|
||||
do_##NAME, ESZ); \
|
||||
}
|
||||
|
||||
GEN_VEXT_VX(vadd_vx_b, 1)
|
||||
GEN_VEXT_VX(vadd_vx_h, 2)
|
||||
GEN_VEXT_VX(vadd_vx_w, 4)
|
||||
|
81
target/riscv/vector_internals.c
Normal file
81
target/riscv/vector_internals.c
Normal file
@ -0,0 +1,81 @@
|
||||
/*
|
||||
* RISC-V Vector Extension Internals
|
||||
*
|
||||
* Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms and conditions of the GNU General Public License,
|
||||
* version 2 or later, as published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
* more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along with
|
||||
* this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "vector_internals.h"
|
||||
|
||||
/* set agnostic elements to 1s */
|
||||
void vext_set_elems_1s(void *base, uint32_t is_agnostic, uint32_t cnt,
|
||||
uint32_t tot)
|
||||
{
|
||||
if (is_agnostic == 0) {
|
||||
/* policy undisturbed */
|
||||
return;
|
||||
}
|
||||
if (tot - cnt == 0) {
|
||||
return ;
|
||||
}
|
||||
memset(base + cnt, -1, tot - cnt);
|
||||
}
|
||||
|
||||
void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
|
||||
CPURISCVState *env, uint32_t desc,
|
||||
opivv2_fn *fn, uint32_t esz)
|
||||
{
|
||||
uint32_t vm = vext_vm(desc);
|
||||
uint32_t vl = env->vl;
|
||||
uint32_t total_elems = vext_get_total_elems(env, desc, esz);
|
||||
uint32_t vta = vext_vta(desc);
|
||||
uint32_t vma = vext_vma(desc);
|
||||
uint32_t i;
|
||||
|
||||
for (i = env->vstart; i < vl; i++) {
|
||||
if (!vm && !vext_elem_mask(v0, i)) {
|
||||
/* set masked-off elements to 1s */
|
||||
vext_set_elems_1s(vd, vma, i * esz, (i + 1) * esz);
|
||||
continue;
|
||||
}
|
||||
fn(vd, vs1, vs2, i);
|
||||
}
|
||||
env->vstart = 0;
|
||||
/* set tail elements to 1s */
|
||||
vext_set_elems_1s(vd, vta, vl * esz, total_elems * esz);
|
||||
}
|
||||
|
||||
void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
|
||||
CPURISCVState *env, uint32_t desc,
|
||||
opivx2_fn fn, uint32_t esz)
|
||||
{
|
||||
uint32_t vm = vext_vm(desc);
|
||||
uint32_t vl = env->vl;
|
||||
uint32_t total_elems = vext_get_total_elems(env, desc, esz);
|
||||
uint32_t vta = vext_vta(desc);
|
||||
uint32_t vma = vext_vma(desc);
|
||||
uint32_t i;
|
||||
|
||||
for (i = env->vstart; i < vl; i++) {
|
||||
if (!vm && !vext_elem_mask(v0, i)) {
|
||||
/* set masked-off elements to 1s */
|
||||
vext_set_elems_1s(vd, vma, i * esz, (i + 1) * esz);
|
||||
continue;
|
||||
}
|
||||
fn(vd, s1, vs2, i);
|
||||
}
|
||||
env->vstart = 0;
|
||||
/* set tail elements to 1s */
|
||||
vext_set_elems_1s(vd, vta, vl * esz, total_elems * esz);
|
||||
}
|
182
target/riscv/vector_internals.h
Normal file
182
target/riscv/vector_internals.h
Normal file
@ -0,0 +1,182 @@
|
||||
/*
|
||||
* RISC-V Vector Extension Internals
|
||||
*
|
||||
* Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms and conditions of the GNU General Public License,
|
||||
* version 2 or later, as published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
* more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along with
|
||||
* this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef TARGET_RISCV_VECTOR_INTERNALS_H
|
||||
#define TARGET_RISCV_VECTOR_INTERNALS_H
|
||||
|
||||
#include "qemu/osdep.h"
|
||||
#include "qemu/bitops.h"
|
||||
#include "cpu.h"
|
||||
#include "tcg/tcg-gvec-desc.h"
|
||||
#include "internals.h"
|
||||
|
||||
static inline uint32_t vext_nf(uint32_t desc)
|
||||
{
|
||||
return FIELD_EX32(simd_data(desc), VDATA, NF);
|
||||
}
|
||||
|
||||
/*
|
||||
* Note that vector data is stored in host-endian 64-bit chunks,
|
||||
* so addressing units smaller than that needs a host-endian fixup.
|
||||
*/
|
||||
#if HOST_BIG_ENDIAN
|
||||
#define H1(x) ((x) ^ 7)
|
||||
#define H1_2(x) ((x) ^ 6)
|
||||
#define H1_4(x) ((x) ^ 4)
|
||||
#define H2(x) ((x) ^ 3)
|
||||
#define H4(x) ((x) ^ 1)
|
||||
#define H8(x) ((x))
|
||||
#else
|
||||
#define H1(x) (x)
|
||||
#define H1_2(x) (x)
|
||||
#define H1_4(x) (x)
|
||||
#define H2(x) (x)
|
||||
#define H4(x) (x)
|
||||
#define H8(x) (x)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Encode LMUL to lmul as following:
|
||||
* LMUL vlmul lmul
|
||||
* 1 000 0
|
||||
* 2 001 1
|
||||
* 4 010 2
|
||||
* 8 011 3
|
||||
* - 100 -
|
||||
* 1/8 101 -3
|
||||
* 1/4 110 -2
|
||||
* 1/2 111 -1
|
||||
*/
|
||||
static inline int32_t vext_lmul(uint32_t desc)
|
||||
{
|
||||
return sextract32(FIELD_EX32(simd_data(desc), VDATA, LMUL), 0, 3);
|
||||
}
|
||||
|
||||
static inline uint32_t vext_vm(uint32_t desc)
|
||||
{
|
||||
return FIELD_EX32(simd_data(desc), VDATA, VM);
|
||||
}
|
||||
|
||||
static inline uint32_t vext_vma(uint32_t desc)
|
||||
{
|
||||
return FIELD_EX32(simd_data(desc), VDATA, VMA);
|
||||
}
|
||||
|
||||
static inline uint32_t vext_vta(uint32_t desc)
|
||||
{
|
||||
return FIELD_EX32(simd_data(desc), VDATA, VTA);
|
||||
}
|
||||
|
||||
static inline uint32_t vext_vta_all_1s(uint32_t desc)
|
||||
{
|
||||
return FIELD_EX32(simd_data(desc), VDATA, VTA_ALL_1S);
|
||||
}
|
||||
|
||||
/*
|
||||
* Earlier designs (pre-0.9) had a varying number of bits
|
||||
* per mask value (MLEN). In the 0.9 design, MLEN=1.
|
||||
* (Section 4.5)
|
||||
*/
|
||||
static inline int vext_elem_mask(void *v0, int index)
|
||||
{
|
||||
int idx = index / 64;
|
||||
int pos = index % 64;
|
||||
return (((uint64_t *)v0)[idx] >> pos) & 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get number of total elements, including prestart, body and tail elements.
|
||||
* Note that when LMUL < 1, the tail includes the elements past VLMAX that
|
||||
* are held in the same vector register.
|
||||
*/
|
||||
static inline uint32_t vext_get_total_elems(CPURISCVState *env, uint32_t desc,
|
||||
uint32_t esz)
|
||||
{
|
||||
uint32_t vlenb = simd_maxsz(desc);
|
||||
uint32_t sew = 1 << FIELD_EX64(env->vtype, VTYPE, VSEW);
|
||||
int8_t emul = ctzl(esz) - ctzl(sew) + vext_lmul(desc) < 0 ? 0 :
|
||||
ctzl(esz) - ctzl(sew) + vext_lmul(desc);
|
||||
return (vlenb << emul) / esz;
|
||||
}
|
||||
|
||||
/* set agnostic elements to 1s */
|
||||
void vext_set_elems_1s(void *base, uint32_t is_agnostic, uint32_t cnt,
|
||||
uint32_t tot);
|
||||
|
||||
/* expand macro args before macro */
|
||||
#define RVVCALL(macro, ...) macro(__VA_ARGS__)
|
||||
|
||||
/* (TD, T1, T2, TX1, TX2) */
|
||||
#define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
|
||||
#define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
|
||||
#define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
|
||||
#define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
|
||||
|
||||
/* operation of two vector elements */
|
||||
typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
|
||||
|
||||
#define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
|
||||
static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
|
||||
{ \
|
||||
TX1 s1 = *((T1 *)vs1 + HS1(i)); \
|
||||
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
|
||||
*((TD *)vd + HD(i)) = OP(s2, s1); \
|
||||
}
|
||||
|
||||
void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
|
||||
CPURISCVState *env, uint32_t desc,
|
||||
opivv2_fn *fn, uint32_t esz);
|
||||
|
||||
/* generate the helpers for OPIVV */
|
||||
#define GEN_VEXT_VV(NAME, ESZ) \
|
||||
void HELPER(NAME)(void *vd, void *v0, void *vs1, \
|
||||
void *vs2, CPURISCVState *env, \
|
||||
uint32_t desc) \
|
||||
{ \
|
||||
do_vext_vv(vd, v0, vs1, vs2, env, desc, \
|
||||
do_##NAME, ESZ); \
|
||||
}
|
||||
|
||||
typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
|
||||
|
||||
/*
|
||||
* (T1)s1 gives the real operator type.
|
||||
* (TX1)(T1)s1 expands the operator type of widen or narrow operations.
|
||||
*/
|
||||
#define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
|
||||
static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
|
||||
{ \
|
||||
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
|
||||
*((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \
|
||||
}
|
||||
|
||||
void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
|
||||
CPURISCVState *env, uint32_t desc,
|
||||
opivx2_fn fn, uint32_t esz);
|
||||
|
||||
/* generate the helpers for OPIVX */
|
||||
#define GEN_VEXT_VX(NAME, ESZ) \
|
||||
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
|
||||
void *vs2, CPURISCVState *env, \
|
||||
uint32_t desc) \
|
||||
{ \
|
||||
do_vext_vx(vd, v0, s1, vs2, env, desc, \
|
||||
do_##NAME, ESZ); \
|
||||
}
|
||||
|
||||
#endif /* TARGET_RISCV_VECTOR_INTERNALS_H */
|
Loading…
Reference in New Issue
Block a user