Implement dynamic guest ram allocation.

Signed-off-by: Paul Brook <paul@codesourcery.com>


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@7088 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
pbrook 2009-04-11 17:15:54 +00:00
parent b0457b6920
commit 94a6b54fd6
5 changed files with 149 additions and 52 deletions

View File

@ -854,11 +854,10 @@ typedef unsigned long ram_addr_t;
/* memory API */ /* memory API */
extern ram_addr_t phys_ram_size;
extern int phys_ram_fd; extern int phys_ram_fd;
extern uint8_t *phys_ram_base;
extern uint8_t *phys_ram_dirty; extern uint8_t *phys_ram_dirty;
extern ram_addr_t ram_size; extern ram_addr_t ram_size;
extern ram_addr_t last_ram_offset;
/* physical memory access */ /* physical memory access */

View File

@ -370,6 +370,9 @@ void kqemu_record_dump(void);
extern uint32_t kqemu_comm_base; extern uint32_t kqemu_comm_base;
extern ram_addr_t kqemu_phys_ram_size;
extern uint8_t *kqemu_phys_ram_base;
static inline int kqemu_is_ok(CPUState *env) static inline int kqemu_is_ok(CPUState *env)
{ {
return(env->kqemu_enabled && return(env->kqemu_enabled &&

130
exec.c
View File

@ -107,12 +107,22 @@ static unsigned long code_gen_buffer_max_size;
uint8_t *code_gen_ptr; uint8_t *code_gen_ptr;
#if !defined(CONFIG_USER_ONLY) #if !defined(CONFIG_USER_ONLY)
ram_addr_t phys_ram_size;
int phys_ram_fd; int phys_ram_fd;
uint8_t *phys_ram_base;
uint8_t *phys_ram_dirty; uint8_t *phys_ram_dirty;
static int in_migration; static int in_migration;
static ram_addr_t phys_ram_alloc_offset = 0;
typedef struct RAMBlock {
uint8_t *host;
ram_addr_t offset;
ram_addr_t length;
struct RAMBlock *next;
} RAMBlock;
static RAMBlock *ram_blocks;
/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
then we can no longet assume contiguous ram offsets, and external uses
of this variable will break. */
ram_addr_t last_ram_offset;
#endif #endif
CPUState *first_cpu; CPUState *first_cpu;
@ -411,7 +421,7 @@ static void code_gen_alloc(unsigned long tb_size)
code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else #else
/* XXX: needs ajustments */ /* XXX: needs ajustments */
code_gen_buffer_size = (unsigned long)(phys_ram_size / 4); code_gen_buffer_size = (unsigned long)(ram_size / 4);
#endif #endif
} }
if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
@ -2419,22 +2429,55 @@ void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
kvm_uncoalesce_mmio_region(addr, size); kvm_uncoalesce_mmio_region(addr, size);
} }
#ifdef USE_KQEMU
/* XXX: better than nothing */ /* XXX: better than nothing */
ram_addr_t qemu_ram_alloc(ram_addr_t size) static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
{ {
ram_addr_t addr; ram_addr_t addr;
if ((phys_ram_alloc_offset + size) > phys_ram_size) { if ((last_ram_offset + size) > kqemu_phys_ram_size) {
fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n", fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
(uint64_t)size, (uint64_t)phys_ram_size); (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
abort(); abort();
} }
addr = phys_ram_alloc_offset; addr = last_ram_offset;
phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size); last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
return addr; return addr;
} }
#endif
ram_addr_t qemu_ram_alloc(ram_addr_t size)
{
RAMBlock *new_block;
#ifdef USE_KQEMU
if (kqemu_phys_ram_base) {
return kqemu_ram_alloc(size);
}
#endif
size = TARGET_PAGE_ALIGN(size);
new_block = qemu_malloc(sizeof(*new_block));
new_block->host = qemu_vmalloc(size);
new_block->offset = last_ram_offset;
new_block->length = size;
new_block->next = ram_blocks;
ram_blocks = new_block;
phys_ram_dirty = qemu_realloc(phys_ram_dirty,
(last_ram_offset + size) >> TARGET_PAGE_BITS);
memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
0xff, size >> TARGET_PAGE_BITS);
last_ram_offset += size;
return new_block->offset;
}
void qemu_ram_free(ram_addr_t addr) void qemu_ram_free(ram_addr_t addr)
{ {
/* TODO: implement this. */
} }
/* Return a host pointer to ram allocated with qemu_ram_alloc. /* Return a host pointer to ram allocated with qemu_ram_alloc.
@ -2447,14 +2490,69 @@ void qemu_ram_free(ram_addr_t addr)
*/ */
void *qemu_get_ram_ptr(ram_addr_t addr) void *qemu_get_ram_ptr(ram_addr_t addr)
{ {
return phys_ram_base + addr; RAMBlock *prev;
RAMBlock **prevp;
RAMBlock *block;
#ifdef USE_KQEMU
if (kqemu_phys_ram_base) {
return kqemu_phys_ram_base + addr;
}
#endif
prev = NULL;
prevp = &ram_blocks;
block = ram_blocks;
while (block && (block->offset > addr
|| block->offset + block->length <= addr)) {
if (prev)
prevp = &prev->next;
prev = block;
block = block->next;
}
if (!block) {
fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
abort();
}
/* Move this entry to to start of the list. */
if (prev) {
prev->next = block->next;
block->next = *prevp;
*prevp = block;
}
return block->host + (addr - block->offset);
} }
/* Some of the softmmu routines need to translate from a host pointer /* Some of the softmmu routines need to translate from a host pointer
(typically a TLB entry) back to a ram offset. */ (typically a TLB entry) back to a ram offset. */
ram_addr_t qemu_ram_addr_from_host(void *ptr) ram_addr_t qemu_ram_addr_from_host(void *ptr)
{ {
return (uint8_t *)ptr - phys_ram_base; RAMBlock *prev;
RAMBlock **prevp;
RAMBlock *block;
uint8_t *host = ptr;
#ifdef USE_KQEMU
if (kqemu_phys_ram_base) {
return host - kqemu_phys_ram_base;
}
#endif
prev = NULL;
prevp = &ram_blocks;
block = ram_blocks;
while (block && (block->host > host
|| block->host + block->length <= host)) {
if (prev)
prevp = &prev->next;
prev = block;
block = block->next;
}
if (!block) {
fprintf(stderr, "Bad ram pointer %p\n", ptr);
abort();
}
return block->offset + (host - block->host);
} }
static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
@ -2895,9 +2993,13 @@ static void io_mem_init(void)
io_mem_watch = cpu_register_io_memory(0, watch_mem_read, io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
watch_mem_write, NULL); watch_mem_write, NULL);
/* alloc dirty bits array */ #ifdef USE_KQEMU
phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS); if (kqemu_phys_ram_base) {
memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS); /* alloc dirty bits array */
phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
}
#endif
} }
/* mem_read and mem_write are arrays of functions containing the /* mem_read and mem_write are arrays of functions containing the

View File

@ -91,6 +91,8 @@ unsigned int nb_modified_ram_pages;
uint8_t *modified_ram_pages_table; uint8_t *modified_ram_pages_table;
int qpi_io_memory; int qpi_io_memory;
uint32_t kqemu_comm_base; /* physical address of the QPI communication page */ uint32_t kqemu_comm_base; /* physical address of the QPI communication page */
ram_addr_t kqemu_phys_ram_size;
uint8_t *kqemu_phys_ram_base;
#define cpuid(index, eax, ebx, ecx, edx) \ #define cpuid(index, eax, ebx, ecx, edx) \
asm volatile ("cpuid" \ asm volatile ("cpuid" \
@ -214,13 +216,14 @@ int kqemu_init(CPUState *env)
sizeof(uint64_t)); sizeof(uint64_t));
if (!modified_ram_pages) if (!modified_ram_pages)
goto fail; goto fail;
modified_ram_pages_table = qemu_mallocz(phys_ram_size >> TARGET_PAGE_BITS); modified_ram_pages_table =
qemu_mallocz(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
if (!modified_ram_pages_table) if (!modified_ram_pages_table)
goto fail; goto fail;
memset(&kinit, 0, sizeof(kinit)); /* set the paddings to zero */ memset(&kinit, 0, sizeof(kinit)); /* set the paddings to zero */
kinit.ram_base = phys_ram_base; kinit.ram_base = kqemu_phys_ram_base;
kinit.ram_size = phys_ram_size; kinit.ram_size = kqemu_phys_ram_size;
kinit.ram_dirty = phys_ram_dirty; kinit.ram_dirty = phys_ram_dirty;
kinit.pages_to_flush = pages_to_flush; kinit.pages_to_flush = pages_to_flush;
kinit.ram_pages_to_update = ram_pages_to_update; kinit.ram_pages_to_update = ram_pages_to_update;

56
vl.c
View File

@ -3094,9 +3094,9 @@ static int ram_load_v1(QEMUFile *f, void *opaque)
int ret; int ret;
ram_addr_t i; ram_addr_t i;
if (qemu_get_be32(f) != phys_ram_size) if (qemu_get_be32(f) != last_ram_offset)
return -EINVAL; return -EINVAL;
for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) { for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE); ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
if (ret) if (ret)
return ret; return ret;
@ -3182,7 +3182,7 @@ static int ram_save_block(QEMUFile *f)
ram_addr_t addr = 0; ram_addr_t addr = 0;
int found = 0; int found = 0;
while (addr < phys_ram_size) { while (addr < last_ram_offset) {
if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) { if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
uint8_t *p; uint8_t *p;
@ -3204,7 +3204,7 @@ static int ram_save_block(QEMUFile *f)
break; break;
} }
addr += TARGET_PAGE_SIZE; addr += TARGET_PAGE_SIZE;
current_addr = (saved_addr + addr) % phys_ram_size; current_addr = (saved_addr + addr) % last_ram_offset;
} }
return found; return found;
@ -3217,7 +3217,7 @@ static ram_addr_t ram_save_remaining(void)
ram_addr_t addr; ram_addr_t addr;
ram_addr_t count = 0; ram_addr_t count = 0;
for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) { for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
count++; count++;
} }
@ -3231,7 +3231,7 @@ static int ram_save_live(QEMUFile *f, int stage, void *opaque)
if (stage == 1) { if (stage == 1) {
/* Make sure all dirty bits are set */ /* Make sure all dirty bits are set */
for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) { for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
cpu_physical_memory_set_dirty(addr); cpu_physical_memory_set_dirty(addr);
} }
@ -3239,7 +3239,7 @@ static int ram_save_live(QEMUFile *f, int stage, void *opaque)
/* Enable dirty memory tracking */ /* Enable dirty memory tracking */
cpu_physical_memory_set_dirty_tracking(1); cpu_physical_memory_set_dirty_tracking(1);
qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE); qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
} }
while (!qemu_file_rate_limit(f)) { while (!qemu_file_rate_limit(f)) {
@ -3272,7 +3272,7 @@ static int ram_load_dead(QEMUFile *f, void *opaque)
if (ram_decompress_open(s, f) < 0) if (ram_decompress_open(s, f) < 0)
return -EINVAL; return -EINVAL;
for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) { for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
if (ram_decompress_buf(s, buf, 1) < 0) { if (ram_decompress_buf(s, buf, 1) < 0) {
fprintf(stderr, "Error while reading ram block header\n"); fprintf(stderr, "Error while reading ram block header\n");
goto error; goto error;
@ -3303,7 +3303,7 @@ static int ram_load(QEMUFile *f, void *opaque, int version_id)
return ram_load_v1(f, opaque); return ram_load_v1(f, opaque);
if (version_id == 2) { if (version_id == 2) {
if (qemu_get_be32(f) != phys_ram_size) if (qemu_get_be32(f) != last_ram_offset)
return -EINVAL; return -EINVAL;
return ram_load_dead(f, opaque); return ram_load_dead(f, opaque);
} }
@ -3318,7 +3318,7 @@ static int ram_load(QEMUFile *f, void *opaque, int version_id)
addr &= TARGET_PAGE_MASK; addr &= TARGET_PAGE_MASK;
if (flags & RAM_SAVE_FLAG_MEM_SIZE) { if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
if (addr != phys_ram_size) if (addr != last_ram_offset)
return -EINVAL; return -EINVAL;
} }
@ -5132,31 +5132,21 @@ int main(int argc, char **argv, char **envp)
exit(1); exit(1);
/* init the memory */ /* init the memory */
phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED; if (ram_size == 0)
ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
if (machine->ram_require & RAMSIZE_FIXED) { #ifdef USE_KQEMU
if (ram_size > 0) { /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
if (ram_size < phys_ram_size) { guest ram allocation. It needs to go away. */
fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n", if (kqemu_allowed) {
machine->name, (unsigned long long) phys_ram_size); kqemu_phys_ram_size = ram_size + VGA_RAM_SIZE + 4 * 1024 * 1024;
exit(-1); kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
} if (!kqemu_phys_ram_base) {
fprintf(stderr, "Could not allocate physical memory\n");
phys_ram_size = ram_size; exit(1);
} else }
ram_size = phys_ram_size;
} else {
if (ram_size == 0)
ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
phys_ram_size += ram_size;
}
phys_ram_base = qemu_vmalloc(phys_ram_size);
if (!phys_ram_base) {
fprintf(stderr, "Could not allocate physical memory\n");
exit(1);
} }
#endif
/* init the dynamic translator */ /* init the dynamic translator */
cpu_exec_init_all(tb_size * 1024 * 1024); cpu_exec_init_all(tb_size * 1024 * 1024);