tests/pflash-cfi02: Refactor to support testing multiple configurations

Introduce the FlashConfig structure, to be able to run the same set
of tests on different flash models/configurations.

Signed-off-by: Stephen Checkoway <stephen.checkoway@oberlin.edu>
Message-Id: <20190426162624.55977-6-stephen.checkoway@oberlin.edu>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
[PMD: Extracted from bigger patch]
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
This commit is contained in:
Philippe Mathieu-Daudé 2019-06-26 21:54:46 +02:00
parent 6682bc1ee4
commit 91d0231213

View File

@ -17,12 +17,18 @@
*/
#define MP_FLASH_SIZE_MAX (32 * 1024 * 1024)
#define FLASH_SIZE (8 * 1024 * 1024)
#define BASE_ADDR (0x100000000ULL - MP_FLASH_SIZE_MAX)
#define FLASH_WIDTH 2
#define CFI_ADDR (FLASH_WIDTH * 0x55)
#define UNLOCK0_ADDR (FLASH_WIDTH * 0x555)
#define UNLOCK1_ADDR (FLASH_WIDTH * 0x2AA)
/* Use a newtype to keep flash addresses separate from byte addresses. */
typedef struct {
uint64_t addr;
} faddr;
#define FLASH_ADDR(x) ((faddr) { .addr = (x) })
#define CFI_ADDR FLASH_ADDR(0x55)
#define UNLOCK0_ADDR FLASH_ADDR(0x555)
#define UNLOCK1_ADDR FLASH_ADDR(0x2AA)
#define CFI_CMD 0x98
#define UNLOCK0_CMD 0xAA
@ -35,170 +41,313 @@
#define UNLOCK_BYPASS_CMD 0x20
#define UNLOCK_BYPASS_RESET_CMD 0x00
typedef struct {
int bank_width;
QTestState *qtest;
} FlashConfig;
static char image_path[] = "/tmp/qtest.XXXXXX";
static inline void flash_write(uint64_t byte_addr, uint16_t data)
/*
* The pflash implementation allows some parameters to be unspecified. We want
* to test those configurations but we also need to know the real values in
* our testing code. So after we launch qemu, we'll need a new FlashConfig
* with the correct values filled in.
*/
static FlashConfig expand_config_defaults(const FlashConfig *c)
{
qtest_writew(global_qtest, BASE_ADDR + byte_addr, data);
FlashConfig ret = *c;
if (ret.bank_width == 0) {
ret.bank_width = 2;
}
static inline uint16_t flash_read(uint64_t byte_addr)
{
return qtest_readw(global_qtest, BASE_ADDR + byte_addr);
/* XXX: Limitations of test harness. */
assert(ret.bank_width == 2);
return ret;
}
static void unlock(void)
/*
* Return a bit mask suitable for extracting the least significant
* status/query response from an interleaved response.
*/
static inline uint64_t device_mask(const FlashConfig *c)
{
flash_write(UNLOCK0_ADDR, UNLOCK0_CMD);
flash_write(UNLOCK1_ADDR, UNLOCK1_CMD);
return (uint64_t)-1;
}
static void reset(void)
/*
* Return a bit mask exactly as long as the bank_width.
*/
static inline uint64_t bank_mask(const FlashConfig *c)
{
flash_write(0, RESET_CMD);
if (c->bank_width == 8) {
return (uint64_t)-1;
}
return (1ULL << (c->bank_width * 8)) - 1ULL;
}
static void sector_erase(uint64_t byte_addr)
static inline void flash_write(const FlashConfig *c, uint64_t byte_addr,
uint64_t data)
{
unlock();
flash_write(UNLOCK0_ADDR, 0x80);
unlock();
flash_write(byte_addr, SECTOR_ERASE_CMD);
/* Sanity check our tests. */
assert((data & ~bank_mask(c)) == 0);
uint64_t addr = BASE_ADDR + byte_addr;
switch (c->bank_width) {
case 1:
qtest_writeb(c->qtest, addr, data);
break;
case 2:
qtest_writew(c->qtest, addr, data);
break;
case 4:
qtest_writel(c->qtest, addr, data);
break;
case 8:
qtest_writeq(c->qtest, addr, data);
break;
default:
abort();
}
}
static void wait_for_completion(uint64_t byte_addr)
static inline uint64_t flash_read(const FlashConfig *c, uint64_t byte_addr)
{
uint64_t addr = BASE_ADDR + byte_addr;
switch (c->bank_width) {
case 1:
return qtest_readb(c->qtest, addr);
case 2:
return qtest_readw(c->qtest, addr);
case 4:
return qtest_readl(c->qtest, addr);
case 8:
return qtest_readq(c->qtest, addr);
default:
abort();
}
}
/*
* Convert a flash address expressed in the maximum width of the device as a
* byte address.
*/
static inline uint64_t as_byte_addr(const FlashConfig *c, faddr flash_addr)
{
/*
* Command addresses are always given as addresses in the maximum
* supported bus size for the flash chip. So an x8/x16 chip in x8 mode
* uses addresses 0xAAA and 0x555 to unlock because the least significant
* bit is ignored. (0x555 rather than 0x554 is traditional.)
*
* In general we need to multiply by the maximum device width.
*/
return flash_addr.addr * c->bank_width;
}
/*
* Return the command value or expected status replicated across all devices.
*/
static inline uint64_t replicate(const FlashConfig *c, uint64_t data)
{
/* Sanity check our tests. */
assert((data & ~device_mask(c)) == 0);
return data;
}
static inline void flash_cmd(const FlashConfig *c, faddr cmd_addr,
uint8_t cmd)
{
flash_write(c, as_byte_addr(c, cmd_addr), replicate(c, cmd));
}
static inline uint64_t flash_query(const FlashConfig *c, faddr query_addr)
{
return flash_read(c, as_byte_addr(c, query_addr));
}
static inline uint64_t flash_query_1(const FlashConfig *c, faddr query_addr)
{
return flash_query(c, query_addr) & device_mask(c);
}
static void unlock(const FlashConfig *c)
{
flash_cmd(c, UNLOCK0_ADDR, UNLOCK0_CMD);
flash_cmd(c, UNLOCK1_ADDR, UNLOCK1_CMD);
}
static void reset(const FlashConfig *c)
{
flash_cmd(c, FLASH_ADDR(0), RESET_CMD);
}
static void sector_erase(const FlashConfig *c, uint64_t byte_addr)
{
unlock(c);
flash_cmd(c, UNLOCK0_ADDR, 0x80);
unlock(c);
flash_write(c, byte_addr, replicate(c, SECTOR_ERASE_CMD));
}
static void wait_for_completion(const FlashConfig *c, uint64_t byte_addr)
{
/* If DQ6 is toggling, step the clock and ensure the toggle stops. */
if ((flash_read(byte_addr) & 0x40) ^ (flash_read(byte_addr) & 0x40)) {
const uint64_t dq6 = replicate(c, 0x40);
if ((flash_read(c, byte_addr) & dq6) ^ (flash_read(c, byte_addr) & dq6)) {
/* Wait for erase or program to finish. */
clock_step_next();
qtest_clock_step_next(c->qtest);
/* Ensure that DQ6 has stopped toggling. */
g_assert_cmphex(flash_read(byte_addr), ==, flash_read(byte_addr));
g_assert_cmphex(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
}
}
static void bypass_program(uint64_t byte_addr, uint16_t data)
static void bypass_program(const FlashConfig *c, uint64_t byte_addr,
uint16_t data)
{
flash_write(UNLOCK0_ADDR, PROGRAM_CMD);
flash_write(byte_addr, data);
flash_cmd(c, UNLOCK0_ADDR, PROGRAM_CMD);
flash_write(c, byte_addr, data);
/*
* Data isn't valid until DQ6 stops toggling. We don't model this as
* writes are immediate, but if this changes in the future, we can wait
* until the program is complete.
*/
wait_for_completion(byte_addr);
wait_for_completion(c, byte_addr);
}
static void program(uint64_t byte_addr, uint16_t data)
static void program(const FlashConfig *c, uint64_t byte_addr, uint16_t data)
{
unlock();
bypass_program(byte_addr, data);
unlock(c);
bypass_program(c, byte_addr, data);
}
static void chip_erase(void)
static void chip_erase(const FlashConfig *c)
{
unlock();
flash_write(UNLOCK0_ADDR, 0x80);
unlock();
flash_write(UNLOCK0_ADDR, SECTOR_ERASE_CMD);
unlock(c);
flash_cmd(c, UNLOCK0_ADDR, 0x80);
unlock(c);
flash_cmd(c, UNLOCK0_ADDR, CHIP_ERASE_CMD);
}
static void test_flash(void)
static void test_flash(const void *opaque)
{
global_qtest = qtest_initf("-M musicpal,accel=qtest "
const FlashConfig *config = opaque;
QTestState *qtest;
qtest = qtest_initf("-M musicpal,accel=qtest"
" -drive if=pflash,file=%s,format=raw,copy-on-read",
image_path);
FlashConfig explicit_config = expand_config_defaults(config);
explicit_config.qtest = qtest;
const FlashConfig *c = &explicit_config;
/* Check the IDs. */
unlock();
flash_write(UNLOCK0_ADDR, AUTOSELECT_CMD);
g_assert_cmphex(flash_read(FLASH_WIDTH * 0x0000), ==, 0x00BF);
g_assert_cmphex(flash_read(FLASH_WIDTH * 0x0001), ==, 0x236D);
reset();
unlock(c);
flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
if (c->bank_width >= 2) {
/*
* XXX: The ID returned by the musicpal flash chip is 16 bits which
* wouldn't happen with an 8-bit device. It would probably be best to
* prohibit addresses larger than the device width in pflash_cfi02.c,
* but then we couldn't test smaller device widths at all.
*/
g_assert_cmphex(flash_query(c, FLASH_ADDR(1)), ==,
replicate(c, 0x236D));
}
reset(c);
/* Check the erase blocks. */
flash_write(CFI_ADDR, CFI_CMD);
g_assert_cmphex(flash_read(FLASH_WIDTH * 0x10), ==, 'Q');
g_assert_cmphex(flash_read(FLASH_WIDTH * 0x11), ==, 'R');
g_assert_cmphex(flash_read(FLASH_WIDTH * 0x12), ==, 'Y');
/* Num erase regions. */
g_assert_cmphex(flash_read(FLASH_WIDTH * 0x2C), >=, 1);
uint32_t nb_sectors = flash_read(FLASH_WIDTH * 0x2D) +
(flash_read(FLASH_WIDTH * 0x2E) << 8) + 1;
uint32_t sector_len = (flash_read(FLASH_WIDTH * 0x2F) << 8) +
(flash_read(FLASH_WIDTH * 0x30) << 16);
reset();
flash_cmd(c, CFI_ADDR, CFI_CMD);
g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
/* Num erase regions. */
g_assert_cmphex(flash_query_1(c, FLASH_ADDR(0x2C)), >=, 1);
uint32_t nb_sectors = flash_query_1(c, FLASH_ADDR(0x2D)) +
(flash_query_1(c, FLASH_ADDR(0x2E)) << 8) + 1;
uint32_t sector_len = (flash_query_1(c, FLASH_ADDR(0x2F)) << 8) +
(flash_query_1(c, FLASH_ADDR(0x30)) << 16);
reset(c);
const uint64_t dq7 = replicate(c, 0x80);
const uint64_t dq6 = replicate(c, 0x40);
/* Erase and program sector. */
for (uint32_t i = 0; i < nb_sectors; ++i) {
uint64_t byte_addr = i * sector_len;
sector_erase(byte_addr);
sector_erase(c, byte_addr);
/* Read toggle. */
uint16_t status0 = flash_read(byte_addr);
uint64_t status0 = flash_read(c, byte_addr);
/* DQ7 is 0 during an erase. */
g_assert_cmphex(status0 & 0x80, ==, 0);
uint16_t status1 = flash_read(byte_addr);
g_assert_cmphex(status0 & dq7, ==, 0);
uint64_t status1 = flash_read(c, byte_addr);
/* DQ6 toggles during an erase. */
g_assert_cmphex(status0 & 0x40, !=, status1 & 0x40);
g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
/* Wait for erase to complete. */
clock_step_next();
qtest_clock_step_next(c->qtest);
/* Ensure DQ6 has stopped toggling. */
g_assert_cmphex(flash_read(byte_addr), ==, flash_read(byte_addr));
g_assert_cmphex(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
/* Now the data should be valid. */
g_assert_cmphex(flash_read(byte_addr), ==, 0xFFFF);
g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
/* Program a bit pattern. */
program(byte_addr, 0x5555);
g_assert_cmphex(flash_read(byte_addr), ==, 0x5555);
program(byte_addr, 0xAA55);
g_assert_cmphex(flash_read(byte_addr), ==, 0x0055);
program(c, byte_addr, 0x55);
g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x55);
program(c, byte_addr, 0xA5);
g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x05);
}
/* Erase the chip. */
chip_erase();
chip_erase(c);
/* Read toggle. */
uint16_t status0 = flash_read(0);
uint64_t status0 = flash_read(c, 0);
/* DQ7 is 0 during an erase. */
g_assert_cmphex(status0 & 0x80, ==, 0);
uint16_t status1 = flash_read(0);
g_assert_cmphex(status0 & dq7, ==, 0);
uint64_t status1 = flash_read(c, 0);
/* DQ6 toggles during an erase. */
g_assert_cmphex(status0 & 0x40, !=, status1 & 0x40);
g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
/* Wait for erase to complete. */
clock_step_next();
qtest_clock_step_next(c->qtest);
/* Ensure DQ6 has stopped toggling. */
g_assert_cmphex(flash_read(0), ==, flash_read(0));
g_assert_cmphex(flash_read(c, 0), ==, flash_read(c, 0));
/* Now the data should be valid. */
g_assert_cmphex(flash_read(0), ==, 0xFFFF);
for (uint32_t i = 0; i < nb_sectors; ++i) {
uint64_t byte_addr = i * sector_len;
g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
}
/* Unlock bypass */
unlock();
flash_write(UNLOCK0_ADDR, UNLOCK_BYPASS_CMD);
bypass_program(0, 0x0123);
bypass_program(2, 0x4567);
bypass_program(4, 0x89AB);
unlock(c);
flash_cmd(c, UNLOCK0_ADDR, UNLOCK_BYPASS_CMD);
bypass_program(c, 0 * c->bank_width, 0x01);
bypass_program(c, 1 * c->bank_width, 0x23);
bypass_program(c, 2 * c->bank_width, 0x45);
/*
* Test that bypass programming, unlike normal programming can use any
* address for the PROGRAM_CMD.
*/
flash_write(6, PROGRAM_CMD);
flash_write(6, 0xCDEF);
wait_for_completion(6);
flash_write(0, UNLOCK_BYPASS_RESET_CMD);
bypass_program(8, 0x55AA); /* Should fail. */
g_assert_cmphex(flash_read(0), ==, 0x0123);
g_assert_cmphex(flash_read(2), ==, 0x4567);
g_assert_cmphex(flash_read(4), ==, 0x89AB);
g_assert_cmphex(flash_read(6), ==, 0xCDEF);
g_assert_cmphex(flash_read(8), ==, 0xFFFF);
flash_cmd(c, FLASH_ADDR(3 * c->bank_width), PROGRAM_CMD);
flash_write(c, 3 * c->bank_width, 0x67);
wait_for_completion(c, 3 * c->bank_width);
flash_cmd(c, FLASH_ADDR(0), UNLOCK_BYPASS_RESET_CMD);
bypass_program(c, 4 * c->bank_width, 0x89); /* Should fail. */
g_assert_cmphex(flash_read(c, 0 * c->bank_width), ==, 0x01);
g_assert_cmphex(flash_read(c, 1 * c->bank_width), ==, 0x23);
g_assert_cmphex(flash_read(c, 2 * c->bank_width), ==, 0x45);
g_assert_cmphex(flash_read(c, 3 * c->bank_width), ==, 0x67);
g_assert_cmphex(flash_read(c, 4 * c->bank_width), ==, bank_mask(c));
/* Test ignored high order bits of address. */
flash_write(FLASH_WIDTH * 0x5555, UNLOCK0_CMD);
flash_write(FLASH_WIDTH * 0x2AAA, UNLOCK1_CMD);
flash_write(FLASH_WIDTH * 0x5555, AUTOSELECT_CMD);
g_assert_cmpint(flash_read(FLASH_WIDTH * 0x0000), ==, 0x00BF);
g_assert_cmpint(flash_read(FLASH_WIDTH * 0x0001), ==, 0x236D);
reset();
flash_cmd(c, FLASH_ADDR(0x5555), UNLOCK0_CMD);
flash_cmd(c, FLASH_ADDR(0x2AAA), UNLOCK1_CMD);
flash_cmd(c, FLASH_ADDR(0x5555), AUTOSELECT_CMD);
g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
reset(c);
qtest_quit(global_qtest);
qtest_quit(qtest);
}
static void cleanup(void *opaque)
@ -206,6 +355,17 @@ static void cleanup(void *opaque)
unlink(image_path);
}
/*
* XXX: Tests are limited to bank_width = 2 for now because that's what
* hw/arm/musicpal.c has.
*/
static const FlashConfig configuration[] = {
/* One x16 device. */
{
.bank_width = 2,
},
};
int main(int argc, char **argv)
{
int fd = mkstemp(image_path);
@ -214,19 +374,27 @@ int main(int argc, char **argv)
strerror(errno));
exit(EXIT_FAILURE);
}
if (ftruncate(fd, 8 * 1024 * 1024) < 0) {
if (ftruncate(fd, FLASH_SIZE) < 0) {
int error_code = errno;
close(fd);
unlink(image_path);
g_printerr("Failed to truncate file %s to 8 MB: %s\n", image_path,
strerror(error_code));
g_printerr("Failed to truncate file %s to %u MB: %s\n", image_path,
FLASH_SIZE, strerror(error_code));
exit(EXIT_FAILURE);
}
close(fd);
qtest_add_abrt_handler(cleanup, NULL);
g_test_init(&argc, &argv, NULL);
qtest_add_func("pflash-cfi02", test_flash);
size_t nb_configurations = sizeof configuration / sizeof configuration[0];
for (size_t i = 0; i < nb_configurations; ++i) {
const FlashConfig *config = &configuration[i];
char *path = g_strdup_printf("pflash-cfi02/%d",
config->bank_width);
qtest_add_data_func(path, config, test_flash);
g_free(path);
}
int result = g_test_run();
cleanup(NULL);
return result;