Change ptimer API to use 64-bit values, add save and load methods

Use ptimers for Sparc32 Slavio


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2859 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
blueswir1 2007-05-24 19:48:41 +00:00
parent 2dc7b602df
commit 8d05ea8a33
4 changed files with 110 additions and 102 deletions

View File

@ -449,7 +449,7 @@ VL_OBJS+= cirrus_vga.o parallel.o
else else
VL_OBJS+= sun4m.o tcx.o pcnet.o iommu.o m48t59.o slavio_intctl.o VL_OBJS+= sun4m.o tcx.o pcnet.o iommu.o m48t59.o slavio_intctl.o
VL_OBJS+= slavio_timer.o slavio_serial.o slavio_misc.o fdc.o esp.o sparc32_dma.o VL_OBJS+= slavio_timer.o slavio_serial.o slavio_misc.o fdc.o esp.o sparc32_dma.o
VL_OBJS+= cs4231.o VL_OBJS+= cs4231.o ptimer.o
endif endif
endif endif
ifeq ($(TARGET_BASE_ARCH), arm) ifeq ($(TARGET_BASE_ARCH), arm)

View File

@ -11,8 +11,8 @@
struct ptimer_state struct ptimer_state
{ {
int enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */ int enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */
uint32_t limit; uint64_t limit;
uint32_t delta; uint64_t delta;
uint32_t period_frac; uint32_t period_frac;
int64_t period; int64_t period;
int64_t last_event; int64_t last_event;
@ -61,10 +61,10 @@ static void ptimer_tick(void *opaque)
} }
} }
uint32_t ptimer_get_count(ptimer_state *s) uint64_t ptimer_get_count(ptimer_state *s)
{ {
int64_t now; int64_t now;
uint32_t counter; uint64_t counter;
if (s->enabled) { if (s->enabled) {
now = qemu_get_clock(vm_clock); now = qemu_get_clock(vm_clock);
@ -75,8 +75,8 @@ uint32_t ptimer_get_count(ptimer_state *s)
triggered. */ triggered. */
counter = 0; counter = 0;
} else { } else {
int64_t rem; uint64_t rem;
int64_t div; uint64_t div;
rem = s->next_event - now; rem = s->next_event - now;
div = s->period; div = s->period;
@ -88,7 +88,7 @@ uint32_t ptimer_get_count(ptimer_state *s)
return counter; return counter;
} }
void ptimer_set_count(ptimer_state *s, uint32_t count) void ptimer_set_count(ptimer_state *s, uint64_t count)
{ {
s->delta = count; s->delta = count;
if (s->enabled) { if (s->enabled) {
@ -108,7 +108,7 @@ void ptimer_run(ptimer_state *s, int oneshot)
ptimer_reload(s); ptimer_reload(s);
} }
/* Pause a timer. Note that this may cause it to "loose" time, even if it /* Pause a timer. Note that this may cause it to "lose" time, even if it
is immediately restarted. */ is immediately restarted. */
void ptimer_stop(ptimer_state *s) void ptimer_stop(ptimer_state *s)
{ {
@ -123,33 +123,60 @@ void ptimer_stop(ptimer_state *s)
/* Set counter increment interval in nanoseconds. */ /* Set counter increment interval in nanoseconds. */
void ptimer_set_period(ptimer_state *s, int64_t period) void ptimer_set_period(ptimer_state *s, int64_t period)
{ {
if (s->enabled) {
fprintf(stderr, "FIXME: ptimer_set_period with running timer");
}
s->period = period; s->period = period;
s->period_frac = 0; s->period_frac = 0;
if (s->enabled) {
s->next_event = qemu_get_clock(vm_clock);
ptimer_reload(s);
}
} }
/* Set counter frequency in Hz. */ /* Set counter frequency in Hz. */
void ptimer_set_freq(ptimer_state *s, uint32_t freq) void ptimer_set_freq(ptimer_state *s, uint32_t freq)
{ {
if (s->enabled) {
fprintf(stderr, "FIXME: ptimer_set_freq with running timer");
}
s->period = 1000000000ll / freq; s->period = 1000000000ll / freq;
s->period_frac = (1000000000ll << 32) / freq; s->period_frac = (1000000000ll << 32) / freq;
if (s->enabled) {
s->next_event = qemu_get_clock(vm_clock);
ptimer_reload(s);
}
} }
/* Set the initial countdown value. If reload is nonzero then also set /* Set the initial countdown value. If reload is nonzero then also set
count = limit. */ count = limit. */
void ptimer_set_limit(ptimer_state *s, uint32_t limit, int reload) void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
{ {
if (s->enabled) {
fprintf(stderr, "FIXME: ptimer_set_limit with running timer");
}
s->limit = limit; s->limit = limit;
if (reload) if (reload)
s->delta = limit; s->delta = limit;
if (s->enabled) {
s->next_event = qemu_get_clock(vm_clock);
ptimer_reload(s);
}
}
void qemu_put_ptimer(QEMUFile *f, ptimer_state *s)
{
qemu_put_byte(f, s->enabled);
qemu_put_be64s(f, &s->limit);
qemu_put_be64s(f, &s->delta);
qemu_put_be32s(f, &s->period_frac);
qemu_put_be64s(f, &s->period);
qemu_put_be64s(f, &s->last_event);
qemu_put_be64s(f, &s->next_event);
qemu_put_timer(f, s->timer);
}
void qemu_get_ptimer(QEMUFile *f, ptimer_state *s)
{
s->enabled = qemu_get_byte(f);
qemu_get_be64s(f, &s->limit);
qemu_get_be64s(f, &s->delta);
qemu_get_be32s(f, &s->period_frac);
qemu_get_be64s(f, &s->period);
qemu_get_be64s(f, &s->last_event);
qemu_get_be64s(f, &s->next_event);
qemu_get_timer(f, s->timer);
} }
ptimer_state *ptimer_init(QEMUBH *bh) ptimer_state *ptimer_init(QEMUBH *bh)

View File

@ -48,61 +48,29 @@ do { printf("TIMER: " fmt , ##args); } while (0)
*/ */
typedef struct SLAVIO_TIMERState { typedef struct SLAVIO_TIMERState {
uint32_t limit, count, counthigh; ptimer_state *timer;
int64_t count_load_time; uint32_t count, counthigh, reached;
int64_t expire_time; uint64_t limit;
int64_t stop_time, tick_offset;
QEMUTimer *irq_timer;
int irq; int irq;
int reached, stopped; int stopped;
int mode; // 0 = processor, 1 = user, 2 = system int mode; // 0 = processor, 1 = user, 2 = system
unsigned int cpu; unsigned int cpu;
void *intctl; void *intctl;
} SLAVIO_TIMERState; } SLAVIO_TIMERState;
#define TIMER_MAXADDR 0x1f #define TIMER_MAXADDR 0x1f
#define CNT_FREQ 2000000
// Update count, set irq, update expire_time // Update count, set irq, update expire_time
// Convert from ptimer countdown units
static void slavio_timer_get_out(SLAVIO_TIMERState *s) static void slavio_timer_get_out(SLAVIO_TIMERState *s)
{ {
int out; uint64_t count;
int64_t diff, ticks, count;
uint32_t limit;
// There are three clock tick units: CPU ticks, register units count = s->limit - (ptimer_get_count(s->timer) << 9);
// (nanoseconds), and counter ticks (500 ns). DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit, s->counthigh,
if (s->mode == 1 && s->stopped) s->count);
ticks = s->stop_time; s->count = count & 0xfffffe00;
else s->counthigh = count >> 32;
ticks = qemu_get_clock(vm_clock) - s->tick_offset;
out = (ticks > s->expire_time);
if (out)
s->reached = 0x80000000;
// Convert register units to counter ticks
limit = s->limit >> 9;
if (!limit)
limit = 0x7fffffff >> 9;
// Convert cpu ticks to counter ticks
diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
// Calculate what the counter should be, convert to register
// units
count = diff % limit;
s->count = count << 9;
s->counthigh = count >> 22;
// Expire time: CPU ticks left to next interrupt
// Convert remaining counter ticks to CPU ticks
s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
DPRINTF("irq %d limit %d reached %d d %" PRId64 " count %d s->c %x diff %" PRId64 " stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
if (s->mode != 1)
pic_set_irq_cpu(s->intctl, s->irq, out, s->cpu);
} }
// timer callback // timer callback
@ -110,17 +78,17 @@ static void slavio_timer_irq(void *opaque)
{ {
SLAVIO_TIMERState *s = opaque; SLAVIO_TIMERState *s = opaque;
if (!s->irq_timer)
return;
slavio_timer_get_out(s); slavio_timer_get_out(s);
DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
s->reached = 0x80000000;
if (s->mode != 1) if (s->mode != 1)
qemu_mod_timer(s->irq_timer, s->expire_time); pic_set_irq_cpu(s->intctl, s->irq, 1, s->cpu);
} }
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr) static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
{ {
SLAVIO_TIMERState *s = opaque; SLAVIO_TIMERState *s = opaque;
uint32_t saddr; uint32_t saddr, ret;
saddr = (addr & TIMER_MAXADDR) >> 2; saddr = (addr & TIMER_MAXADDR) >> 2;
switch (saddr) { switch (saddr) {
@ -131,60 +99,69 @@ static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
// clear irq // clear irq
pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu); pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
s->reached = 0; s->reached = 0;
return s->limit; ret = s->limit & 0x7fffffff;
} }
else { else {
slavio_timer_get_out(s); slavio_timer_get_out(s);
return s->counthigh & 0x7fffffff; ret = s->counthigh & 0x7fffffff;
} }
break;
case 1: case 1:
// read counter and reached bit (system mode) or read lsbits // read counter and reached bit (system mode) or read lsbits
// of counter (user mode) // of counter (user mode)
slavio_timer_get_out(s); slavio_timer_get_out(s);
if (s->mode != 1) if (s->mode != 1)
return (s->count & 0x7fffffff) | s->reached; ret = (s->count & 0x7fffffff) | s->reached;
else else
return s->count; ret = s->count;
break;
case 3: case 3:
// read start/stop status // read start/stop status
return s->stopped; ret = s->stopped;
break;
case 4: case 4:
// read user/system mode // read user/system mode
return s->mode & 1; ret = s->mode & 1;
break;
default: default:
return 0; ret = 0;
break;
} }
DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
return ret;
} }
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{ {
SLAVIO_TIMERState *s = opaque; SLAVIO_TIMERState *s = opaque;
uint32_t saddr; uint32_t saddr;
int reload = 0;
DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
saddr = (addr & TIMER_MAXADDR) >> 2; saddr = (addr & TIMER_MAXADDR) >> 2;
switch (saddr) { switch (saddr) {
case 0: case 0:
// set limit, reset counter // set limit, reset counter
s->count_load_time = qemu_get_clock(vm_clock); reload = 1;
pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
// fall through // fall through
case 2: case 2:
// set limit without resetting counter // set limit without resetting counter
if (!val) s->limit = val & 0x7ffffe00ULL;
s->limit = 0x7fffffff; if (!s->limit)
else s->limit = 0x7ffffe00ULL;
s->limit = val & 0x7fffffff; ptimer_set_limit(s->timer, s->limit >> 9, reload);
slavio_timer_irq(s);
break; break;
case 3: case 3:
// start/stop user counter // start/stop user counter
if (s->mode == 1) { if (s->mode == 1) {
if (val & 1) { if (val & 1) {
s->stop_time = qemu_get_clock(vm_clock); ptimer_stop(s->timer);
s->stopped = 1; s->stopped = 1;
} }
else { else {
if (s->stopped) ptimer_run(s->timer, 0);
s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
s->stopped = 0; s->stopped = 0;
} }
} }
@ -193,6 +170,11 @@ static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint3
// bit 0: user (1) or system (0) counter mode // bit 0: user (1) or system (0) counter mode
if (s->mode == 0 || s->mode == 1) if (s->mode == 0 || s->mode == 1)
s->mode = val & 1; s->mode = val & 1;
if (s->mode == 1) {
pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
s->limit = -1ULL;
}
ptimer_set_limit(s->timer, s->limit >> 9, 1);
break; break;
default: default:
break; break;
@ -215,37 +197,32 @@ static void slavio_timer_save(QEMUFile *f, void *opaque)
{ {
SLAVIO_TIMERState *s = opaque; SLAVIO_TIMERState *s = opaque;
qemu_put_be32s(f, &s->limit); qemu_put_be64s(f, &s->limit);
qemu_put_be32s(f, &s->count); qemu_put_be32s(f, &s->count);
qemu_put_be32s(f, &s->counthigh); qemu_put_be32s(f, &s->counthigh);
qemu_put_be64s(f, &s->count_load_time);
qemu_put_be64s(f, &s->expire_time);
qemu_put_be64s(f, &s->stop_time);
qemu_put_be64s(f, &s->tick_offset);
qemu_put_be32s(f, &s->irq); qemu_put_be32s(f, &s->irq);
qemu_put_be32s(f, &s->reached); qemu_put_be32s(f, &s->reached);
qemu_put_be32s(f, &s->stopped); qemu_put_be32s(f, &s->stopped);
qemu_put_be32s(f, &s->mode); qemu_put_be32s(f, &s->mode);
qemu_put_ptimer(f, s->timer);
} }
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id) static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
{ {
SLAVIO_TIMERState *s = opaque; SLAVIO_TIMERState *s = opaque;
if (version_id != 1) if (version_id != 2)
return -EINVAL; return -EINVAL;
qemu_get_be32s(f, &s->limit); qemu_get_be64s(f, &s->limit);
qemu_get_be32s(f, &s->count); qemu_get_be32s(f, &s->count);
qemu_get_be32s(f, &s->counthigh); qemu_get_be32s(f, &s->counthigh);
qemu_get_be64s(f, &s->count_load_time);
qemu_get_be64s(f, &s->expire_time);
qemu_get_be64s(f, &s->stop_time);
qemu_get_be64s(f, &s->tick_offset);
qemu_get_be32s(f, &s->irq); qemu_get_be32s(f, &s->irq);
qemu_get_be32s(f, &s->reached); qemu_get_be32s(f, &s->reached);
qemu_get_be32s(f, &s->stopped); qemu_get_be32s(f, &s->stopped);
qemu_get_be32s(f, &s->mode); qemu_get_be32s(f, &s->mode);
qemu_get_ptimer(f, s->timer);
return 0; return 0;
} }
@ -253,13 +230,12 @@ static void slavio_timer_reset(void *opaque)
{ {
SLAVIO_TIMERState *s = opaque; SLAVIO_TIMERState *s = opaque;
s->limit = 0; s->limit = 0x7ffffe00ULL;
s->count = 0; s->count = 0;
s->count_load_time = qemu_get_clock(vm_clock);;
s->stop_time = s->count_load_time;
s->tick_offset = 0;
s->reached = 0; s->reached = 0;
s->mode &= 2; s->mode &= 2;
ptimer_set_limit(s->timer, s->limit >> 9, 1);
ptimer_run(s->timer, 0);
s->stopped = 1; s->stopped = 1;
slavio_timer_irq(s); slavio_timer_irq(s);
} }
@ -269,6 +245,7 @@ void slavio_timer_init(target_phys_addr_t addr, int irq, int mode,
{ {
int slavio_timer_io_memory; int slavio_timer_io_memory;
SLAVIO_TIMERState *s; SLAVIO_TIMERState *s;
QEMUBH *bh;
s = qemu_mallocz(sizeof(SLAVIO_TIMERState)); s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
if (!s) if (!s)
@ -276,13 +253,15 @@ void slavio_timer_init(target_phys_addr_t addr, int irq, int mode,
s->irq = irq; s->irq = irq;
s->mode = mode; s->mode = mode;
s->cpu = cpu; s->cpu = cpu;
s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s); bh = qemu_bh_new(slavio_timer_irq, s);
s->timer = ptimer_init(bh);
ptimer_set_period(s->timer, 500ULL);
s->intctl = intctl; s->intctl = intctl;
slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read, slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
slavio_timer_mem_write, s); slavio_timer_mem_write, s);
cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory); cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s); register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s);
qemu_register_reset(slavio_timer_reset, s); qemu_register_reset(slavio_timer_reset, s);
slavio_timer_reset(s); slavio_timer_reset(s);
} }

8
vl.h
View File

@ -1589,11 +1589,13 @@ typedef void (*ptimer_cb)(void *opaque);
ptimer_state *ptimer_init(QEMUBH *bh); ptimer_state *ptimer_init(QEMUBH *bh);
void ptimer_set_period(ptimer_state *s, int64_t period); void ptimer_set_period(ptimer_state *s, int64_t period);
void ptimer_set_freq(ptimer_state *s, uint32_t freq); void ptimer_set_freq(ptimer_state *s, uint32_t freq);
void ptimer_set_limit(ptimer_state *s, uint32_t limit, int reload); void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload);
uint32_t ptimer_get_count(ptimer_state *s); uint64_t ptimer_get_count(ptimer_state *s);
void ptimer_set_count(ptimer_state *s, uint32_t count); void ptimer_set_count(ptimer_state *s, uint64_t count);
void ptimer_run(ptimer_state *s, int oneshot); void ptimer_run(ptimer_state *s, int oneshot);
void ptimer_stop(ptimer_state *s); void ptimer_stop(ptimer_state *s);
void qemu_put_ptimer(QEMUFile *f, ptimer_state *s);
void qemu_get_ptimer(QEMUFile *f, ptimer_state *s);
#include "hw/pxa.h" #include "hw/pxa.h"