tests/tcg/plugins/mem: add option to print memory accesses

By using "print-accesses=true" option, mem plugin will now print every
value accessed, with associated size, type (store vs load), symbol,
instruction address and phys/virt address accessed.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Xingtao Yao <yaoxt.fnst@fujitsu.com>
Signed-off-by: Pierrick Bouvier <pierrick.bouvier@linaro.org>
Message-Id: <20240724194708.1843704-6-pierrick.bouvier@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20240916085400.1046925-9-alex.bennee@linaro.org>
This commit is contained in:
Pierrick Bouvier 2024-09-16 09:53:50 +01:00 committed by Alex Bennée
parent 8856bd2653
commit 7fd9ff76cc

View File

@ -21,10 +21,15 @@ typedef struct {
uint64_t io_count;
} CPUCount;
typedef struct {
uint64_t vaddr;
const char *sym;
} InsnInfo;
static struct qemu_plugin_scoreboard *counts;
static qemu_plugin_u64 mem_count;
static qemu_plugin_u64 io_count;
static bool do_inline, do_callback;
static bool do_inline, do_callback, do_print_accesses;
static bool do_haddr;
static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW;
@ -60,6 +65,44 @@ static void vcpu_mem(unsigned int cpu_index, qemu_plugin_meminfo_t meminfo,
}
}
static void print_access(unsigned int cpu_index, qemu_plugin_meminfo_t meminfo,
uint64_t vaddr, void *udata)
{
InsnInfo *insn_info = udata;
unsigned size = 8 << qemu_plugin_mem_size_shift(meminfo);
const char *type = qemu_plugin_mem_is_store(meminfo) ? "store" : "load";
qemu_plugin_mem_value value = qemu_plugin_mem_get_value(meminfo);
uint64_t hwaddr =
qemu_plugin_hwaddr_phys_addr(qemu_plugin_get_hwaddr(meminfo, vaddr));
g_autoptr(GString) out = g_string_new("");
g_string_printf(out,
"0x%"PRIx64",%s,0x%"PRIx64",0x%"PRIx64",%d,%s,",
insn_info->vaddr, insn_info->sym,
vaddr, hwaddr, size, type);
switch (value.type) {
case QEMU_PLUGIN_MEM_VALUE_U8:
g_string_append_printf(out, "0x%02"PRIx8, value.data.u8);
break;
case QEMU_PLUGIN_MEM_VALUE_U16:
g_string_append_printf(out, "0x%04"PRIx16, value.data.u16);
break;
case QEMU_PLUGIN_MEM_VALUE_U32:
g_string_append_printf(out, "0x%08"PRIx32, value.data.u32);
break;
case QEMU_PLUGIN_MEM_VALUE_U64:
g_string_append_printf(out, "0x%016"PRIx64, value.data.u64);
break;
case QEMU_PLUGIN_MEM_VALUE_U128:
g_string_append_printf(out, "0x%016"PRIx64"%016"PRIx64,
value.data.u128.high, value.data.u128.low);
break;
default:
g_assert_not_reached();
}
g_string_append_printf(out, "\n");
qemu_plugin_outs(out->str);
}
static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
{
size_t n = qemu_plugin_tb_n_insns(tb);
@ -79,6 +122,16 @@ static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
QEMU_PLUGIN_CB_NO_REGS,
rw, NULL);
}
if (do_print_accesses) {
/* we leak this pointer, to avoid locking to keep track of it */
InsnInfo *insn_info = g_malloc(sizeof(InsnInfo));
const char *sym = qemu_plugin_insn_symbol(insn);
insn_info->sym = sym ? sym : "";
insn_info->vaddr = qemu_plugin_insn_vaddr(insn);
qemu_plugin_register_vcpu_mem_cb(insn, print_access,
QEMU_PLUGIN_CB_NO_REGS,
rw, (void *) insn_info);
}
}
}
@ -117,6 +170,12 @@ QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id,
fprintf(stderr, "boolean argument parsing failed: %s\n", opt);
return -1;
}
} else if (g_strcmp0(tokens[0], "print-accesses") == 0) {
if (!qemu_plugin_bool_parse(tokens[0], tokens[1],
&do_print_accesses)) {
fprintf(stderr, "boolean argument parsing failed: %s\n", opt);
return -1;
}
} else {
fprintf(stderr, "option parsing failed: %s\n", opt);
return -1;
@ -129,6 +188,14 @@ QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id,
return -1;
}
if (do_print_accesses) {
g_autoptr(GString) out = g_string_new("");
g_string_printf(out,
"insn_vaddr,insn_symbol,mem_vaddr,mem_hwaddr,"
"access_size,access_type,mem_value\n");
qemu_plugin_outs(out->str);
}
counts = qemu_plugin_scoreboard_new(sizeof(CPUCount));
mem_count = qemu_plugin_scoreboard_u64_in_struct(
counts, CPUCount, mem_count);