next-cube.c: update mmio_ops to properly use modern memory API

The old QEMU memory accessors used in the original NextCube patch series had
separate functions for 1, 2 and 4 byte accessors. When the series was finally
merged a simple wrapper function was written to dispatch the memory accesses
using the original functions.

Convert mmio_ops to use the memory API directly renaming it to next_mmio_ops,
marking it as DEVICE_BIG_ENDIAN, and handling any unaligned accesses.

Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Thomas Huth <huth@tuxfamily.org>
Message-ID: <20231220131641.592826-4-mark.cave-ayland@ilande.co.uk>
Signed-off-by: Thomas Huth <huth@tuxfamily.org>
This commit is contained in:
Mark Cave-Ayland 2023-12-20 13:16:33 +00:00 committed by Thomas Huth
parent 6f2454be58
commit 7e993d934a

View File

@ -255,150 +255,84 @@ static void nextscr2_write(NeXTPC *s, uint32_t val, int size)
old_scr2 = scr2_2; old_scr2 = scr2_2;
} }
static uint32_t mmio_readb(NeXTPC *s, hwaddr addr) static uint64_t next_mmio_read(void *opaque, hwaddr addr, unsigned size)
{ {
switch (addr) { NeXTPC *s = NEXT_PC(opaque);
case 0xc000: uint64_t val;
return (s->scr1 >> 24) & 0xFF;
case 0xc001:
return (s->scr1 >> 16) & 0xFF;
case 0xc002:
return (s->scr1 >> 8) & 0xFF;
case 0xc003:
return (s->scr1 >> 0) & 0xFF;
case 0xd000:
return (s->scr2 >> 24) & 0xFF;
case 0xd001:
return (s->scr2 >> 16) & 0xFF;
case 0xd002:
return (s->scr2 >> 8) & 0xFF;
case 0xd003:
return (s->scr2 >> 0) & 0xFF;
case 0x14020:
DPRINTF("MMIO Read 0x4020\n");
return 0x7f;
default:
DPRINTF("MMIO Read B @ %"HWADDR_PRIx"\n", addr);
return 0x0;
}
}
static uint32_t mmio_readw(NeXTPC *s, hwaddr addr)
{
switch (addr) {
default:
DPRINTF("MMIO Read W @ %"HWADDR_PRIx"\n", addr);
return 0x0;
}
}
static uint32_t mmio_readl(NeXTPC *s, hwaddr addr)
{
switch (addr) { switch (addr) {
case 0x7000: case 0x7000:
/* DPRINTF("Read INT status: %x\n", s->int_status); */ /* DPRINTF("Read INT status: %x\n", s->int_status); */
return s->int_status; val = s->int_status;
break;
case 0x7800: case 0x7800:
DPRINTF("MMIO Read INT mask: %x\n", s->int_mask); DPRINTF("MMIO Read INT mask: %x\n", s->int_mask);
return s->int_mask; val = s->int_mask;
case 0xc000:
return s->scr1;
case 0xd000:
return s->scr2;
default:
DPRINTF("MMIO Read L @ %"HWADDR_PRIx"\n", addr);
return 0x0;
}
}
static void mmio_writeb(NeXTPC *s, hwaddr addr, uint32_t val)
{
switch (addr) {
case 0xd003:
nextscr2_write(s, val, 1);
break; break;
case 0xc000 ... 0xc003:
val = extract32(s->scr1, (4 - (addr - 0xc000) - size) << 3,
size << 3);
break;
case 0xd000 ... 0xd003:
val = extract32(s->scr2, (4 - (addr - 0xd000) - size) << 3,
size << 3);
break;
case 0x14020:
val = 0x7f;
break;
default: default:
DPRINTF("MMIO Write B @ %x with %x\n", (unsigned int)addr, val); val = 0;
DPRINTF("MMIO Read @ 0x%"HWADDR_PRIx" size %d\n", addr, size);
break;
} }
return val;
} }
static void mmio_writew(NeXTPC *s, hwaddr addr, uint32_t val) static void next_mmio_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{ {
DPRINTF("MMIO Write W\n"); NeXTPC *s = NEXT_PC(opaque);
}
static void mmio_writel(NeXTPC *s, hwaddr addr, uint32_t val)
{
switch (addr) { switch (addr) {
case 0x7000: case 0x7000:
DPRINTF("INT Status old: %x new: %x\n", s->int_status, val); DPRINTF("INT Status old: %x new: %x\n", s->int_status,
(unsigned int)val);
s->int_status = val; s->int_status = val;
break; break;
case 0x7800: case 0x7800:
DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, val); DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, (unsigned int)val);
s->int_mask = val; s->int_mask = val;
break; break;
case 0xc000:
DPRINTF("SCR1 Write: %x\n", val); case 0xc000 ... 0xc003:
DPRINTF("SCR1 Write: %x\n", (unsigned int)val);
s->scr1 = deposit32(s->scr1, (4 - (addr - 0xc000) - size) << 3,
size << 3, val);
break; break;
case 0xd000:
nextscr2_write(s, val, 4); case 0xd000 ... 0xd003:
nextscr2_write(s, val, size);
break; break;
default: default:
DPRINTF("MMIO Write l @ %x with %x\n", (unsigned int)addr, val); DPRINTF("MMIO Write @ 0x%"HWADDR_PRIx " with 0x%x size %u\n", addr,
(unsigned int)val, size);
} }
} }
static uint64_t mmio_readfn(void *opaque, hwaddr addr, unsigned size) static const MemoryRegionOps next_mmio_ops = {
{ .read = next_mmio_read,
NeXTPC *s = NEXT_PC(opaque); .write = next_mmio_write,
switch (size) {
case 1:
return mmio_readb(s, addr);
case 2:
return mmio_readw(s, addr);
case 4:
return mmio_readl(s, addr);
default:
g_assert_not_reached();
}
}
static void mmio_writefn(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
NeXTPC *s = NEXT_PC(opaque);
switch (size) {
case 1:
mmio_writeb(s, addr, value);
break;
case 2:
mmio_writew(s, addr, value);
break;
case 4:
mmio_writel(s, addr, value);
break;
default:
g_assert_not_reached();
}
}
static const MemoryRegionOps mmio_ops = {
.read = mmio_readfn,
.write = mmio_writefn,
.valid.min_access_size = 1, .valid.min_access_size = 1,
.valid.max_access_size = 4, .valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN, .endianness = DEVICE_BIG_ENDIAN,
}; };
static uint32_t scr_readb(NeXTPC *s, hwaddr addr) static uint32_t scr_readb(NeXTPC *s, hwaddr addr)
@ -976,8 +910,8 @@ static void next_pc_realize(DeviceState *dev, Error **errp)
qdev_init_gpio_in(dev, next_irq, NEXT_NUM_IRQS); qdev_init_gpio_in(dev, next_irq, NEXT_NUM_IRQS);
memory_region_init_io(&s->mmiomem, OBJECT(s), &mmio_ops, s, memory_region_init_io(&s->mmiomem, OBJECT(s), &next_mmio_ops, s,
"next.mmio", 0xD0000); "next.mmio", 0xd0000);
memory_region_init_io(&s->scrmem, OBJECT(s), &scr_ops, s, memory_region_init_io(&s->scrmem, OBJECT(s), &scr_ops, s,
"next.scr", 0x20000); "next.scr", 0x20000);
sysbus_init_mmio(sbd, &s->mmiomem); sysbus_init_mmio(sbd, &s->mmiomem);