tests/tcg/multiarch: expand system memory test to cover more

Expand the memory test to cover move of the softmmu code. Specifically
we:

  - improve commentary
  - add some helpers (for later BE support)
  - reduce boiler plate into helpers
  - add signed reads at various sizes/offsets
  - required -DCHECK_UNALIGNED

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
Alex Bennée 2019-04-29 16:55:59 +01:00
parent 936647d3fc
commit 7ac283e963
3 changed files with 293 additions and 83 deletions

View File

@ -28,5 +28,7 @@ LDFLAGS+=-static -nostdlib $(CRT_OBJS) $(MINILIB_OBJS) -lgcc
%: %.c $(LINK_SCRIPT) $(CRT_OBJS) $(MINILIB_OBJS) %: %.c $(LINK_SCRIPT) $(CRT_OBJS) $(MINILIB_OBJS)
$(CC) $(CFLAGS) $< -o $@ $(LDFLAGS) $(CC) $(CFLAGS) $< -o $@ $(LDFLAGS)
memory: CFLAGS+=-DCHECK_UNALIGNED=1
# Running # Running
QEMU_OPTS+=-M virt -cpu max -display none -semihosting-config enable=on,target=native,chardev=output -kernel QEMU_OPTS+=-M virt -cpu max -display none -semihosting-config enable=on,target=native,chardev=output -kernel

View File

@ -42,5 +42,7 @@ LDFLAGS+=-static -nostdlib $(CRT_OBJS) $(MINILIB_OBJS) -lgcc
%: %.c $(LINK_SCRIPT) $(CRT_OBJS) $(MINILIB_OBJS) %: %.c $(LINK_SCRIPT) $(CRT_OBJS) $(MINILIB_OBJS)
$(CC) $(CFLAGS) $< -o $@ $(LDFLAGS) $(CC) $(CFLAGS) $< -o $@ $(LDFLAGS)
memory: CFLAGS+=-DCHECK_UNALIGNED=1
# Running # Running
QEMU_OPTS+=-device isa-debugcon,chardev=output -device isa-debug-exit,iobase=0xf4,iosize=0x4 -kernel QEMU_OPTS+=-device isa-debugcon,chardev=output -device isa-debug-exit,iobase=0xf4,iosize=0x4 -kernel

View File

@ -5,18 +5,33 @@
* behave across normal and unaligned accesses across several pages. * behave across normal and unaligned accesses across several pages.
* We are not replicating memory tests for stuck bits and other * We are not replicating memory tests for stuck bits and other
* hardware level failures but looking for issues with different size * hardware level failures but looking for issues with different size
* accesses when: * accesses when access is:
* *
* - unaligned at various sizes (if -DCHECK_UNALIGNED set)
* - spanning a (softmmu) page
* - sign extension when loading
*/ */
#include <inttypes.h> #include <inttypes.h>
#include <stdbool.h>
#include <minilib.h> #include <minilib.h>
#define TEST_SIZE (4096 * 4) /* 4 pages */ #ifndef CHECK_UNALIGNED
# error "Target does not specify CHECK_UNALIGNED"
#endif
#define PAGE_SIZE 4096 /* nominal 4k "pages" */
#define TEST_SIZE (PAGE_SIZE * 4) /* 4 pages */
#define ARRAY_SIZE(x) ((sizeof(x) / sizeof((x)[0])))
__attribute__((aligned(PAGE_SIZE)))
static uint8_t test_data[TEST_SIZE]; static uint8_t test_data[TEST_SIZE];
typedef void (*init_ufn) (int offset);
typedef bool (*read_ufn) (int offset);
typedef bool (*read_sfn) (int offset, bool nf);
static void pdot(int count) static void pdot(int count)
{ {
if (count % 128 == 0) { if (count % 128 == 0) {
@ -24,17 +39,26 @@ static void pdot(int count)
} }
} }
/*
* Helper macros for shift/extract so we can keep our endian handling
* in one place.
*/
#define BYTE_SHIFT(b, pos) ((uint64_t)b << (pos * 8))
#define BYTE_EXTRACT(b, pos) ((b >> (pos * 8)) & 0xff)
/* /*
* Fill the data with ascending value bytes. As x86 is a LE machine we * Fill the data with ascending value bytes.
* write in ascending order and then read and high byte should either *
* be zero or higher than the lower bytes. * Currently we only support Little Endian machines so write in
* ascending address order. When we read higher address bytes should
* either be zero or higher than the lower bytes.
*/ */
static void init_test_data_u8(void) static void init_test_data_u8(int unused_offset)
{ {
uint8_t count = 0, *ptr = &test_data[0]; uint8_t count = 0, *ptr = &test_data[0];
int i; int i;
(void)(unused_offset);
ml_printf("Filling test area with u8:"); ml_printf("Filling test area with u8:");
for (i = 0; i < TEST_SIZE; i++) { for (i = 0; i < TEST_SIZE; i++) {
@ -44,62 +68,112 @@ static void init_test_data_u8(void)
ml_printf("done\n"); ml_printf("done\n");
} }
static void init_test_data_u16(int offset) /*
* Full the data with alternating positive and negative bytes. This
* should mean for reads larger than a byte all subsequent reads will
* stay either negative or positive. We never write 0.
*/
static inline uint8_t get_byte(int index, bool neg)
{ {
uint8_t count = 0; return neg ? (0xff << (index % 7)) : (0xff >> ((index % 6) + 1));
uint16_t word, *ptr = (uint16_t *) &test_data[0]; }
const int max = (TEST_SIZE - offset) / sizeof(word);
static void init_test_data_s8(bool neg_first)
{
uint8_t top, bottom, *ptr = &test_data[0];
int i; int i;
ml_printf("Filling test area with u16 (offset %d):", offset); ml_printf("Filling test area with s8 pairs (%s):",
neg_first ? "neg first" : "pos first");
/* Leading zeros */ for (i = 0; i < TEST_SIZE / 2; i++) {
for (i = 0; i < offset; i++) { *ptr++ = get_byte(i, neg_first);
*ptr = 0; *ptr++ = get_byte(i, !neg_first);
}
ptr = (uint16_t *) &test_data[offset];
for (i = 0; i < max; i++) {
uint8_t high, low;
low = count++;
high = count++;
word = (high << 8) | low;
*ptr++ = word;
pdot(i); pdot(i);
} }
ml_printf("done\n"); ml_printf("done\n");
} }
/*
* Zero the first few bytes of the test data in preparation for
* new offset values.
*/
static void reset_start_data(int offset)
{
uint32_t *ptr = (uint32_t *) &test_data[0];
int i;
for (i = 0; i < offset; i++) {
*ptr++ = 0;
}
}
static void init_test_data_u16(int offset)
{
uint8_t count = 0;
uint16_t word, *ptr = (uint16_t *) &test_data[offset];
const int max = (TEST_SIZE - offset) / sizeof(word);
int i;
ml_printf("Filling test area with u16 (offset %d, %p):", offset, ptr);
reset_start_data(offset);
for (i = 0; i < max; i++) {
uint8_t low = count++, high = count++;
word = BYTE_SHIFT(high, 1) | BYTE_SHIFT(low, 0);
*ptr++ = word;
pdot(i);
}
ml_printf("done @ %p\n", ptr);
}
static void init_test_data_u32(int offset) static void init_test_data_u32(int offset)
{ {
uint8_t count = 0; uint8_t count = 0;
uint32_t word, *ptr = (uint32_t *) &test_data[0]; uint32_t word, *ptr = (uint32_t *) &test_data[offset];
const int max = (TEST_SIZE - offset) / sizeof(word); const int max = (TEST_SIZE - offset) / sizeof(word);
int i; int i;
ml_printf("Filling test area with u32 (offset %d):", offset); ml_printf("Filling test area with u32 (offset %d, %p):", offset, ptr);
/* Leading zeros */ reset_start_data(offset);
for (i = 0; i < offset; i++) {
*ptr = 0;
}
ptr = (uint32_t *) &test_data[offset];
for (i = 0; i < max; i++) { for (i = 0; i < max; i++) {
uint8_t b1, b2, b3, b4; uint8_t b4 = count++, b3 = count++;
b4 = count++; uint8_t b2 = count++, b1 = count++;
b3 = count++; word = BYTE_SHIFT(b1, 3) | BYTE_SHIFT(b2, 2) | BYTE_SHIFT(b3, 1) | b4;
b2 = count++;
b1 = count++;
word = (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
*ptr++ = word; *ptr++ = word;
pdot(i); pdot(i);
} }
ml_printf("done\n"); ml_printf("done @ %p\n", ptr);
} }
static void init_test_data_u64(int offset)
{
uint8_t count = 0;
uint64_t word, *ptr = (uint64_t *) &test_data[offset];
const int max = (TEST_SIZE - offset) / sizeof(word);
int i;
static int read_test_data_u16(int offset) ml_printf("Filling test area with u64 (offset %d, %p):", offset, ptr);
reset_start_data(offset);
for (i = 0; i < max; i++) {
uint8_t b8 = count++, b7 = count++;
uint8_t b6 = count++, b5 = count++;
uint8_t b4 = count++, b3 = count++;
uint8_t b2 = count++, b1 = count++;
word = BYTE_SHIFT(b1, 7) | BYTE_SHIFT(b2, 6) | BYTE_SHIFT(b3, 5) |
BYTE_SHIFT(b4, 4) | BYTE_SHIFT(b5, 3) | BYTE_SHIFT(b6, 2) |
BYTE_SHIFT(b7, 1) | b8;
*ptr++ = word;
pdot(i);
}
ml_printf("done @ %p\n", ptr);
}
static bool read_test_data_u16(int offset)
{ {
uint16_t word, *ptr = (uint16_t *)&test_data[offset]; uint16_t word, *ptr = (uint16_t *)&test_data[offset];
int i; int i;
@ -114,17 +188,17 @@ static int read_test_data_u16(int offset)
low = word & 0xff; low = word & 0xff;
if (high < low && high != 0) { if (high < low && high != 0) {
ml_printf("Error %d < %d\n", high, low); ml_printf("Error %d < %d\n", high, low);
return 1; return false;
} else { } else {
pdot(i); pdot(i);
} }
} }
ml_printf("done\n"); ml_printf("done @ %p\n", ptr);
return 0; return true;
} }
static int read_test_data_u32(int offset) static bool read_test_data_u32(int offset)
{ {
uint32_t word, *ptr = (uint32_t *)&test_data[offset]; uint32_t word, *ptr = (uint32_t *)&test_data[offset];
int i; int i;
@ -145,16 +219,16 @@ static int read_test_data_u32(int offset)
(b2 < b3 && b2 != 0) || (b2 < b3 && b2 != 0) ||
(b3 < b4 && b3 != 0)) { (b3 < b4 && b3 != 0)) {
ml_printf("Error %d, %d, %d, %d", b1, b2, b3, b4); ml_printf("Error %d, %d, %d, %d", b1, b2, b3, b4);
return 2; return false;
} else { } else {
pdot(i); pdot(i);
} }
} }
ml_printf("done\n"); ml_printf("done @ %p\n", ptr);
return 0; return true;
} }
static int read_test_data_u64(int offset) static bool read_test_data_u64(int offset)
{ {
uint64_t word, *ptr = (uint64_t *)&test_data[offset]; uint64_t word, *ptr = (uint64_t *)&test_data[offset];
int i; int i;
@ -184,60 +258,192 @@ static int read_test_data_u64(int offset)
(b7 < b8 && b7 != 0)) { (b7 < b8 && b7 != 0)) {
ml_printf("Error %d, %d, %d, %d, %d, %d, %d, %d", ml_printf("Error %d, %d, %d, %d, %d, %d, %d, %d",
b1, b2, b3, b4, b5, b6, b7, b8); b1, b2, b3, b4, b5, b6, b7, b8);
return 2; return false;
} else { } else {
pdot(i); pdot(i);
} }
} }
ml_printf("done\n"); ml_printf("done @ %p\n", ptr);
return 0; return true;
} }
/* Read the test data and verify at various offsets */ /* Read the test data and verify at various offsets */
int do_reads(void) read_ufn read_ufns[] = { read_test_data_u16,
{ read_test_data_u32,
int r = 0; read_test_data_u64 };
int off = 0;
while (r == 0 && off < 8) { bool do_unsigned_reads(void)
r = read_test_data_u16(off); {
r |= read_test_data_u32(off); int i;
r |= read_test_data_u64(off); bool ok = true;
off++;
for (i = 0; i < ARRAY_SIZE(read_ufns) && ok; i++) {
#if CHECK_UNALIGNED
int off;
for (off = 0; off < 8 && ok; off++) {
ok = read_ufns[i](off);
}
#else
ok = read_ufns[i](0);
#endif
} }
return r; return ok;
} }
static bool do_unsigned_test(init_ufn fn)
{
#if CHECK_UNALIGNED
bool ok = true;
int i;
for (i = 0; i < 8 && ok; i++) {
fn(i);
ok = do_unsigned_reads();
}
#else
fn(0);
return do_unsigned_reads();
#endif
}
/*
* We need to ensure signed data is read into a larger data type to
* ensure that sign extension is working properly.
*/
static bool read_test_data_s8(int offset, bool neg_first)
{
int8_t *ptr = (int8_t *)&test_data[offset];
int i;
const int max = (TEST_SIZE - offset) / 2;
ml_printf("Reading s8 pairs from %#lx (offset %d):", ptr, offset);
for (i = 0; i < max; i++) {
int16_t first, second;
bool ok;
first = *ptr++;
second = *ptr++;
if (neg_first && first < 0 && second > 0) {
pdot(i);
} else if (!neg_first && first > 0 && second < 0) {
pdot(i);
} else {
ml_printf("Error %d %c %d\n", first, neg_first ? '<' : '>', second);
return false;
}
}
ml_printf("done @ %p\n", ptr);
return true;
}
static bool read_test_data_s16(int offset, bool neg_first)
{
int16_t *ptr = (int16_t *)&test_data[offset];
int i;
const int max = (TEST_SIZE - offset) / (sizeof(*ptr));
ml_printf("Reading s16 from %#lx (offset %d, %s):", ptr,
offset, neg_first ? "neg" : "pos");
for (i = 0; i < max; i++) {
int32_t data = *ptr++;
if (neg_first && data < 0) {
pdot(i);
} else if (data > 0) {
pdot(i);
} else {
ml_printf("Error %d %c 0\n", data, neg_first ? '<' : '>');
return false;
}
}
ml_printf("done @ %p\n", ptr);
return true;
}
static bool read_test_data_s32(int offset, bool neg_first)
{
int32_t *ptr = (int32_t *)&test_data[offset];
int i;
const int max = (TEST_SIZE - offset) / (sizeof(int32_t));
ml_printf("Reading s32 from %#lx (offset %d, %s):",
ptr, offset, neg_first ? "neg" : "pos");
for (i = 0; i < max; i++) {
int64_t data = *ptr++;
if (neg_first && data < 0) {
pdot(i);
} else if (data > 0) {
pdot(i);
} else {
ml_printf("Error %d %c 0\n", data, neg_first ? '<' : '>');
return false;
}
}
ml_printf("done @ %p\n", ptr);
return true;
}
/*
* Read the test data and verify at various offsets
*
* For everything except bytes all our reads should be either positive
* or negative depending on what offset we are reading from. Currently
* we only handle LE systems.
*/
read_sfn read_sfns[] = { read_test_data_s8,
read_test_data_s16,
read_test_data_s32 };
bool do_signed_reads(bool neg_first)
{
int i;
bool ok = true;
for (i = 0; i < ARRAY_SIZE(read_sfns) && ok; i++) {
#if CHECK_UNALIGNED
int off;
for (off = 0; off < 8 && ok; off++) {
bool nf = i == 0 ? neg_first ^ (off & 1) : !(neg_first ^ (off & 1));
ok = read_sfns[i](off, nf);
}
#else
ok = read_sfns[i](0, i == 0 ? neg_first : !neg_first);
#endif
}
return ok;
}
init_ufn init_ufns[] = { init_test_data_u8,
init_test_data_u16,
init_test_data_u32,
init_test_data_u64 };
int main(void) int main(void)
{ {
int i, r = 0; int i;
bool ok = true;
/* Run through the unsigned tests first */
init_test_data_u8(); for (i = 0; i < ARRAY_SIZE(init_ufns) && ok; i++) {
r = do_reads(); ok = do_unsigned_test(init_ufns[i]);
if (r) {
return r;
} }
for (i = 0; i < 8; i++) { if (ok) {
init_test_data_u16(i); init_test_data_s8(false);
ok = do_signed_reads(false);
r = do_reads();
if (r) {
return r;
}
} }
for (i = 0; i < 8; i++) { if (ok) {
init_test_data_u32(i); init_test_data_s8(true);
ok = do_signed_reads(true);
r = do_reads();
if (r) {
return r;
}
} }
ml_printf("Test complete: %s\n", r == 0 ? "PASSED" : "FAILED"); ml_printf("Test complete: %s\n", ok ? "PASSED" : "FAILED");
return r; return ok ? 0 : -1;
} }