docs: add qemu-block-drivers(7) man page
Block driver documentation is available in qemu-doc.html. It would be convenient to have documentation for formats, protocols, and filter drivers in a man page. Extract the relevant part of qemu-doc.html into a new file called docs/qemu-block-drivers.texi. This file can also be built as a stand-alone document (man, html, etc). Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
This commit is contained in:
parent
97ec9117c3
commit
78aa8aa019
6
Makefile
6
Makefile
@ -209,6 +209,7 @@ ifdef BUILD_DOCS
|
||||
DOCS=qemu-doc.html qemu-doc.txt qemu.1 qemu-img.1 qemu-nbd.8 qemu-ga.8
|
||||
DOCS+=docs/interop/qemu-qmp-ref.html docs/interop/qemu-qmp-ref.txt docs/interop/qemu-qmp-ref.7
|
||||
DOCS+=docs/interop/qemu-ga-ref.html docs/interop/qemu-ga-ref.txt docs/interop/qemu-ga-ref.7
|
||||
DOCS+=docs/qemu-block-drivers.7
|
||||
ifdef CONFIG_VIRTFS
|
||||
DOCS+=fsdev/virtfs-proxy-helper.1
|
||||
endif
|
||||
@ -532,6 +533,7 @@ distclean: clean
|
||||
rm -f docs/interop/qemu-qmp-ref.txt docs/interop/qemu-ga-ref.txt
|
||||
rm -f docs/interop/qemu-qmp-ref.pdf docs/interop/qemu-ga-ref.pdf
|
||||
rm -f docs/interop/qemu-qmp-ref.html docs/interop/qemu-ga-ref.html
|
||||
rm -f docs/qemu-block-drivers.7
|
||||
for d in $(TARGET_DIRS); do \
|
||||
rm -rf $$d || exit 1 ; \
|
||||
done
|
||||
@ -576,6 +578,7 @@ ifdef CONFIG_POSIX
|
||||
$(INSTALL_DATA) qemu.1 "$(DESTDIR)$(mandir)/man1"
|
||||
$(INSTALL_DIR) "$(DESTDIR)$(mandir)/man7"
|
||||
$(INSTALL_DATA) docs/interop/qemu-qmp-ref.7 "$(DESTDIR)$(mandir)/man7"
|
||||
$(INSTALL_DATA) docs/qemu-block-drivers.7 "$(DESTDIR)$(mandir)/man7"
|
||||
ifneq ($(TOOLS),)
|
||||
$(INSTALL_DATA) qemu-img.1 "$(DESTDIR)$(mandir)/man1"
|
||||
$(INSTALL_DIR) "$(DESTDIR)$(mandir)/man8"
|
||||
@ -721,6 +724,7 @@ qemu-img.1: qemu-img.texi qemu-option-trace.texi qemu-img-cmds.texi
|
||||
fsdev/virtfs-proxy-helper.1: fsdev/virtfs-proxy-helper.texi
|
||||
qemu-nbd.8: qemu-nbd.texi qemu-option-trace.texi
|
||||
qemu-ga.8: qemu-ga.texi
|
||||
docs/qemu-block-drivers.7: docs/qemu-block-drivers.texi
|
||||
|
||||
html: qemu-doc.html docs/interop/qemu-qmp-ref.html docs/interop/qemu-ga-ref.html
|
||||
info: qemu-doc.info docs/interop/qemu-qmp-ref.info docs/interop/qemu-ga-ref.info
|
||||
@ -730,7 +734,7 @@ txt: qemu-doc.txt docs/interop/qemu-qmp-ref.txt docs/interop/qemu-ga-ref.txt
|
||||
qemu-doc.html qemu-doc.info qemu-doc.pdf qemu-doc.txt: \
|
||||
qemu-img.texi qemu-nbd.texi qemu-options.texi qemu-option-trace.texi \
|
||||
qemu-monitor.texi qemu-img-cmds.texi qemu-ga.texi \
|
||||
qemu-monitor-info.texi
|
||||
qemu-monitor-info.texi docs/qemu-block-drivers.texi
|
||||
|
||||
docs/interop/qemu-ga-ref.dvi docs/interop/qemu-ga-ref.html \
|
||||
docs/interop/qemu-ga-ref.info docs/interop/qemu-ga-ref.pdf \
|
||||
|
804
docs/qemu-block-drivers.texi
Normal file
804
docs/qemu-block-drivers.texi
Normal file
@ -0,0 +1,804 @@
|
||||
@c man begin SYNOPSIS
|
||||
QEMU block driver reference manual
|
||||
@c man end
|
||||
|
||||
@c man begin DESCRIPTION
|
||||
|
||||
@node disk_images_formats
|
||||
@subsection Disk image file formats
|
||||
|
||||
QEMU supports many image file formats that can be used with VMs as well as with
|
||||
any of the tools (like @code{qemu-img}). This includes the preferred formats
|
||||
raw and qcow2 as well as formats that are supported for compatibility with
|
||||
older QEMU versions or other hypervisors.
|
||||
|
||||
Depending on the image format, different options can be passed to
|
||||
@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
|
||||
This section describes each format and the options that are supported for it.
|
||||
|
||||
@table @option
|
||||
@item raw
|
||||
|
||||
Raw disk image format. This format has the advantage of
|
||||
being simple and easily exportable to all other emulators. If your
|
||||
file system supports @emph{holes} (for example in ext2 or ext3 on
|
||||
Linux or NTFS on Windows), then only the written sectors will reserve
|
||||
space. Use @code{qemu-img info} to know the real size used by the
|
||||
image or @code{ls -ls} on Unix/Linux.
|
||||
|
||||
Supported options:
|
||||
@table @code
|
||||
@item preallocation
|
||||
Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
|
||||
@code{falloc} mode preallocates space for image by calling posix_fallocate().
|
||||
@code{full} mode preallocates space for image by writing zeros to underlying
|
||||
storage.
|
||||
@end table
|
||||
|
||||
@item qcow2
|
||||
QEMU image format, the most versatile format. Use it to have smaller
|
||||
images (useful if your filesystem does not supports holes, for example
|
||||
on Windows), zlib based compression and support of multiple VM
|
||||
snapshots.
|
||||
|
||||
Supported options:
|
||||
@table @code
|
||||
@item compat
|
||||
Determines the qcow2 version to use. @code{compat=0.10} uses the
|
||||
traditional image format that can be read by any QEMU since 0.10.
|
||||
@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
|
||||
newer understand (this is the default). Amongst others, this includes
|
||||
zero clusters, which allow efficient copy-on-read for sparse images.
|
||||
|
||||
@item backing_file
|
||||
File name of a base image (see @option{create} subcommand)
|
||||
@item backing_fmt
|
||||
Image format of the base image
|
||||
@item encryption
|
||||
This option is deprecated and equivalent to @code{encrypt.format=aes}
|
||||
|
||||
@item encrypt.format
|
||||
|
||||
If this is set to @code{luks}, it requests that the qcow2 payload (not
|
||||
qcow2 header) be encrypted using the LUKS format. The passphrase to
|
||||
use to unlock the LUKS key slot is given by the @code{encrypt.key-secret}
|
||||
parameter. LUKS encryption parameters can be tuned with the other
|
||||
@code{encrypt.*} parameters.
|
||||
|
||||
If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC.
|
||||
The encryption key is given by the @code{encrypt.key-secret} parameter.
|
||||
This encryption format is considered to be flawed by modern cryptography
|
||||
standards, suffering from a number of design problems:
|
||||
|
||||
@itemize @minus
|
||||
@item The AES-CBC cipher is used with predictable initialization vectors based
|
||||
on the sector number. This makes it vulnerable to chosen plaintext attacks
|
||||
which can reveal the existence of encrypted data.
|
||||
@item The user passphrase is directly used as the encryption key. A poorly
|
||||
chosen or short passphrase will compromise the security of the encryption.
|
||||
@item In the event of the passphrase being compromised there is no way to
|
||||
change the passphrase to protect data in any qcow images. The files must
|
||||
be cloned, using a different encryption passphrase in the new file. The
|
||||
original file must then be securely erased using a program like shred,
|
||||
though even this is ineffective with many modern storage technologies.
|
||||
@end itemize
|
||||
|
||||
The use of this is no longer supported in system emulators. Support only
|
||||
remains in the command line utilities, for the purposes of data liberation
|
||||
and interoperability with old versions of QEMU. The @code{luks} format
|
||||
should be used instead.
|
||||
|
||||
@item encrypt.key-secret
|
||||
|
||||
Provides the ID of a @code{secret} object that contains the passphrase
|
||||
(@code{encrypt.format=luks}) or encryption key (@code{encrypt.format=aes}).
|
||||
|
||||
@item encrypt.cipher-alg
|
||||
|
||||
Name of the cipher algorithm and key length. Currently defaults
|
||||
to @code{aes-256}. Only used when @code{encrypt.format=luks}.
|
||||
|
||||
@item encrypt.cipher-mode
|
||||
|
||||
Name of the encryption mode to use. Currently defaults to @code{xts}.
|
||||
Only used when @code{encrypt.format=luks}.
|
||||
|
||||
@item encrypt.ivgen-alg
|
||||
|
||||
Name of the initialization vector generator algorithm. Currently defaults
|
||||
to @code{plain64}. Only used when @code{encrypt.format=luks}.
|
||||
|
||||
@item encrypt.ivgen-hash-alg
|
||||
|
||||
Name of the hash algorithm to use with the initialization vector generator
|
||||
(if required). Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}.
|
||||
|
||||
@item encrypt.hash-alg
|
||||
|
||||
Name of the hash algorithm to use for PBKDF algorithm
|
||||
Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}.
|
||||
|
||||
@item encrypt.iter-time
|
||||
|
||||
Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
|
||||
Defaults to @code{2000}. Only used when @code{encrypt.format=luks}.
|
||||
|
||||
@item cluster_size
|
||||
Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
|
||||
sizes can improve the image file size whereas larger cluster sizes generally
|
||||
provide better performance.
|
||||
|
||||
@item preallocation
|
||||
Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
|
||||
@code{full}). An image with preallocated metadata is initially larger but can
|
||||
improve performance when the image needs to grow. @code{falloc} and @code{full}
|
||||
preallocations are like the same options of @code{raw} format, but sets up
|
||||
metadata also.
|
||||
|
||||
@item lazy_refcounts
|
||||
If this option is set to @code{on}, reference count updates are postponed with
|
||||
the goal of avoiding metadata I/O and improving performance. This is
|
||||
particularly interesting with @option{cache=writethrough} which doesn't batch
|
||||
metadata updates. The tradeoff is that after a host crash, the reference count
|
||||
tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
|
||||
check -r all} is required, which may take some time.
|
||||
|
||||
This option can only be enabled if @code{compat=1.1} is specified.
|
||||
|
||||
@item nocow
|
||||
If this option is set to @code{on}, it will turn off COW of the file. It's only
|
||||
valid on btrfs, no effect on other file systems.
|
||||
|
||||
Btrfs has low performance when hosting a VM image file, even more when the guest
|
||||
on the VM also using btrfs as file system. Turning off COW is a way to mitigate
|
||||
this bad performance. Generally there are two ways to turn off COW on btrfs:
|
||||
a) Disable it by mounting with nodatacow, then all newly created files will be
|
||||
NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
|
||||
does.
|
||||
|
||||
Note: this option is only valid to new or empty files. If there is an existing
|
||||
file which is COW and has data blocks already, it couldn't be changed to NOCOW
|
||||
by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
|
||||
the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
|
||||
|
||||
@end table
|
||||
|
||||
@item qed
|
||||
Old QEMU image format with support for backing files and compact image files
|
||||
(when your filesystem or transport medium does not support holes).
|
||||
|
||||
When converting QED images to qcow2, you might want to consider using the
|
||||
@code{lazy_refcounts=on} option to get a more QED-like behaviour.
|
||||
|
||||
Supported options:
|
||||
@table @code
|
||||
@item backing_file
|
||||
File name of a base image (see @option{create} subcommand).
|
||||
@item backing_fmt
|
||||
Image file format of backing file (optional). Useful if the format cannot be
|
||||
autodetected because it has no header, like some vhd/vpc files.
|
||||
@item cluster_size
|
||||
Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
|
||||
cluster sizes can improve the image file size whereas larger cluster sizes
|
||||
generally provide better performance.
|
||||
@item table_size
|
||||
Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
|
||||
and 16). There is normally no need to change this value but this option can be
|
||||
used for performance benchmarking.
|
||||
@end table
|
||||
|
||||
@item qcow
|
||||
Old QEMU image format with support for backing files, compact image files,
|
||||
encryption and compression.
|
||||
|
||||
Supported options:
|
||||
@table @code
|
||||
@item backing_file
|
||||
File name of a base image (see @option{create} subcommand)
|
||||
@item encryption
|
||||
This option is deprecated and equivalent to @code{encrypt.format=aes}
|
||||
|
||||
@item encrypt.format
|
||||
If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC.
|
||||
The encryption key is given by the @code{encrypt.key-secret} parameter.
|
||||
This encryption format is considered to be flawed by modern cryptography
|
||||
standards, suffering from a number of design problems enumerated previously
|
||||
against the @code{qcow2} image format.
|
||||
|
||||
The use of this is no longer supported in system emulators. Support only
|
||||
remains in the command line utilities, for the purposes of data liberation
|
||||
and interoperability with old versions of QEMU.
|
||||
|
||||
Users requiring native encryption should use the @code{qcow2} format
|
||||
instead with @code{encrypt.format=luks}.
|
||||
|
||||
@item encrypt.key-secret
|
||||
|
||||
Provides the ID of a @code{secret} object that contains the encryption
|
||||
key (@code{encrypt.format=aes}).
|
||||
|
||||
@end table
|
||||
|
||||
@item luks
|
||||
|
||||
LUKS v1 encryption format, compatible with Linux dm-crypt/cryptsetup
|
||||
|
||||
Supported options:
|
||||
@table @code
|
||||
|
||||
@item key-secret
|
||||
|
||||
Provides the ID of a @code{secret} object that contains the passphrase.
|
||||
|
||||
@item cipher-alg
|
||||
|
||||
Name of the cipher algorithm and key length. Currently defaults
|
||||
to @code{aes-256}.
|
||||
|
||||
@item cipher-mode
|
||||
|
||||
Name of the encryption mode to use. Currently defaults to @code{xts}.
|
||||
|
||||
@item ivgen-alg
|
||||
|
||||
Name of the initialization vector generator algorithm. Currently defaults
|
||||
to @code{plain64}.
|
||||
|
||||
@item ivgen-hash-alg
|
||||
|
||||
Name of the hash algorithm to use with the initialization vector generator
|
||||
(if required). Defaults to @code{sha256}.
|
||||
|
||||
@item hash-alg
|
||||
|
||||
Name of the hash algorithm to use for PBKDF algorithm
|
||||
Defaults to @code{sha256}.
|
||||
|
||||
@item iter-time
|
||||
|
||||
Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
|
||||
Defaults to @code{2000}.
|
||||
|
||||
@end table
|
||||
|
||||
@item vdi
|
||||
VirtualBox 1.1 compatible image format.
|
||||
Supported options:
|
||||
@table @code
|
||||
@item static
|
||||
If this option is set to @code{on}, the image is created with metadata
|
||||
preallocation.
|
||||
@end table
|
||||
|
||||
@item vmdk
|
||||
VMware 3 and 4 compatible image format.
|
||||
|
||||
Supported options:
|
||||
@table @code
|
||||
@item backing_file
|
||||
File name of a base image (see @option{create} subcommand).
|
||||
@item compat6
|
||||
Create a VMDK version 6 image (instead of version 4)
|
||||
@item hwversion
|
||||
Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
|
||||
if hwversion is specified.
|
||||
@item subformat
|
||||
Specifies which VMDK subformat to use. Valid options are
|
||||
@code{monolithicSparse} (default),
|
||||
@code{monolithicFlat},
|
||||
@code{twoGbMaxExtentSparse},
|
||||
@code{twoGbMaxExtentFlat} and
|
||||
@code{streamOptimized}.
|
||||
@end table
|
||||
|
||||
@item vpc
|
||||
VirtualPC compatible image format (VHD).
|
||||
Supported options:
|
||||
@table @code
|
||||
@item subformat
|
||||
Specifies which VHD subformat to use. Valid options are
|
||||
@code{dynamic} (default) and @code{fixed}.
|
||||
@end table
|
||||
|
||||
@item VHDX
|
||||
Hyper-V compatible image format (VHDX).
|
||||
Supported options:
|
||||
@table @code
|
||||
@item subformat
|
||||
Specifies which VHDX subformat to use. Valid options are
|
||||
@code{dynamic} (default) and @code{fixed}.
|
||||
@item block_state_zero
|
||||
Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
|
||||
or @code{off}. When set to @code{off}, new blocks will be created as
|
||||
@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
|
||||
arbitrary data for those blocks. Do not set to @code{off} when using
|
||||
@code{qemu-img convert} with @code{subformat=dynamic}.
|
||||
@item block_size
|
||||
Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
|
||||
@item log_size
|
||||
Log size; min 1 MB.
|
||||
@end table
|
||||
@end table
|
||||
|
||||
@subsubsection Read-only formats
|
||||
More disk image file formats are supported in a read-only mode.
|
||||
@table @option
|
||||
@item bochs
|
||||
Bochs images of @code{growing} type.
|
||||
@item cloop
|
||||
Linux Compressed Loop image, useful only to reuse directly compressed
|
||||
CD-ROM images present for example in the Knoppix CD-ROMs.
|
||||
@item dmg
|
||||
Apple disk image.
|
||||
@item parallels
|
||||
Parallels disk image format.
|
||||
@end table
|
||||
|
||||
|
||||
@node host_drives
|
||||
@subsection Using host drives
|
||||
|
||||
In addition to disk image files, QEMU can directly access host
|
||||
devices. We describe here the usage for QEMU version >= 0.8.3.
|
||||
|
||||
@subsubsection Linux
|
||||
|
||||
On Linux, you can directly use the host device filename instead of a
|
||||
disk image filename provided you have enough privileges to access
|
||||
it. For example, use @file{/dev/cdrom} to access to the CDROM.
|
||||
|
||||
@table @code
|
||||
@item CD
|
||||
You can specify a CDROM device even if no CDROM is loaded. QEMU has
|
||||
specific code to detect CDROM insertion or removal. CDROM ejection by
|
||||
the guest OS is supported. Currently only data CDs are supported.
|
||||
@item Floppy
|
||||
You can specify a floppy device even if no floppy is loaded. Floppy
|
||||
removal is currently not detected accurately (if you change floppy
|
||||
without doing floppy access while the floppy is not loaded, the guest
|
||||
OS will think that the same floppy is loaded).
|
||||
Use of the host's floppy device is deprecated, and support for it will
|
||||
be removed in a future release.
|
||||
@item Hard disks
|
||||
Hard disks can be used. Normally you must specify the whole disk
|
||||
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
|
||||
see it as a partitioned disk. WARNING: unless you know what you do, it
|
||||
is better to only make READ-ONLY accesses to the hard disk otherwise
|
||||
you may corrupt your host data (use the @option{-snapshot} command
|
||||
line option or modify the device permissions accordingly).
|
||||
@end table
|
||||
|
||||
@subsubsection Windows
|
||||
|
||||
@table @code
|
||||
@item CD
|
||||
The preferred syntax is the drive letter (e.g. @file{d:}). The
|
||||
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
|
||||
supported as an alias to the first CDROM drive.
|
||||
|
||||
Currently there is no specific code to handle removable media, so it
|
||||
is better to use the @code{change} or @code{eject} monitor commands to
|
||||
change or eject media.
|
||||
@item Hard disks
|
||||
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
|
||||
where @var{N} is the drive number (0 is the first hard disk).
|
||||
|
||||
WARNING: unless you know what you do, it is better to only make
|
||||
READ-ONLY accesses to the hard disk otherwise you may corrupt your
|
||||
host data (use the @option{-snapshot} command line so that the
|
||||
modifications are written in a temporary file).
|
||||
@end table
|
||||
|
||||
|
||||
@subsubsection Mac OS X
|
||||
|
||||
@file{/dev/cdrom} is an alias to the first CDROM.
|
||||
|
||||
Currently there is no specific code to handle removable media, so it
|
||||
is better to use the @code{change} or @code{eject} monitor commands to
|
||||
change or eject media.
|
||||
|
||||
@node disk_images_fat_images
|
||||
@subsection Virtual FAT disk images
|
||||
|
||||
QEMU can automatically create a virtual FAT disk image from a
|
||||
directory tree. In order to use it, just type:
|
||||
|
||||
@example
|
||||
qemu-system-i386 linux.img -hdb fat:/my_directory
|
||||
@end example
|
||||
|
||||
Then you access access to all the files in the @file{/my_directory}
|
||||
directory without having to copy them in a disk image or to export
|
||||
them via SAMBA or NFS. The default access is @emph{read-only}.
|
||||
|
||||
Floppies can be emulated with the @code{:floppy:} option:
|
||||
|
||||
@example
|
||||
qemu-system-i386 linux.img -fda fat:floppy:/my_directory
|
||||
@end example
|
||||
|
||||
A read/write support is available for testing (beta stage) with the
|
||||
@code{:rw:} option:
|
||||
|
||||
@example
|
||||
qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
|
||||
@end example
|
||||
|
||||
What you should @emph{never} do:
|
||||
@itemize
|
||||
@item use non-ASCII filenames ;
|
||||
@item use "-snapshot" together with ":rw:" ;
|
||||
@item expect it to work when loadvm'ing ;
|
||||
@item write to the FAT directory on the host system while accessing it with the guest system.
|
||||
@end itemize
|
||||
|
||||
@node disk_images_nbd
|
||||
@subsection NBD access
|
||||
|
||||
QEMU can access directly to block device exported using the Network Block Device
|
||||
protocol.
|
||||
|
||||
@example
|
||||
qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
|
||||
@end example
|
||||
|
||||
If the NBD server is located on the same host, you can use an unix socket instead
|
||||
of an inet socket:
|
||||
|
||||
@example
|
||||
qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
|
||||
@end example
|
||||
|
||||
In this case, the block device must be exported using qemu-nbd:
|
||||
|
||||
@example
|
||||
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
|
||||
@end example
|
||||
|
||||
The use of qemu-nbd allows sharing of a disk between several guests:
|
||||
@example
|
||||
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
|
||||
@end example
|
||||
|
||||
@noindent
|
||||
and then you can use it with two guests:
|
||||
@example
|
||||
qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
|
||||
qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
|
||||
@end example
|
||||
|
||||
If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
|
||||
own embedded NBD server), you must specify an export name in the URI:
|
||||
@example
|
||||
qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
|
||||
qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
|
||||
@end example
|
||||
|
||||
The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
|
||||
also available. Here are some example of the older syntax:
|
||||
@example
|
||||
qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
|
||||
qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
|
||||
qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
|
||||
@end example
|
||||
|
||||
@node disk_images_sheepdog
|
||||
@subsection Sheepdog disk images
|
||||
|
||||
Sheepdog is a distributed storage system for QEMU. It provides highly
|
||||
available block level storage volumes that can be attached to
|
||||
QEMU-based virtual machines.
|
||||
|
||||
You can create a Sheepdog disk image with the command:
|
||||
@example
|
||||
qemu-img create sheepdog:///@var{image} @var{size}
|
||||
@end example
|
||||
where @var{image} is the Sheepdog image name and @var{size} is its
|
||||
size.
|
||||
|
||||
To import the existing @var{filename} to Sheepdog, you can use a
|
||||
convert command.
|
||||
@example
|
||||
qemu-img convert @var{filename} sheepdog:///@var{image}
|
||||
@end example
|
||||
|
||||
You can boot from the Sheepdog disk image with the command:
|
||||
@example
|
||||
qemu-system-i386 sheepdog:///@var{image}
|
||||
@end example
|
||||
|
||||
You can also create a snapshot of the Sheepdog image like qcow2.
|
||||
@example
|
||||
qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
|
||||
@end example
|
||||
where @var{tag} is a tag name of the newly created snapshot.
|
||||
|
||||
To boot from the Sheepdog snapshot, specify the tag name of the
|
||||
snapshot.
|
||||
@example
|
||||
qemu-system-i386 sheepdog:///@var{image}#@var{tag}
|
||||
@end example
|
||||
|
||||
You can create a cloned image from the existing snapshot.
|
||||
@example
|
||||
qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
|
||||
@end example
|
||||
where @var{base} is a image name of the source snapshot and @var{tag}
|
||||
is its tag name.
|
||||
|
||||
You can use an unix socket instead of an inet socket:
|
||||
|
||||
@example
|
||||
qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
|
||||
@end example
|
||||
|
||||
If the Sheepdog daemon doesn't run on the local host, you need to
|
||||
specify one of the Sheepdog servers to connect to.
|
||||
@example
|
||||
qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
|
||||
qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
|
||||
@end example
|
||||
|
||||
@node disk_images_iscsi
|
||||
@subsection iSCSI LUNs
|
||||
|
||||
iSCSI is a popular protocol used to access SCSI devices across a computer
|
||||
network.
|
||||
|
||||
There are two different ways iSCSI devices can be used by QEMU.
|
||||
|
||||
The first method is to mount the iSCSI LUN on the host, and make it appear as
|
||||
any other ordinary SCSI device on the host and then to access this device as a
|
||||
/dev/sd device from QEMU. How to do this differs between host OSes.
|
||||
|
||||
The second method involves using the iSCSI initiator that is built into
|
||||
QEMU. This provides a mechanism that works the same way regardless of which
|
||||
host OS you are running QEMU on. This section will describe this second method
|
||||
of using iSCSI together with QEMU.
|
||||
|
||||
In QEMU, iSCSI devices are described using special iSCSI URLs
|
||||
|
||||
@example
|
||||
URL syntax:
|
||||
iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
|
||||
@end example
|
||||
|
||||
Username and password are optional and only used if your target is set up
|
||||
using CHAP authentication for access control.
|
||||
Alternatively the username and password can also be set via environment
|
||||
variables to have these not show up in the process list
|
||||
|
||||
@example
|
||||
export LIBISCSI_CHAP_USERNAME=<username>
|
||||
export LIBISCSI_CHAP_PASSWORD=<password>
|
||||
iscsi://<host>/<target-iqn-name>/<lun>
|
||||
@end example
|
||||
|
||||
Various session related parameters can be set via special options, either
|
||||
in a configuration file provided via '-readconfig' or directly on the
|
||||
command line.
|
||||
|
||||
If the initiator-name is not specified qemu will use a default name
|
||||
of 'iqn.2008-11.org.linux-kvm[:<uuid>'] where <uuid> is the UUID of the
|
||||
virtual machine. If the UUID is not specified qemu will use
|
||||
'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
|
||||
virtual machine.
|
||||
|
||||
@example
|
||||
Setting a specific initiator name to use when logging in to the target
|
||||
-iscsi initiator-name=iqn.qemu.test:my-initiator
|
||||
@end example
|
||||
|
||||
@example
|
||||
Controlling which type of header digest to negotiate with the target
|
||||
-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
|
||||
@end example
|
||||
|
||||
These can also be set via a configuration file
|
||||
@example
|
||||
[iscsi]
|
||||
user = "CHAP username"
|
||||
password = "CHAP password"
|
||||
initiator-name = "iqn.qemu.test:my-initiator"
|
||||
# header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
|
||||
header-digest = "CRC32C"
|
||||
@end example
|
||||
|
||||
|
||||
Setting the target name allows different options for different targets
|
||||
@example
|
||||
[iscsi "iqn.target.name"]
|
||||
user = "CHAP username"
|
||||
password = "CHAP password"
|
||||
initiator-name = "iqn.qemu.test:my-initiator"
|
||||
# header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
|
||||
header-digest = "CRC32C"
|
||||
@end example
|
||||
|
||||
|
||||
Howto use a configuration file to set iSCSI configuration options:
|
||||
@example
|
||||
cat >iscsi.conf <<EOF
|
||||
[iscsi]
|
||||
user = "me"
|
||||
password = "my password"
|
||||
initiator-name = "iqn.qemu.test:my-initiator"
|
||||
header-digest = "CRC32C"
|
||||
EOF
|
||||
|
||||
qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
|
||||
-readconfig iscsi.conf
|
||||
@end example
|
||||
|
||||
|
||||
Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
|
||||
@example
|
||||
This example shows how to set up an iSCSI target with one CDROM and one DISK
|
||||
using the Linux STGT software target. This target is available on Red Hat based
|
||||
systems as the package 'scsi-target-utils'.
|
||||
|
||||
tgtd --iscsi portal=127.0.0.1:3260
|
||||
tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
|
||||
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
|
||||
-b /IMAGES/disk.img --device-type=disk
|
||||
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
|
||||
-b /IMAGES/cd.iso --device-type=cd
|
||||
tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
|
||||
|
||||
qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
|
||||
-boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
|
||||
-cdrom iscsi://127.0.0.1/iqn.qemu.test/2
|
||||
@end example
|
||||
|
||||
@node disk_images_gluster
|
||||
@subsection GlusterFS disk images
|
||||
|
||||
GlusterFS is a user space distributed file system.
|
||||
|
||||
You can boot from the GlusterFS disk image with the command:
|
||||
@example
|
||||
URI:
|
||||
qemu-system-x86_64 -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path}
|
||||
[?socket=...][,file.debug=9][,file.logfile=...]
|
||||
|
||||
JSON:
|
||||
qemu-system-x86_64 'json:@{"driver":"qcow2",
|
||||
"file":@{"driver":"gluster",
|
||||
"volume":"testvol","path":"a.img","debug":9,"logfile":"...",
|
||||
"server":[@{"type":"tcp","host":"...","port":"..."@},
|
||||
@{"type":"unix","socket":"..."@}]@}@}'
|
||||
@end example
|
||||
|
||||
@var{gluster} is the protocol.
|
||||
|
||||
@var{type} specifies the transport type used to connect to gluster
|
||||
management daemon (glusterd). Valid transport types are
|
||||
tcp and unix. In the URI form, if a transport type isn't specified,
|
||||
then tcp type is assumed.
|
||||
|
||||
@var{host} specifies the server where the volume file specification for
|
||||
the given volume resides. This can be either a hostname or an ipv4 address.
|
||||
If transport type is unix, then @var{host} field should not be specified.
|
||||
Instead @var{socket} field needs to be populated with the path to unix domain
|
||||
socket.
|
||||
|
||||
@var{port} is the port number on which glusterd is listening. This is optional
|
||||
and if not specified, it defaults to port 24007. If the transport type is unix,
|
||||
then @var{port} should not be specified.
|
||||
|
||||
@var{volume} is the name of the gluster volume which contains the disk image.
|
||||
|
||||
@var{path} is the path to the actual disk image that resides on gluster volume.
|
||||
|
||||
@var{debug} is the logging level of the gluster protocol driver. Debug levels
|
||||
are 0-9, with 9 being the most verbose, and 0 representing no debugging output.
|
||||
The default level is 4. The current logging levels defined in the gluster source
|
||||
are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning,
|
||||
6 - Notice, 7 - Info, 8 - Debug, 9 - Trace
|
||||
|
||||
@var{logfile} is a commandline option to mention log file path which helps in
|
||||
logging to the specified file and also help in persisting the gfapi logs. The
|
||||
default is stderr.
|
||||
|
||||
|
||||
|
||||
|
||||
You can create a GlusterFS disk image with the command:
|
||||
@example
|
||||
qemu-img create gluster://@var{host}/@var{volume}/@var{path} @var{size}
|
||||
@end example
|
||||
|
||||
Examples
|
||||
@example
|
||||
qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
|
||||
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
|
||||
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
|
||||
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
|
||||
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
|
||||
qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
|
||||
qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
|
||||
qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
|
||||
qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log
|
||||
qemu-system-x86_64 'json:@{"driver":"qcow2",
|
||||
"file":@{"driver":"gluster",
|
||||
"volume":"testvol","path":"a.img",
|
||||
"debug":9,"logfile":"/var/log/qemu-gluster.log",
|
||||
"server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
|
||||
@{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
|
||||
qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
|
||||
file.debug=9,file.logfile=/var/log/qemu-gluster.log,
|
||||
file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
|
||||
file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
|
||||
@end example
|
||||
|
||||
@node disk_images_ssh
|
||||
@subsection Secure Shell (ssh) disk images
|
||||
|
||||
You can access disk images located on a remote ssh server
|
||||
by using the ssh protocol:
|
||||
|
||||
@example
|
||||
qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
|
||||
@end example
|
||||
|
||||
Alternative syntax using properties:
|
||||
|
||||
@example
|
||||
qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
|
||||
@end example
|
||||
|
||||
@var{ssh} is the protocol.
|
||||
|
||||
@var{user} is the remote user. If not specified, then the local
|
||||
username is tried.
|
||||
|
||||
@var{server} specifies the remote ssh server. Any ssh server can be
|
||||
used, but it must implement the sftp-server protocol. Most Unix/Linux
|
||||
systems should work without requiring any extra configuration.
|
||||
|
||||
@var{port} is the port number on which sshd is listening. By default
|
||||
the standard ssh port (22) is used.
|
||||
|
||||
@var{path} is the path to the disk image.
|
||||
|
||||
The optional @var{host_key_check} parameter controls how the remote
|
||||
host's key is checked. The default is @code{yes} which means to use
|
||||
the local @file{.ssh/known_hosts} file. Setting this to @code{no}
|
||||
turns off known-hosts checking. Or you can check that the host key
|
||||
matches a specific fingerprint:
|
||||
@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
|
||||
(@code{sha1:} can also be used as a prefix, but note that OpenSSH
|
||||
tools only use MD5 to print fingerprints).
|
||||
|
||||
Currently authentication must be done using ssh-agent. Other
|
||||
authentication methods may be supported in future.
|
||||
|
||||
Note: Many ssh servers do not support an @code{fsync}-style operation.
|
||||
The ssh driver cannot guarantee that disk flush requests are
|
||||
obeyed, and this causes a risk of disk corruption if the remote
|
||||
server or network goes down during writes. The driver will
|
||||
print a warning when @code{fsync} is not supported:
|
||||
|
||||
warning: ssh server @code{ssh.example.com:22} does not support fsync
|
||||
|
||||
With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
|
||||
supported.
|
||||
|
||||
@c man end
|
||||
|
||||
@ignore
|
||||
|
||||
@setfilename qemu-block-drivers
|
||||
@settitle QEMU block drivers reference
|
||||
|
||||
@c man begin SEEALSO
|
||||
The HTML documentation of QEMU for more precise information and Linux
|
||||
user mode emulator invocation.
|
||||
@c man end
|
||||
|
||||
@c man begin AUTHOR
|
||||
Fabrice Bellard and the QEMU Project developers
|
||||
@c man end
|
||||
|
||||
@end ignore
|
781
qemu-doc.texi
781
qemu-doc.texi
@ -490,786 +490,7 @@ state is not saved or restored properly (in particular USB).
|
||||
|
||||
@include qemu-nbd.texi
|
||||
|
||||
@node disk_images_formats
|
||||
@subsection Disk image file formats
|
||||
|
||||
QEMU supports many image file formats that can be used with VMs as well as with
|
||||
any of the tools (like @code{qemu-img}). This includes the preferred formats
|
||||
raw and qcow2 as well as formats that are supported for compatibility with
|
||||
older QEMU versions or other hypervisors.
|
||||
|
||||
Depending on the image format, different options can be passed to
|
||||
@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
|
||||
This section describes each format and the options that are supported for it.
|
||||
|
||||
@table @option
|
||||
@item raw
|
||||
|
||||
Raw disk image format. This format has the advantage of
|
||||
being simple and easily exportable to all other emulators. If your
|
||||
file system supports @emph{holes} (for example in ext2 or ext3 on
|
||||
Linux or NTFS on Windows), then only the written sectors will reserve
|
||||
space. Use @code{qemu-img info} to know the real size used by the
|
||||
image or @code{ls -ls} on Unix/Linux.
|
||||
|
||||
Supported options:
|
||||
@table @code
|
||||
@item preallocation
|
||||
Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
|
||||
@code{falloc} mode preallocates space for image by calling posix_fallocate().
|
||||
@code{full} mode preallocates space for image by writing zeros to underlying
|
||||
storage.
|
||||
@end table
|
||||
|
||||
@item qcow2
|
||||
QEMU image format, the most versatile format. Use it to have smaller
|
||||
images (useful if your filesystem does not supports holes, for example
|
||||
on Windows), zlib based compression and support of multiple VM
|
||||
snapshots.
|
||||
|
||||
Supported options:
|
||||
@table @code
|
||||
@item compat
|
||||
Determines the qcow2 version to use. @code{compat=0.10} uses the
|
||||
traditional image format that can be read by any QEMU since 0.10.
|
||||
@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
|
||||
newer understand (this is the default). Amongst others, this includes
|
||||
zero clusters, which allow efficient copy-on-read for sparse images.
|
||||
|
||||
@item backing_file
|
||||
File name of a base image (see @option{create} subcommand)
|
||||
@item backing_fmt
|
||||
Image format of the base image
|
||||
@item encryption
|
||||
This option is deprecated and equivalent to @code{encrypt.format=aes}
|
||||
|
||||
@item encrypt.format
|
||||
|
||||
If this is set to @code{luks}, it requests that the qcow2 payload (not
|
||||
qcow2 header) be encrypted using the LUKS format. The passphrase to
|
||||
use to unlock the LUKS key slot is given by the @code{encrypt.key-secret}
|
||||
parameter. LUKS encryption parameters can be tuned with the other
|
||||
@code{encrypt.*} parameters.
|
||||
|
||||
If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC.
|
||||
The encryption key is given by the @code{encrypt.key-secret} parameter.
|
||||
This encryption format is considered to be flawed by modern cryptography
|
||||
standards, suffering from a number of design problems:
|
||||
|
||||
@itemize @minus
|
||||
@item The AES-CBC cipher is used with predictable initialization vectors based
|
||||
on the sector number. This makes it vulnerable to chosen plaintext attacks
|
||||
which can reveal the existence of encrypted data.
|
||||
@item The user passphrase is directly used as the encryption key. A poorly
|
||||
chosen or short passphrase will compromise the security of the encryption.
|
||||
@item In the event of the passphrase being compromised there is no way to
|
||||
change the passphrase to protect data in any qcow images. The files must
|
||||
be cloned, using a different encryption passphrase in the new file. The
|
||||
original file must then be securely erased using a program like shred,
|
||||
though even this is ineffective with many modern storage technologies.
|
||||
@end itemize
|
||||
|
||||
The use of this is no longer supported in system emulators. Support only
|
||||
remains in the command line utilities, for the purposes of data liberation
|
||||
and interoperability with old versions of QEMU. The @code{luks} format
|
||||
should be used instead.
|
||||
|
||||
@item encrypt.key-secret
|
||||
|
||||
Provides the ID of a @code{secret} object that contains the passphrase
|
||||
(@code{encrypt.format=luks}) or encryption key (@code{encrypt.format=aes}).
|
||||
|
||||
@item encrypt.cipher-alg
|
||||
|
||||
Name of the cipher algorithm and key length. Currently defaults
|
||||
to @code{aes-256}. Only used when @code{encrypt.format=luks}.
|
||||
|
||||
@item encrypt.cipher-mode
|
||||
|
||||
Name of the encryption mode to use. Currently defaults to @code{xts}.
|
||||
Only used when @code{encrypt.format=luks}.
|
||||
|
||||
@item encrypt.ivgen-alg
|
||||
|
||||
Name of the initialization vector generator algorithm. Currently defaults
|
||||
to @code{plain64}. Only used when @code{encrypt.format=luks}.
|
||||
|
||||
@item encrypt.ivgen-hash-alg
|
||||
|
||||
Name of the hash algorithm to use with the initialization vector generator
|
||||
(if required). Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}.
|
||||
|
||||
@item encrypt.hash-alg
|
||||
|
||||
Name of the hash algorithm to use for PBKDF algorithm
|
||||
Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}.
|
||||
|
||||
@item encrypt.iter-time
|
||||
|
||||
Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
|
||||
Defaults to @code{2000}. Only used when @code{encrypt.format=luks}.
|
||||
|
||||
@item cluster_size
|
||||
Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
|
||||
sizes can improve the image file size whereas larger cluster sizes generally
|
||||
provide better performance.
|
||||
|
||||
@item preallocation
|
||||
Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
|
||||
@code{full}). An image with preallocated metadata is initially larger but can
|
||||
improve performance when the image needs to grow. @code{falloc} and @code{full}
|
||||
preallocations are like the same options of @code{raw} format, but sets up
|
||||
metadata also.
|
||||
|
||||
@item lazy_refcounts
|
||||
If this option is set to @code{on}, reference count updates are postponed with
|
||||
the goal of avoiding metadata I/O and improving performance. This is
|
||||
particularly interesting with @option{cache=writethrough} which doesn't batch
|
||||
metadata updates. The tradeoff is that after a host crash, the reference count
|
||||
tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
|
||||
check -r all} is required, which may take some time.
|
||||
|
||||
This option can only be enabled if @code{compat=1.1} is specified.
|
||||
|
||||
@item nocow
|
||||
If this option is set to @code{on}, it will turn off COW of the file. It's only
|
||||
valid on btrfs, no effect on other file systems.
|
||||
|
||||
Btrfs has low performance when hosting a VM image file, even more when the guest
|
||||
on the VM also using btrfs as file system. Turning off COW is a way to mitigate
|
||||
this bad performance. Generally there are two ways to turn off COW on btrfs:
|
||||
a) Disable it by mounting with nodatacow, then all newly created files will be
|
||||
NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
|
||||
does.
|
||||
|
||||
Note: this option is only valid to new or empty files. If there is an existing
|
||||
file which is COW and has data blocks already, it couldn't be changed to NOCOW
|
||||
by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
|
||||
the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
|
||||
|
||||
@end table
|
||||
|
||||
@item qed
|
||||
Old QEMU image format with support for backing files and compact image files
|
||||
(when your filesystem or transport medium does not support holes).
|
||||
|
||||
When converting QED images to qcow2, you might want to consider using the
|
||||
@code{lazy_refcounts=on} option to get a more QED-like behaviour.
|
||||
|
||||
Supported options:
|
||||
@table @code
|
||||
@item backing_file
|
||||
File name of a base image (see @option{create} subcommand).
|
||||
@item backing_fmt
|
||||
Image file format of backing file (optional). Useful if the format cannot be
|
||||
autodetected because it has no header, like some vhd/vpc files.
|
||||
@item cluster_size
|
||||
Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
|
||||
cluster sizes can improve the image file size whereas larger cluster sizes
|
||||
generally provide better performance.
|
||||
@item table_size
|
||||
Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
|
||||
and 16). There is normally no need to change this value but this option can be
|
||||
used for performance benchmarking.
|
||||
@end table
|
||||
|
||||
@item qcow
|
||||
Old QEMU image format with support for backing files, compact image files,
|
||||
encryption and compression.
|
||||
|
||||
Supported options:
|
||||
@table @code
|
||||
@item backing_file
|
||||
File name of a base image (see @option{create} subcommand)
|
||||
@item encryption
|
||||
This option is deprecated and equivalent to @code{encrypt.format=aes}
|
||||
|
||||
@item encrypt.format
|
||||
If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC.
|
||||
The encryption key is given by the @code{encrypt.key-secret} parameter.
|
||||
This encryption format is considered to be flawed by modern cryptography
|
||||
standards, suffering from a number of design problems enumerated previously
|
||||
against the @code{qcow2} image format.
|
||||
|
||||
The use of this is no longer supported in system emulators. Support only
|
||||
remains in the command line utilities, for the purposes of data liberation
|
||||
and interoperability with old versions of QEMU.
|
||||
|
||||
Users requiring native encryption should use the @code{qcow2} format
|
||||
instead with @code{encrypt.format=luks}.
|
||||
|
||||
@item encrypt.key-secret
|
||||
|
||||
Provides the ID of a @code{secret} object that contains the encryption
|
||||
key (@code{encrypt.format=aes}).
|
||||
|
||||
@end table
|
||||
|
||||
@item luks
|
||||
|
||||
LUKS v1 encryption format, compatible with Linux dm-crypt/cryptsetup
|
||||
|
||||
Supported options:
|
||||
@table @code
|
||||
|
||||
@item key-secret
|
||||
|
||||
Provides the ID of a @code{secret} object that contains the passphrase.
|
||||
|
||||
@item cipher-alg
|
||||
|
||||
Name of the cipher algorithm and key length. Currently defaults
|
||||
to @code{aes-256}.
|
||||
|
||||
@item cipher-mode
|
||||
|
||||
Name of the encryption mode to use. Currently defaults to @code{xts}.
|
||||
|
||||
@item ivgen-alg
|
||||
|
||||
Name of the initialization vector generator algorithm. Currently defaults
|
||||
to @code{plain64}.
|
||||
|
||||
@item ivgen-hash-alg
|
||||
|
||||
Name of the hash algorithm to use with the initialization vector generator
|
||||
(if required). Defaults to @code{sha256}.
|
||||
|
||||
@item hash-alg
|
||||
|
||||
Name of the hash algorithm to use for PBKDF algorithm
|
||||
Defaults to @code{sha256}.
|
||||
|
||||
@item iter-time
|
||||
|
||||
Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
|
||||
Defaults to @code{2000}.
|
||||
|
||||
@end table
|
||||
|
||||
@item vdi
|
||||
VirtualBox 1.1 compatible image format.
|
||||
Supported options:
|
||||
@table @code
|
||||
@item static
|
||||
If this option is set to @code{on}, the image is created with metadata
|
||||
preallocation.
|
||||
@end table
|
||||
|
||||
@item vmdk
|
||||
VMware 3 and 4 compatible image format.
|
||||
|
||||
Supported options:
|
||||
@table @code
|
||||
@item backing_file
|
||||
File name of a base image (see @option{create} subcommand).
|
||||
@item compat6
|
||||
Create a VMDK version 6 image (instead of version 4)
|
||||
@item hwversion
|
||||
Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
|
||||
if hwversion is specified.
|
||||
@item subformat
|
||||
Specifies which VMDK subformat to use. Valid options are
|
||||
@code{monolithicSparse} (default),
|
||||
@code{monolithicFlat},
|
||||
@code{twoGbMaxExtentSparse},
|
||||
@code{twoGbMaxExtentFlat} and
|
||||
@code{streamOptimized}.
|
||||
@end table
|
||||
|
||||
@item vpc
|
||||
VirtualPC compatible image format (VHD).
|
||||
Supported options:
|
||||
@table @code
|
||||
@item subformat
|
||||
Specifies which VHD subformat to use. Valid options are
|
||||
@code{dynamic} (default) and @code{fixed}.
|
||||
@end table
|
||||
|
||||
@item VHDX
|
||||
Hyper-V compatible image format (VHDX).
|
||||
Supported options:
|
||||
@table @code
|
||||
@item subformat
|
||||
Specifies which VHDX subformat to use. Valid options are
|
||||
@code{dynamic} (default) and @code{fixed}.
|
||||
@item block_state_zero
|
||||
Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
|
||||
or @code{off}. When set to @code{off}, new blocks will be created as
|
||||
@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
|
||||
arbitrary data for those blocks. Do not set to @code{off} when using
|
||||
@code{qemu-img convert} with @code{subformat=dynamic}.
|
||||
@item block_size
|
||||
Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
|
||||
@item log_size
|
||||
Log size; min 1 MB.
|
||||
@end table
|
||||
@end table
|
||||
|
||||
@subsubsection Read-only formats
|
||||
More disk image file formats are supported in a read-only mode.
|
||||
@table @option
|
||||
@item bochs
|
||||
Bochs images of @code{growing} type.
|
||||
@item cloop
|
||||
Linux Compressed Loop image, useful only to reuse directly compressed
|
||||
CD-ROM images present for example in the Knoppix CD-ROMs.
|
||||
@item dmg
|
||||
Apple disk image.
|
||||
@item parallels
|
||||
Parallels disk image format.
|
||||
@end table
|
||||
|
||||
|
||||
@node host_drives
|
||||
@subsection Using host drives
|
||||
|
||||
In addition to disk image files, QEMU can directly access host
|
||||
devices. We describe here the usage for QEMU version >= 0.8.3.
|
||||
|
||||
@subsubsection Linux
|
||||
|
||||
On Linux, you can directly use the host device filename instead of a
|
||||
disk image filename provided you have enough privileges to access
|
||||
it. For example, use @file{/dev/cdrom} to access to the CDROM.
|
||||
|
||||
@table @code
|
||||
@item CD
|
||||
You can specify a CDROM device even if no CDROM is loaded. QEMU has
|
||||
specific code to detect CDROM insertion or removal. CDROM ejection by
|
||||
the guest OS is supported. Currently only data CDs are supported.
|
||||
@item Floppy
|
||||
You can specify a floppy device even if no floppy is loaded. Floppy
|
||||
removal is currently not detected accurately (if you change floppy
|
||||
without doing floppy access while the floppy is not loaded, the guest
|
||||
OS will think that the same floppy is loaded).
|
||||
Use of the host's floppy device is deprecated, and support for it will
|
||||
be removed in a future release.
|
||||
@item Hard disks
|
||||
Hard disks can be used. Normally you must specify the whole disk
|
||||
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
|
||||
see it as a partitioned disk. WARNING: unless you know what you do, it
|
||||
is better to only make READ-ONLY accesses to the hard disk otherwise
|
||||
you may corrupt your host data (use the @option{-snapshot} command
|
||||
line option or modify the device permissions accordingly).
|
||||
@end table
|
||||
|
||||
@subsubsection Windows
|
||||
|
||||
@table @code
|
||||
@item CD
|
||||
The preferred syntax is the drive letter (e.g. @file{d:}). The
|
||||
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
|
||||
supported as an alias to the first CDROM drive.
|
||||
|
||||
Currently there is no specific code to handle removable media, so it
|
||||
is better to use the @code{change} or @code{eject} monitor commands to
|
||||
change or eject media.
|
||||
@item Hard disks
|
||||
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
|
||||
where @var{N} is the drive number (0 is the first hard disk).
|
||||
|
||||
WARNING: unless you know what you do, it is better to only make
|
||||
READ-ONLY accesses to the hard disk otherwise you may corrupt your
|
||||
host data (use the @option{-snapshot} command line so that the
|
||||
modifications are written in a temporary file).
|
||||
@end table
|
||||
|
||||
|
||||
@subsubsection Mac OS X
|
||||
|
||||
@file{/dev/cdrom} is an alias to the first CDROM.
|
||||
|
||||
Currently there is no specific code to handle removable media, so it
|
||||
is better to use the @code{change} or @code{eject} monitor commands to
|
||||
change or eject media.
|
||||
|
||||
@node disk_images_fat_images
|
||||
@subsection Virtual FAT disk images
|
||||
|
||||
QEMU can automatically create a virtual FAT disk image from a
|
||||
directory tree. In order to use it, just type:
|
||||
|
||||
@example
|
||||
qemu-system-i386 linux.img -hdb fat:/my_directory
|
||||
@end example
|
||||
|
||||
Then you access access to all the files in the @file{/my_directory}
|
||||
directory without having to copy them in a disk image or to export
|
||||
them via SAMBA or NFS. The default access is @emph{read-only}.
|
||||
|
||||
Floppies can be emulated with the @code{:floppy:} option:
|
||||
|
||||
@example
|
||||
qemu-system-i386 linux.img -fda fat:floppy:/my_directory
|
||||
@end example
|
||||
|
||||
A read/write support is available for testing (beta stage) with the
|
||||
@code{:rw:} option:
|
||||
|
||||
@example
|
||||
qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
|
||||
@end example
|
||||
|
||||
What you should @emph{never} do:
|
||||
@itemize
|
||||
@item use non-ASCII filenames ;
|
||||
@item use "-snapshot" together with ":rw:" ;
|
||||
@item expect it to work when loadvm'ing ;
|
||||
@item write to the FAT directory on the host system while accessing it with the guest system.
|
||||
@end itemize
|
||||
|
||||
@node disk_images_nbd
|
||||
@subsection NBD access
|
||||
|
||||
QEMU can access directly to block device exported using the Network Block Device
|
||||
protocol.
|
||||
|
||||
@example
|
||||
qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
|
||||
@end example
|
||||
|
||||
If the NBD server is located on the same host, you can use an unix socket instead
|
||||
of an inet socket:
|
||||
|
||||
@example
|
||||
qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
|
||||
@end example
|
||||
|
||||
In this case, the block device must be exported using qemu-nbd:
|
||||
|
||||
@example
|
||||
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
|
||||
@end example
|
||||
|
||||
The use of qemu-nbd allows sharing of a disk between several guests:
|
||||
@example
|
||||
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
|
||||
@end example
|
||||
|
||||
@noindent
|
||||
and then you can use it with two guests:
|
||||
@example
|
||||
qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
|
||||
qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
|
||||
@end example
|
||||
|
||||
If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
|
||||
own embedded NBD server), you must specify an export name in the URI:
|
||||
@example
|
||||
qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
|
||||
qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
|
||||
@end example
|
||||
|
||||
The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
|
||||
also available. Here are some example of the older syntax:
|
||||
@example
|
||||
qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
|
||||
qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
|
||||
qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
|
||||
@end example
|
||||
|
||||
@node disk_images_sheepdog
|
||||
@subsection Sheepdog disk images
|
||||
|
||||
Sheepdog is a distributed storage system for QEMU. It provides highly
|
||||
available block level storage volumes that can be attached to
|
||||
QEMU-based virtual machines.
|
||||
|
||||
You can create a Sheepdog disk image with the command:
|
||||
@example
|
||||
qemu-img create sheepdog:///@var{image} @var{size}
|
||||
@end example
|
||||
where @var{image} is the Sheepdog image name and @var{size} is its
|
||||
size.
|
||||
|
||||
To import the existing @var{filename} to Sheepdog, you can use a
|
||||
convert command.
|
||||
@example
|
||||
qemu-img convert @var{filename} sheepdog:///@var{image}
|
||||
@end example
|
||||
|
||||
You can boot from the Sheepdog disk image with the command:
|
||||
@example
|
||||
qemu-system-i386 sheepdog:///@var{image}
|
||||
@end example
|
||||
|
||||
You can also create a snapshot of the Sheepdog image like qcow2.
|
||||
@example
|
||||
qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
|
||||
@end example
|
||||
where @var{tag} is a tag name of the newly created snapshot.
|
||||
|
||||
To boot from the Sheepdog snapshot, specify the tag name of the
|
||||
snapshot.
|
||||
@example
|
||||
qemu-system-i386 sheepdog:///@var{image}#@var{tag}
|
||||
@end example
|
||||
|
||||
You can create a cloned image from the existing snapshot.
|
||||
@example
|
||||
qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
|
||||
@end example
|
||||
where @var{base} is a image name of the source snapshot and @var{tag}
|
||||
is its tag name.
|
||||
|
||||
You can use an unix socket instead of an inet socket:
|
||||
|
||||
@example
|
||||
qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
|
||||
@end example
|
||||
|
||||
If the Sheepdog daemon doesn't run on the local host, you need to
|
||||
specify one of the Sheepdog servers to connect to.
|
||||
@example
|
||||
qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
|
||||
qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
|
||||
@end example
|
||||
|
||||
@node disk_images_iscsi
|
||||
@subsection iSCSI LUNs
|
||||
|
||||
iSCSI is a popular protocol used to access SCSI devices across a computer
|
||||
network.
|
||||
|
||||
There are two different ways iSCSI devices can be used by QEMU.
|
||||
|
||||
The first method is to mount the iSCSI LUN on the host, and make it appear as
|
||||
any other ordinary SCSI device on the host and then to access this device as a
|
||||
/dev/sd device from QEMU. How to do this differs between host OSes.
|
||||
|
||||
The second method involves using the iSCSI initiator that is built into
|
||||
QEMU. This provides a mechanism that works the same way regardless of which
|
||||
host OS you are running QEMU on. This section will describe this second method
|
||||
of using iSCSI together with QEMU.
|
||||
|
||||
In QEMU, iSCSI devices are described using special iSCSI URLs
|
||||
|
||||
@example
|
||||
URL syntax:
|
||||
iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
|
||||
@end example
|
||||
|
||||
Username and password are optional and only used if your target is set up
|
||||
using CHAP authentication for access control.
|
||||
Alternatively the username and password can also be set via environment
|
||||
variables to have these not show up in the process list
|
||||
|
||||
@example
|
||||
export LIBISCSI_CHAP_USERNAME=<username>
|
||||
export LIBISCSI_CHAP_PASSWORD=<password>
|
||||
iscsi://<host>/<target-iqn-name>/<lun>
|
||||
@end example
|
||||
|
||||
Various session related parameters can be set via special options, either
|
||||
in a configuration file provided via '-readconfig' or directly on the
|
||||
command line.
|
||||
|
||||
If the initiator-name is not specified qemu will use a default name
|
||||
of 'iqn.2008-11.org.linux-kvm[:<uuid>'] where <uuid> is the UUID of the
|
||||
virtual machine. If the UUID is not specified qemu will use
|
||||
'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
|
||||
virtual machine.
|
||||
|
||||
@example
|
||||
Setting a specific initiator name to use when logging in to the target
|
||||
-iscsi initiator-name=iqn.qemu.test:my-initiator
|
||||
@end example
|
||||
|
||||
@example
|
||||
Controlling which type of header digest to negotiate with the target
|
||||
-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
|
||||
@end example
|
||||
|
||||
These can also be set via a configuration file
|
||||
@example
|
||||
[iscsi]
|
||||
user = "CHAP username"
|
||||
password = "CHAP password"
|
||||
initiator-name = "iqn.qemu.test:my-initiator"
|
||||
# header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
|
||||
header-digest = "CRC32C"
|
||||
@end example
|
||||
|
||||
|
||||
Setting the target name allows different options for different targets
|
||||
@example
|
||||
[iscsi "iqn.target.name"]
|
||||
user = "CHAP username"
|
||||
password = "CHAP password"
|
||||
initiator-name = "iqn.qemu.test:my-initiator"
|
||||
# header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
|
||||
header-digest = "CRC32C"
|
||||
@end example
|
||||
|
||||
|
||||
Howto use a configuration file to set iSCSI configuration options:
|
||||
@example
|
||||
cat >iscsi.conf <<EOF
|
||||
[iscsi]
|
||||
user = "me"
|
||||
password = "my password"
|
||||
initiator-name = "iqn.qemu.test:my-initiator"
|
||||
header-digest = "CRC32C"
|
||||
EOF
|
||||
|
||||
qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
|
||||
-readconfig iscsi.conf
|
||||
@end example
|
||||
|
||||
|
||||
Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
|
||||
@example
|
||||
This example shows how to set up an iSCSI target with one CDROM and one DISK
|
||||
using the Linux STGT software target. This target is available on Red Hat based
|
||||
systems as the package 'scsi-target-utils'.
|
||||
|
||||
tgtd --iscsi portal=127.0.0.1:3260
|
||||
tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
|
||||
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
|
||||
-b /IMAGES/disk.img --device-type=disk
|
||||
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
|
||||
-b /IMAGES/cd.iso --device-type=cd
|
||||
tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
|
||||
|
||||
qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
|
||||
-boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
|
||||
-cdrom iscsi://127.0.0.1/iqn.qemu.test/2
|
||||
@end example
|
||||
|
||||
@node disk_images_gluster
|
||||
@subsection GlusterFS disk images
|
||||
|
||||
GlusterFS is a user space distributed file system.
|
||||
|
||||
You can boot from the GlusterFS disk image with the command:
|
||||
@example
|
||||
URI:
|
||||
qemu-system-x86_64 -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path}
|
||||
[?socket=...][,file.debug=9][,file.logfile=...]
|
||||
|
||||
JSON:
|
||||
qemu-system-x86_64 'json:@{"driver":"qcow2",
|
||||
"file":@{"driver":"gluster",
|
||||
"volume":"testvol","path":"a.img","debug":9,"logfile":"...",
|
||||
"server":[@{"type":"tcp","host":"...","port":"..."@},
|
||||
@{"type":"unix","socket":"..."@}]@}@}'
|
||||
@end example
|
||||
|
||||
@var{gluster} is the protocol.
|
||||
|
||||
@var{type} specifies the transport type used to connect to gluster
|
||||
management daemon (glusterd). Valid transport types are
|
||||
tcp and unix. In the URI form, if a transport type isn't specified,
|
||||
then tcp type is assumed.
|
||||
|
||||
@var{host} specifies the server where the volume file specification for
|
||||
the given volume resides. This can be either a hostname or an ipv4 address.
|
||||
If transport type is unix, then @var{host} field should not be specified.
|
||||
Instead @var{socket} field needs to be populated with the path to unix domain
|
||||
socket.
|
||||
|
||||
@var{port} is the port number on which glusterd is listening. This is optional
|
||||
and if not specified, it defaults to port 24007. If the transport type is unix,
|
||||
then @var{port} should not be specified.
|
||||
|
||||
@var{volume} is the name of the gluster volume which contains the disk image.
|
||||
|
||||
@var{path} is the path to the actual disk image that resides on gluster volume.
|
||||
|
||||
@var{debug} is the logging level of the gluster protocol driver. Debug levels
|
||||
are 0-9, with 9 being the most verbose, and 0 representing no debugging output.
|
||||
The default level is 4. The current logging levels defined in the gluster source
|
||||
are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning,
|
||||
6 - Notice, 7 - Info, 8 - Debug, 9 - Trace
|
||||
|
||||
@var{logfile} is a commandline option to mention log file path which helps in
|
||||
logging to the specified file and also help in persisting the gfapi logs. The
|
||||
default is stderr.
|
||||
|
||||
|
||||
|
||||
|
||||
You can create a GlusterFS disk image with the command:
|
||||
@example
|
||||
qemu-img create gluster://@var{host}/@var{volume}/@var{path} @var{size}
|
||||
@end example
|
||||
|
||||
Examples
|
||||
@example
|
||||
qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
|
||||
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
|
||||
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
|
||||
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
|
||||
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
|
||||
qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
|
||||
qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
|
||||
qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
|
||||
qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log
|
||||
qemu-system-x86_64 'json:@{"driver":"qcow2",
|
||||
"file":@{"driver":"gluster",
|
||||
"volume":"testvol","path":"a.img",
|
||||
"debug":9,"logfile":"/var/log/qemu-gluster.log",
|
||||
"server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
|
||||
@{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
|
||||
qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
|
||||
file.debug=9,file.logfile=/var/log/qemu-gluster.log,
|
||||
file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
|
||||
file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
|
||||
@end example
|
||||
|
||||
@node disk_images_ssh
|
||||
@subsection Secure Shell (ssh) disk images
|
||||
|
||||
You can access disk images located on a remote ssh server
|
||||
by using the ssh protocol:
|
||||
|
||||
@example
|
||||
qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
|
||||
@end example
|
||||
|
||||
Alternative syntax using properties:
|
||||
|
||||
@example
|
||||
qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
|
||||
@end example
|
||||
|
||||
@var{ssh} is the protocol.
|
||||
|
||||
@var{user} is the remote user. If not specified, then the local
|
||||
username is tried.
|
||||
|
||||
@var{server} specifies the remote ssh server. Any ssh server can be
|
||||
used, but it must implement the sftp-server protocol. Most Unix/Linux
|
||||
systems should work without requiring any extra configuration.
|
||||
|
||||
@var{port} is the port number on which sshd is listening. By default
|
||||
the standard ssh port (22) is used.
|
||||
|
||||
@var{path} is the path to the disk image.
|
||||
|
||||
The optional @var{host_key_check} parameter controls how the remote
|
||||
host's key is checked. The default is @code{yes} which means to use
|
||||
the local @file{.ssh/known_hosts} file. Setting this to @code{no}
|
||||
turns off known-hosts checking. Or you can check that the host key
|
||||
matches a specific fingerprint:
|
||||
@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
|
||||
(@code{sha1:} can also be used as a prefix, but note that OpenSSH
|
||||
tools only use MD5 to print fingerprints).
|
||||
|
||||
Currently authentication must be done using ssh-agent. Other
|
||||
authentication methods may be supported in future.
|
||||
|
||||
Note: Many ssh servers do not support an @code{fsync}-style operation.
|
||||
The ssh driver cannot guarantee that disk flush requests are
|
||||
obeyed, and this causes a risk of disk corruption if the remote
|
||||
server or network goes down during writes. The driver will
|
||||
print a warning when @code{fsync} is not supported:
|
||||
|
||||
warning: ssh server @code{ssh.example.com:22} does not support fsync
|
||||
|
||||
With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
|
||||
supported.
|
||||
@include docs/qemu-block-drivers.texi
|
||||
|
||||
@node pcsys_network
|
||||
@section Network emulation
|
||||
|
Loading…
Reference in New Issue
Block a user