- vhost-scsi: add bootindex property

- RCU: fix MemoryRegion lifetime issues in PCI; document the rules;
 convert of AddressSpaceDispatch and RAMList
 - KVM: add kvm_exit reasons for aarch64
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJU4hugAAoJEL/70l94x66DZXEH/i72tOgvKZfAjfq2xmHXNEsr
 roCfTFIIjKK7feyW6YgwT5pgex6I5umFsO+uIyI/wbu8nDl/3NYEQBT4fR2cGfli
 GKeJOEu8kf+Zt8U+fbxyVQclbuU5S0Ujsg1fX4QXC4swB5fGLT2cRWJ5qd6hKBQs
 GflBuLa7h4eOzcTtOPpqRIwZ8mQE0uxv/hKq9kYLKHXJN2aWsiOls8KQ2CXj2yAl
 p6bMS5f0H0S/1hvQcQV9EazX7owlPIEet3AmSL1TC2sjJ8hrNGMBoFPtUys1uqjc
 B3CwuGi0JtWIduFYV9vZ/Ze4G7Y2iZlqc5vDxIl94d+iFmoHymDOi3mFUZ3H8XQ=
 =Lk9p
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging

- vhost-scsi: add bootindex property
- RCU: fix MemoryRegion lifetime issues in PCI; document the rules;
convert of AddressSpaceDispatch and RAMList
- KVM: add kvm_exit reasons for aarch64

# gpg: Signature made Mon Feb 16 16:32:32 2015 GMT using RSA key ID 78C7AE83
# gpg: Good signature from "Paolo Bonzini <bonzini@gnu.org>"
# gpg:                 aka "Paolo Bonzini <pbonzini@redhat.com>"
# gpg: WARNING: This key is not certified with a trusted signature!
# gpg:          There is no indication that the signature belongs to the owner.
# Primary key fingerprint: 46F5 9FBD 57D6 12E7 BFD4  E2F7 7E15 100C CD36 69B1
#      Subkey fingerprint: F133 3857 4B66 2389 866C  7682 BFFB D25F 78C7 AE83

* remotes/bonzini/tags/for-upstream: (21 commits)
  Convert ram_list to RCU
  exec: convert ram_list to QLIST
  cosmetic changes preparing for the following patches
  exec: protect mru_block with RCU
  rcu: add g_free_rcu
  rcu: introduce RCU-enabled QLIST
  exec: RCUify AddressSpaceDispatch
  exec: make iotlb RCU-friendly
  exec: introduce cpu_reload_memory_map
  docs: clarify memory region lifecycle
  pci: split shpc_cleanup and shpc_free
  pcie: remove mmconfig memory leak and wrap mmconfig update with transaction
  memory: keep the owner of the AddressSpace alive until do_address_space_destroy
  rcu: run RCU callbacks under the BQL
  rcu: do not let RCU callbacks pile up indefinitely
  vhost-scsi: set the bootable value of channel/target/lun
  vhost-scsi: add a property for booting
  vhost-scsi: expose the TYPE_FW_PATH_PROVIDER interface
  vhost-scsi: add bootindex property
  qdev: support to get a device firmware path directly
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2015-02-24 13:58:18 +00:00
commit 73104fd399
36 changed files with 997 additions and 191 deletions

View File

@ -52,6 +52,7 @@
#include "exec/ram_addr.h"
#include "hw/acpi/acpi.h"
#include "qemu/host-utils.h"
#include "qemu/rcu_queue.h"
#ifdef DEBUG_ARCH_INIT
#define DPRINTF(fmt, ...) \
@ -487,7 +488,6 @@ static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
}
/* Needs iothread lock! */
/* Fix me: there are too many global variables used in migration process. */
static int64_t start_time;
static int64_t bytes_xfer_prev;
@ -500,6 +500,7 @@ static void migration_bitmap_sync_init(void)
num_dirty_pages_period = 0;
}
/* Called with iothread lock held, to protect ram_list.dirty_memory[] */
static void migration_bitmap_sync(void)
{
RAMBlock *block;
@ -523,9 +524,12 @@ static void migration_bitmap_sync(void)
trace_migration_bitmap_sync_start();
address_space_sync_dirty_bitmap(&address_space_memory);
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
rcu_read_lock();
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
}
rcu_read_unlock();
trace_migration_bitmap_sync_end(migration_dirty_pages
- num_dirty_pages_init);
num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
@ -648,6 +652,8 @@ static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
/*
* ram_find_and_save_block: Finds a page to send and sends it to f
*
* Called within an RCU critical section.
*
* Returns: The number of bytes written.
* 0 means no dirty pages
*/
@ -661,7 +667,7 @@ static int ram_find_and_save_block(QEMUFile *f, bool last_stage)
MemoryRegion *mr;
if (!block)
block = QTAILQ_FIRST(&ram_list.blocks);
block = QLIST_FIRST_RCU(&ram_list.blocks);
while (true) {
mr = block->mr;
@ -672,9 +678,9 @@ static int ram_find_and_save_block(QEMUFile *f, bool last_stage)
}
if (offset >= block->used_length) {
offset = 0;
block = QTAILQ_NEXT(block, next);
block = QLIST_NEXT_RCU(block, next);
if (!block) {
block = QTAILQ_FIRST(&ram_list.blocks);
block = QLIST_FIRST_RCU(&ram_list.blocks);
complete_round = true;
ram_bulk_stage = false;
}
@ -688,9 +694,9 @@ static int ram_find_and_save_block(QEMUFile *f, bool last_stage)
}
}
}
last_seen_block = block;
last_offset = offset;
return bytes_sent;
}
@ -728,9 +734,10 @@ uint64_t ram_bytes_total(void)
RAMBlock *block;
uint64_t total = 0;
QTAILQ_FOREACH(block, &ram_list.blocks, next)
rcu_read_lock();
QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
total += block->used_length;
rcu_read_unlock();
return total;
}
@ -776,6 +783,13 @@ static void reset_ram_globals(void)
#define MAX_WAIT 50 /* ms, half buffered_file limit */
/* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
* long-running RCU critical section. When rcu-reclaims in the code
* start to become numerous it will be necessary to reduce the
* granularity of these critical sections.
*/
static int ram_save_setup(QEMUFile *f, void *opaque)
{
RAMBlock *block;
@ -816,8 +830,10 @@ static int ram_save_setup(QEMUFile *f, void *opaque)
acct_clear();
}
/* iothread lock needed for ram_list.dirty_memory[] */
qemu_mutex_lock_iothread();
qemu_mutex_lock_ramlist();
rcu_read_lock();
bytes_transferred = 0;
reset_ram_globals();
@ -830,7 +846,7 @@ static int ram_save_setup(QEMUFile *f, void *opaque)
* gaps due to alignment or unplugs.
*/
migration_dirty_pages = 0;
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
uint64_t block_pages;
block_pages = block->used_length >> TARGET_PAGE_BITS;
@ -839,17 +855,18 @@ static int ram_save_setup(QEMUFile *f, void *opaque)
memory_global_dirty_log_start();
migration_bitmap_sync();
qemu_mutex_unlock_ramlist();
qemu_mutex_unlock_iothread();
qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
qemu_put_byte(f, strlen(block->idstr));
qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
qemu_put_be64(f, block->used_length);
}
qemu_mutex_unlock_ramlist();
rcu_read_unlock();
ram_control_before_iterate(f, RAM_CONTROL_SETUP);
ram_control_after_iterate(f, RAM_CONTROL_SETUP);
@ -866,12 +883,14 @@ static int ram_save_iterate(QEMUFile *f, void *opaque)
int64_t t0;
int total_sent = 0;
qemu_mutex_lock_ramlist();
rcu_read_lock();
if (ram_list.version != last_version) {
reset_ram_globals();
}
/* Read version before ram_list.blocks */
smp_rmb();
ram_control_before_iterate(f, RAM_CONTROL_ROUND);
t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
@ -902,8 +921,7 @@ static int ram_save_iterate(QEMUFile *f, void *opaque)
}
i++;
}
qemu_mutex_unlock_ramlist();
rcu_read_unlock();
/*
* Must occur before EOS (or any QEMUFile operation)
@ -928,9 +946,11 @@ static int ram_save_iterate(QEMUFile *f, void *opaque)
return total_sent;
}
/* Called with iothread lock */
static int ram_save_complete(QEMUFile *f, void *opaque)
{
qemu_mutex_lock_ramlist();
rcu_read_lock();
migration_bitmap_sync();
ram_control_before_iterate(f, RAM_CONTROL_FINISH);
@ -952,7 +972,7 @@ static int ram_save_complete(QEMUFile *f, void *opaque)
ram_control_after_iterate(f, RAM_CONTROL_FINISH);
migration_end();
qemu_mutex_unlock_ramlist();
rcu_read_unlock();
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
return 0;
@ -966,7 +986,9 @@ static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
if (remaining_size < max_size) {
qemu_mutex_lock_iothread();
rcu_read_lock();
migration_bitmap_sync();
rcu_read_unlock();
qemu_mutex_unlock_iothread();
remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
}
@ -1008,6 +1030,9 @@ static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
return 0;
}
/* Must be called from within a rcu critical section.
* Returns a pointer from within the RCU-protected ram_list.
*/
static inline void *host_from_stream_offset(QEMUFile *f,
ram_addr_t offset,
int flags)
@ -1029,7 +1054,7 @@ static inline void *host_from_stream_offset(QEMUFile *f,
qemu_get_buffer(f, (uint8_t *)id, len);
id[len] = 0;
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
if (!strncmp(id, block->idstr, sizeof(id)) &&
block->max_length > offset) {
return memory_region_get_ram_ptr(block->mr) + offset;
@ -1062,6 +1087,12 @@ static int ram_load(QEMUFile *f, void *opaque, int version_id)
ret = -EINVAL;
}
/* This RCU critical section can be very long running.
* When RCU reclaims in the code start to become numerous,
* it will be necessary to reduce the granularity of this
* critical section.
*/
rcu_read_lock();
while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
ram_addr_t addr, total_ram_bytes;
void *host;
@ -1086,7 +1117,7 @@ static int ram_load(QEMUFile *f, void *opaque, int version_id)
id[len] = 0;
length = qemu_get_be64(f);
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
if (!strncmp(id, block->idstr, sizeof(id))) {
if (length != block->used_length) {
Error *local_err = NULL;
@ -1117,7 +1148,6 @@ static int ram_load(QEMUFile *f, void *opaque, int version_id)
ret = -EINVAL;
break;
}
ch = qemu_get_byte(f);
ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
break;
@ -1128,7 +1158,6 @@ static int ram_load(QEMUFile *f, void *opaque, int version_id)
ret = -EINVAL;
break;
}
qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
break;
case RAM_SAVE_FLAG_XBZRLE:
@ -1138,7 +1167,6 @@ static int ram_load(QEMUFile *f, void *opaque, int version_id)
ret = -EINVAL;
break;
}
if (load_xbzrle(f, addr, host) < 0) {
error_report("Failed to decompress XBZRLE page at "
RAM_ADDR_FMT, addr);
@ -1163,6 +1191,7 @@ static int ram_load(QEMUFile *f, void *opaque, int version_id)
}
}
rcu_read_unlock();
DPRINTF("Completed load of VM with exit code %d seq iteration "
"%" PRIu64 "\n", ret, seq_iter);
return ret;

View File

@ -210,7 +210,9 @@ char *get_boot_devices_list(size_t *size, bool ignore_suffixes)
char *list = NULL;
QTAILQ_FOREACH(i, &fw_boot_order, link) {
char *devpath = NULL, *bootpath;
char *devpath = NULL, *suffix = NULL;
char *bootpath;
char *d;
size_t len;
if (i->dev) {
@ -218,20 +220,21 @@ char *get_boot_devices_list(size_t *size, bool ignore_suffixes)
assert(devpath);
}
if (i->suffix && !ignore_suffixes && devpath) {
size_t bootpathlen = strlen(devpath) + strlen(i->suffix) + 1;
bootpath = g_malloc(bootpathlen);
snprintf(bootpath, bootpathlen, "%s%s", devpath, i->suffix);
g_free(devpath);
} else if (devpath) {
bootpath = devpath;
} else if (!ignore_suffixes) {
assert(i->suffix);
bootpath = g_strdup(i->suffix);
if (!ignore_suffixes) {
d = qdev_get_own_fw_dev_path_from_handler(i->dev->parent_bus, i->dev);
if (d) {
assert(!i->suffix);
suffix = d;
} else {
bootpath = g_strdup("");
suffix = g_strdup(i->suffix);
}
}
bootpath = g_strdup_printf("%s%s",
devpath ? devpath : "",
suffix ? suffix : "");
g_free(devpath);
g_free(suffix);
if (total) {
list[total-1] = '\n';

View File

@ -24,6 +24,9 @@
#include "qemu/atomic.h"
#include "sysemu/qtest.h"
#include "qemu/timer.h"
#include "exec/address-spaces.h"
#include "exec/memory-internal.h"
#include "qemu/rcu.h"
/* -icount align implementation. */
@ -141,6 +144,33 @@ void cpu_resume_from_signal(CPUState *cpu, void *puc)
cpu->exception_index = -1;
siglongjmp(cpu->jmp_env, 1);
}
void cpu_reload_memory_map(CPUState *cpu)
{
AddressSpaceDispatch *d;
if (qemu_in_vcpu_thread()) {
/* Do not let the guest prolong the critical section as much as it
* as it desires.
*
* Currently, this is prevented by the I/O thread's periodinc kicking
* of the VCPU thread (iothread_requesting_mutex, qemu_cpu_kick_thread)
* but this will go away once TCG's execution moves out of the global
* mutex.
*
* This pair matches cpu_exec's rcu_read_lock()/rcu_read_unlock(), which
* only protects cpu->as->dispatch. Since we reload it below, we can
* split the critical section.
*/
rcu_read_unlock();
rcu_read_lock();
}
/* The CPU and TLB are protected by the iothread lock. */
d = atomic_rcu_read(&cpu->as->dispatch);
cpu->memory_dispatch = d;
tlb_flush(cpu, 1);
}
#endif
/* Execute a TB, and fix up the CPU state afterwards if necessary */
@ -352,6 +382,8 @@ int cpu_exec(CPUArchState *env)
* an instruction scheduling constraint on modern architectures. */
smp_mb();
rcu_read_lock();
if (unlikely(exit_request)) {
cpu->exit_request = 1;
}
@ -548,6 +580,7 @@ int cpu_exec(CPUArchState *env)
} /* for(;;) */
cc->cpu_exec_exit(cpu);
rcu_read_unlock();
/* fail safe : never use current_cpu outside cpu_exec() */
current_cpu = NULL;

2
cpus.c
View File

@ -1108,7 +1108,7 @@ bool qemu_cpu_is_self(CPUState *cpu)
return qemu_thread_is_self(cpu->thread);
}
static bool qemu_in_vcpu_thread(void)
bool qemu_in_vcpu_thread(void)
{
return current_cpu && qemu_cpu_is_self(current_cpu);
}

View File

@ -243,8 +243,12 @@ static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
}
/* Add a new TLB entry. At most one entry for a given virtual address
is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
supplied size is only used by tlb_flush_page. */
* is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
* supplied size is only used by tlb_flush_page.
*
* Called from TCG-generated code, which is under an RCU read-side
* critical section.
*/
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
hwaddr paddr, int prot,
int mmu_idx, target_ulong size)
@ -265,8 +269,7 @@ void tlb_set_page(CPUState *cpu, target_ulong vaddr,
}
sz = size;
section = address_space_translate_for_iotlb(cpu->as, paddr,
&xlat, &sz);
section = address_space_translate_for_iotlb(cpu, paddr, &xlat, &sz);
assert(sz >= TARGET_PAGE_SIZE);
#if defined(DEBUG_TLB)
@ -347,7 +350,7 @@ tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
cpu_ldub_code(env1, addr);
}
pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
mr = iotlb_to_region(cpu->as, pd);
mr = iotlb_to_region(cpu, pd);
if (memory_region_is_unassigned(mr)) {
CPUClass *cc = CPU_GET_CLASS(cpu);

View File

@ -73,17 +73,66 @@ stability.
Region lifecycle
----------------
A region is created by one of the constructor functions (memory_region_init*())
and attached to an object. It is then destroyed by object_unparent() or simply
when the parent object dies.
A region is created by one of the memory_region_init*() functions and
attached to an object, which acts as its owner or parent. QEMU ensures
that the owner object remains alive as long as the region is visible to
the guest, or as long as the region is in use by a virtual CPU or another
device. For example, the owner object will not die between an
address_space_map operation and the corresponding address_space_unmap.
In between, a region can be added to an address space
by using memory_region_add_subregion() and removed using
memory_region_del_subregion(). Destroying the region implicitly
removes the region from the address space.
After creation, a region can be added to an address space or a
container with memory_region_add_subregion(), and removed using
memory_region_del_subregion().
Various region attributes (read-only, dirty logging, coalesced mmio,
ioeventfd) can be changed during the region lifecycle. They take effect
as soon as the region is made visible. This can be immediately, later,
or never.
Destruction of a memory region happens automatically when the owner
object dies.
If however the memory region is part of a dynamically allocated data
structure, you should call object_unparent() to destroy the memory region
before the data structure is freed. For an example see VFIOMSIXInfo
and VFIOQuirk in hw/vfio/pci.c.
You must not destroy a memory region as long as it may be in use by a
device or CPU. In order to do this, as a general rule do not create or
destroy memory regions dynamically during a device's lifetime, and only
call object_unparent() in the memory region owner's instance_finalize
callback. The dynamically allocated data structure that contains the
memory region then should obviously be freed in the instance_finalize
callback as well.
If you break this rule, the following situation can happen:
- the memory region's owner had a reference taken via memory_region_ref
(for example by address_space_map)
- the region is unparented, and has no owner anymore
- when address_space_unmap is called, the reference to the memory region's
owner is leaked.
There is an exception to the above rule: it is okay to call
object_unparent at any time for an alias or a container region. It is
therefore also okay to create or destroy alias and container regions
dynamically during a device's lifetime.
This exceptional usage is valid because aliases and containers only help
QEMU building the guest's memory map; they are never accessed directly.
memory_region_ref and memory_region_unref are never called on aliases
or containers, and the above situation then cannot happen. Exploiting
this exception is rarely necessary, and therefore it is discouraged,
but nevertheless it is used in a few places.
For regions that "have no owner" (NULL is passed at creation time), the
machine object is actually used as the owner. Since instance_finalize is
never called for the machine object, you must never call object_unparent
on regions that have no owner, unless they are aliases or containers.
Region attributes may be changed at any point; they take effect once
the region becomes exposed to the guest.
Overlapping regions and priority
--------------------------------
@ -215,13 +264,6 @@ BAR containing MMIO registers is mapped after it.
Note that if the guest maps a BAR outside the PCI hole, it would not be
visible as the pci-hole alias clips it to a 0.5GB range.
Attributes
----------
Various region attributes (read-only, dirty logging, coalesced mmio, ioeventfd)
can be changed during the region lifecycle. They take effect once the region
is made visible (which can be immediately, later, or never).
MMIO Operations
---------------

View File

@ -120,12 +120,15 @@ The core RCU API is small:
void call_rcu(T *p,
void (*func)(T *p),
field-name);
void g_free_rcu(T *p,
field-name);
call_rcu1 is typically used through this macro, in the common case
where the "struct rcu_head" is the first field in the struct. In
the above case, one could have written simply:
call_rcu1 is typically used through these macro, in the common case
where the "struct rcu_head" is the first field in the struct. If
the callback function is g_free, in particular, g_free_rcu can be
used. In the above case, one could have written simply:
call_rcu(foo_reclaim, g_free, rcu);
g_free_rcu(foo_reclaim, rcu);
typeof(*p) atomic_rcu_read(p);

283
exec.c
View File

@ -44,7 +44,7 @@
#include "trace.h"
#endif
#include "exec/cpu-all.h"
#include "qemu/rcu_queue.h"
#include "exec/cputlb.h"
#include "translate-all.h"
@ -58,7 +58,10 @@
#if !defined(CONFIG_USER_ONLY)
static bool in_migration;
RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
* are protected by the ramlist lock.
*/
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
static MemoryRegion *system_memory;
static MemoryRegion *system_io;
@ -115,6 +118,8 @@ struct PhysPageEntry {
typedef PhysPageEntry Node[P_L2_SIZE];
typedef struct PhysPageMap {
struct rcu_head rcu;
unsigned sections_nb;
unsigned sections_nb_alloc;
unsigned nodes_nb;
@ -124,6 +129,8 @@ typedef struct PhysPageMap {
} PhysPageMap;
struct AddressSpaceDispatch {
struct rcu_head rcu;
/* This is a multi-level map on the physical address space.
* The bottom level has pointers to MemoryRegionSections.
*/
@ -315,6 +322,7 @@ bool memory_region_is_unassigned(MemoryRegion *mr)
&& mr != &io_mem_watch;
}
/* Called from RCU critical section */
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
hwaddr addr,
bool resolve_subpage)
@ -330,6 +338,7 @@ static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
return section;
}
/* Called from RCU critical section */
static MemoryRegionSection *
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
hwaddr *plen, bool resolve_subpage)
@ -370,8 +379,10 @@ MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
MemoryRegion *mr;
hwaddr len = *plen;
rcu_read_lock();
for (;;) {
section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
section = address_space_translate_internal(d, addr, &addr, plen, true);
mr = section->mr;
if (!mr->iommu_ops) {
@ -397,15 +408,18 @@ MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
*plen = len;
*xlat = addr;
rcu_read_unlock();
return mr;
}
/* Called from RCU critical section */
MemoryRegionSection *
address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
hwaddr *plen)
address_space_translate_for_iotlb(CPUState *cpu, hwaddr addr,
hwaddr *xlat, hwaddr *plen)
{
MemoryRegionSection *section;
section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
section = address_space_translate_internal(cpu->memory_dispatch,
addr, xlat, plen, false);
assert(!section->mr->iommu_ops);
return section;
@ -795,16 +809,16 @@ void cpu_abort(CPUState *cpu, const char *fmt, ...)
}
#if !defined(CONFIG_USER_ONLY)
/* Called from RCU critical section */
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
RAMBlock *block;
/* The list is protected by the iothread lock here. */
block = ram_list.mru_block;
block = atomic_rcu_read(&ram_list.mru_block);
if (block && addr - block->offset < block->max_length) {
goto found;
}
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
if (addr - block->offset < block->max_length) {
goto found;
}
@ -814,6 +828,22 @@ static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
abort();
found:
/* It is safe to write mru_block outside the iothread lock. This
* is what happens:
*
* mru_block = xxx
* rcu_read_unlock()
* xxx removed from list
* rcu_read_lock()
* read mru_block
* mru_block = NULL;
* call_rcu(reclaim_ramblock, xxx);
* rcu_read_unlock()
*
* atomic_rcu_set is not needed here. The block was already published
* when it was placed into the list. Here we're just making an extra
* copy of the pointer.
*/
ram_list.mru_block = block;
return block;
}
@ -827,10 +857,12 @@ static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
end = TARGET_PAGE_ALIGN(start + length);
start &= TARGET_PAGE_MASK;
rcu_read_lock();
block = qemu_get_ram_block(start);
assert(block == qemu_get_ram_block(end - 1));
start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
cpu_tlb_reset_dirty_all(start1, length);
rcu_read_unlock();
}
/* Note: start and end must be within the same ram block. */
@ -851,6 +883,7 @@ static void cpu_physical_memory_set_dirty_tracking(bool enable)
in_migration = enable;
}
/* Called from RCU critical section */
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
MemoryRegionSection *section,
target_ulong vaddr,
@ -1162,6 +1195,7 @@ error:
}
#endif
/* Called with the ramlist lock held. */
static ram_addr_t find_ram_offset(ram_addr_t size)
{
RAMBlock *block, *next_block;
@ -1169,15 +1203,16 @@ static ram_addr_t find_ram_offset(ram_addr_t size)
assert(size != 0); /* it would hand out same offset multiple times */
if (QTAILQ_EMPTY(&ram_list.blocks))
if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
return 0;
}
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
ram_addr_t end, next = RAM_ADDR_MAX;
end = block->offset + block->max_length;
QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
if (next_block->offset >= end) {
next = MIN(next, next_block->offset);
}
@ -1202,9 +1237,11 @@ ram_addr_t last_ram_offset(void)
RAMBlock *block;
ram_addr_t last = 0;
QTAILQ_FOREACH(block, &ram_list.blocks, next)
rcu_read_lock();
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
last = MAX(last, block->offset + block->max_length);
}
rcu_read_unlock();
return last;
}
@ -1224,11 +1261,14 @@ static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
}
}
/* Called within an RCU critical section, or while the ramlist lock
* is held.
*/
static RAMBlock *find_ram_block(ram_addr_t addr)
{
RAMBlock *block;
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
if (block->offset == addr) {
return block;
}
@ -1237,11 +1277,13 @@ static RAMBlock *find_ram_block(ram_addr_t addr)
return NULL;
}
/* Called with iothread lock held. */
void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
{
RAMBlock *new_block = find_ram_block(addr);
RAMBlock *block;
RAMBlock *new_block, *block;
rcu_read_lock();
new_block = find_ram_block(addr);
assert(new_block);
assert(!new_block->idstr[0]);
@ -1254,25 +1296,32 @@ void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
}
pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
/* This assumes the iothread lock is taken here too. */
qemu_mutex_lock_ramlist();
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
new_block->idstr);
abort();
}
}
qemu_mutex_unlock_ramlist();
rcu_read_unlock();
}
/* Called with iothread lock held. */
void qemu_ram_unset_idstr(ram_addr_t addr)
{
RAMBlock *block = find_ram_block(addr);
RAMBlock *block;
/* FIXME: arch_init.c assumes that this is not called throughout
* migration. Ignore the problem since hot-unplug during migration
* does not work anyway.
*/
rcu_read_lock();
block = find_ram_block(addr);
if (block) {
memset(block->idstr, 0, sizeof(block->idstr));
}
rcu_read_unlock();
}
static int memory_try_enable_merging(void *addr, size_t len)
@ -1331,11 +1380,11 @@ int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
{
RAMBlock *block;
RAMBlock *last_block = NULL;
ram_addr_t old_ram_size, new_ram_size;
old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
/* This assumes the iothread lock is taken here too. */
qemu_mutex_lock_ramlist();
new_block->offset = find_ram_offset(new_block->max_length);
@ -1357,19 +1406,27 @@ static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
}
}
/* Keep the list sorted from biggest to smallest block. */
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
/* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
* QLIST (which has an RCU-friendly variant) does not have insertion at
* tail, so save the last element in last_block.
*/
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
last_block = block;
if (block->max_length < new_block->max_length) {
break;
}
}
if (block) {
QTAILQ_INSERT_BEFORE(block, new_block, next);
} else {
QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
QLIST_INSERT_BEFORE_RCU(block, new_block, next);
} else if (last_block) {
QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
} else { /* list is empty */
QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
}
ram_list.mru_block = NULL;
/* Write list before version */
smp_wmb();
ram_list.version++;
qemu_mutex_unlock_ramlist();
@ -1377,6 +1434,8 @@ static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
if (new_ram_size > old_ram_size) {
int i;
/* ram_list.dirty_memory[] is protected by the iothread lock. */
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
ram_list.dirty_memory[i] =
bitmap_zero_extend(ram_list.dirty_memory[i],
@ -1507,31 +1566,23 @@ void qemu_ram_free_from_ptr(ram_addr_t addr)
{
RAMBlock *block;
/* This assumes the iothread lock is taken here too. */
qemu_mutex_lock_ramlist();
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
if (addr == block->offset) {
QTAILQ_REMOVE(&ram_list.blocks, block, next);
QLIST_REMOVE_RCU(block, next);
ram_list.mru_block = NULL;
/* Write list before version */
smp_wmb();
ram_list.version++;
g_free(block);
g_free_rcu(block, rcu);
break;
}
}
qemu_mutex_unlock_ramlist();
}
void qemu_ram_free(ram_addr_t addr)
static void reclaim_ramblock(RAMBlock *block)
{
RAMBlock *block;
/* This assumes the iothread lock is taken here too. */
qemu_mutex_lock_ramlist();
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
if (addr == block->offset) {
QTAILQ_REMOVE(&ram_list.blocks, block, next);
ram_list.mru_block = NULL;
ram_list.version++;
if (block->flags & RAM_PREALLOC) {
;
} else if (xen_enabled()) {
@ -1545,11 +1596,25 @@ void qemu_ram_free(ram_addr_t addr)
qemu_anon_ram_free(block->host, block->max_length);
}
g_free(block);
}
void qemu_ram_free(ram_addr_t addr)
{
RAMBlock *block;
qemu_mutex_lock_ramlist();
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
if (addr == block->offset) {
QLIST_REMOVE_RCU(block, next);
ram_list.mru_block = NULL;
/* Write list before version */
smp_wmb();
ram_list.version++;
call_rcu(block, reclaim_ramblock, rcu);
break;
}
}
qemu_mutex_unlock_ramlist();
}
#ifndef _WIN32
@ -1560,7 +1625,7 @@ void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
int flags;
void *area, *vaddr;
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
offset = addr - block->offset;
if (offset < block->max_length) {
vaddr = ramblock_ptr(block, offset);
@ -1597,7 +1662,6 @@ void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
memory_try_enable_merging(vaddr, length);
qemu_ram_setup_dump(vaddr, length);
}
return;
}
}
}
@ -1605,49 +1669,78 @@ void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
int qemu_get_ram_fd(ram_addr_t addr)
{
RAMBlock *block = qemu_get_ram_block(addr);
RAMBlock *block;
int fd;
return block->fd;
rcu_read_lock();
block = qemu_get_ram_block(addr);
fd = block->fd;
rcu_read_unlock();
return fd;
}
void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
{
RAMBlock *block = qemu_get_ram_block(addr);
RAMBlock *block;
void *ptr;
return ramblock_ptr(block, 0);
rcu_read_lock();
block = qemu_get_ram_block(addr);
ptr = ramblock_ptr(block, 0);
rcu_read_unlock();
return ptr;
}
/* Return a host pointer to ram allocated with qemu_ram_alloc.
With the exception of the softmmu code in this file, this should
only be used for local memory (e.g. video ram) that the device owns,
and knows it isn't going to access beyond the end of the block.
It should not be used for general purpose DMA.
Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
* This should not be used for general purpose DMA. Use address_space_map
* or address_space_rw instead. For local memory (e.g. video ram) that the
* device owns, use memory_region_get_ram_ptr.
*
* By the time this function returns, the returned pointer is not protected
* by RCU anymore. If the caller is not within an RCU critical section and
* does not hold the iothread lock, it must have other means of protecting the
* pointer, such as a reference to the region that includes the incoming
* ram_addr_t.
*/
void *qemu_get_ram_ptr(ram_addr_t addr)
{
RAMBlock *block = qemu_get_ram_block(addr);
RAMBlock *block;
void *ptr;
if (xen_enabled()) {
rcu_read_lock();
block = qemu_get_ram_block(addr);
if (xen_enabled() && block->host == NULL) {
/* We need to check if the requested address is in the RAM
* because we don't want to map the entire memory in QEMU.
* In that case just map until the end of the page.
*/
if (block->offset == 0) {
return xen_map_cache(addr, 0, 0);
} else if (block->host == NULL) {
block->host =
xen_map_cache(block->offset, block->max_length, 1);
ptr = xen_map_cache(addr, 0, 0);
goto unlock;
}
block->host = xen_map_cache(block->offset, block->max_length, 1);
}
return ramblock_ptr(block, addr - block->offset);
ptr = ramblock_ptr(block, addr - block->offset);
unlock:
rcu_read_unlock();
return ptr;
}
/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
* but takes a size argument */
* but takes a size argument.
*
* By the time this function returns, the returned pointer is not protected
* by RCU anymore. If the caller is not within an RCU critical section and
* does not hold the iothread lock, it must have other means of protecting the
* pointer, such as a reference to the region that includes the incoming
* ram_addr_t.
*/
static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
{
void *ptr;
if (*size == 0) {
return NULL;
}
@ -1655,12 +1748,14 @@ static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
return xen_map_cache(addr, *size, 1);
} else {
RAMBlock *block;
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
rcu_read_lock();
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
if (addr - block->offset < block->max_length) {
if (addr - block->offset + *size > block->max_length)
*size = block->max_length - addr + block->offset;
return ramblock_ptr(block, addr - block->offset);
ptr = ramblock_ptr(block, addr - block->offset);
rcu_read_unlock();
return ptr;
}
}
@ -1670,23 +1765,35 @@ static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
}
/* Some of the softmmu routines need to translate from a host pointer
(typically a TLB entry) back to a ram offset. */
* (typically a TLB entry) back to a ram offset.
*
* By the time this function returns, the returned pointer is not protected
* by RCU anymore. If the caller is not within an RCU critical section and
* does not hold the iothread lock, it must have other means of protecting the
* pointer, such as a reference to the region that includes the incoming
* ram_addr_t.
*/
MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
{
RAMBlock *block;
uint8_t *host = ptr;
MemoryRegion *mr;
if (xen_enabled()) {
rcu_read_lock();
*ram_addr = xen_ram_addr_from_mapcache(ptr);
return qemu_get_ram_block(*ram_addr)->mr;
mr = qemu_get_ram_block(*ram_addr)->mr;
rcu_read_unlock();
return mr;
}
block = ram_list.mru_block;
rcu_read_lock();
block = atomic_rcu_read(&ram_list.mru_block);
if (block && block->host && host - block->host < block->max_length) {
goto found;
}
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
/* This case append when the block is not mapped. */
if (block->host == NULL) {
continue;
@ -1696,11 +1803,14 @@ MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
}
}
rcu_read_unlock();
return NULL;
found:
*ram_addr = block->offset + (host - block->host);
return block->mr;
mr = block->mr;
rcu_read_unlock();
return mr;
}
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
@ -1961,9 +2071,12 @@ static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
return phys_section_add(map, &section);
}
MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index)
MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index)
{
return as->dispatch->map.sections[index & ~TARGET_PAGE_MASK].mr;
AddressSpaceDispatch *d = atomic_rcu_read(&cpu->memory_dispatch);
MemoryRegionSection *sections = d->map.sections;
return sections[index & ~TARGET_PAGE_MASK].mr;
}
static void io_mem_init(void)
@ -1997,6 +2110,12 @@ static void mem_begin(MemoryListener *listener)
as->next_dispatch = d;
}
static void address_space_dispatch_free(AddressSpaceDispatch *d)
{
phys_sections_free(&d->map);
g_free(d);
}
static void mem_commit(MemoryListener *listener)
{
AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
@ -2005,11 +2124,9 @@ static void mem_commit(MemoryListener *listener)
phys_page_compact_all(next, next->map.nodes_nb);
as->dispatch = next;
atomic_rcu_set(&as->dispatch, next);
if (cur) {
phys_sections_free(&cur->map);
g_free(cur);
call_rcu(cur, address_space_dispatch_free, rcu);
}
}
@ -2026,7 +2143,7 @@ static void tcg_commit(MemoryListener *listener)
if (cpu->tcg_as_listener != listener) {
continue;
}
tlb_flush(cpu, 1);
cpu_reload_memory_map(cpu);
}
}
@ -2068,8 +2185,10 @@ void address_space_destroy_dispatch(AddressSpace *as)
{
AddressSpaceDispatch *d = as->dispatch;
g_free(d);
as->dispatch = NULL;
atomic_rcu_set(&as->dispatch, NULL);
if (d) {
call_rcu(d, address_space_dispatch_free, rcu);
}
}
static void memory_map_init(void)
@ -2948,8 +3067,10 @@ void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
{
RAMBlock *block;
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
rcu_read_lock();
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
func(block->host, block->offset, block->used_length, opaque);
}
rcu_read_unlock();
}
#endif

View File

@ -18,7 +18,7 @@
#include "fsdev/qemu-fsdev.h"
#include "virtio-9p-synth.h"
#include "qemu/rcu.h"
#include "qemu/rcu_queue.h"
#include <sys/stat.h>
/* Root node for synth file system */

View File

@ -818,6 +818,13 @@ static char *qdev_get_fw_dev_path_from_handler(BusState *bus, DeviceState *dev)
return d;
}
char *qdev_get_own_fw_dev_path_from_handler(BusState *bus, DeviceState *dev)
{
Object *obj = OBJECT(dev);
return fw_path_provider_try_get_dev_path(obj, bus, dev);
}
static int qdev_get_fw_dev_path_helper(DeviceState *dev, char *p, int size)
{
int l = 0;

View File

@ -745,6 +745,9 @@ static inline bool vtd_is_interrupt_addr(hwaddr addr)
/* Map dev to context-entry then do a paging-structures walk to do a iommu
* translation.
*
* Called from RCU critical section.
*
* @bus_num: The bus number
* @devfn: The devfn, which is the combined of device and function number
* @is_write: The access is a write operation

View File

@ -97,6 +97,11 @@ static void pci_bridge_dev_exitfn(PCIDevice *dev)
pci_bridge_exitfn(dev);
}
static void pci_bridge_dev_instance_finalize(Object *obj)
{
shpc_free(PCI_DEVICE(obj));
}
static void pci_bridge_dev_write_config(PCIDevice *d,
uint32_t address, uint32_t val, int len)
{
@ -158,6 +163,7 @@ static const TypeInfo pci_bridge_dev_info = {
.parent = TYPE_PCI_BRIDGE,
.instance_size = sizeof(PCIBridgeDev),
.class_init = pci_bridge_dev_class_init,
.instance_finalize = pci_bridge_dev_instance_finalize,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }

View File

@ -205,6 +205,7 @@ static AddressSpace *pbm_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
return &is->iommu_as;
}
/* Called from RCU critical section */
static IOMMUTLBEntry pbm_translate_iommu(MemoryRegion *iommu, hwaddr addr,
bool is_write)
{

View File

@ -88,6 +88,8 @@ static void pcie_host_init(Object *obj)
PCIExpressHost *e = PCIE_HOST_BRIDGE(obj);
e->base_addr = PCIE_BASE_ADDR_UNMAPPED;
memory_region_init_io(&e->mmio, OBJECT(e), &pcie_mmcfg_ops, e, "pcie-mmcfg-mmio",
PCIE_MMCFG_SIZE_MAX);
}
void pcie_host_mmcfg_unmap(PCIExpressHost *e)
@ -104,8 +106,7 @@ void pcie_host_mmcfg_init(PCIExpressHost *e, uint32_t size)
assert(size >= PCIE_MMCFG_SIZE_MIN);
assert(size <= PCIE_MMCFG_SIZE_MAX);
e->size = size;
memory_region_init_io(&e->mmio, OBJECT(e), &pcie_mmcfg_ops, e,
"pcie-mmcfg", e->size);
memory_region_set_size(&e->mmio, e->size);
}
void pcie_host_mmcfg_map(PCIExpressHost *e, hwaddr addr,
@ -121,10 +122,12 @@ void pcie_host_mmcfg_update(PCIExpressHost *e,
hwaddr addr,
uint32_t size)
{
memory_region_transaction_begin();
pcie_host_mmcfg_unmap(e);
if (enable) {
pcie_host_mmcfg_map(e, addr, size);
}
memory_region_transaction_commit();
}
static const TypeInfo pcie_host_type_info = {

View File

@ -663,13 +663,22 @@ void shpc_cleanup(PCIDevice *d, MemoryRegion *bar)
SHPCDevice *shpc = d->shpc;
d->cap_present &= ~QEMU_PCI_CAP_SHPC;
memory_region_del_subregion(bar, &shpc->mmio);
object_unparent(OBJECT(&shpc->mmio));
/* TODO: cleanup config space changes? */
}
void shpc_free(PCIDevice *d)
{
SHPCDevice *shpc = d->shpc;
if (!shpc) {
return;
}
object_unparent(OBJECT(&shpc->mmio));
g_free(shpc->config);
g_free(shpc->cmask);
g_free(shpc->wmask);
g_free(shpc->w1cmask);
g_free(shpc);
d->shpc = NULL;
}
void shpc_cap_write_config(PCIDevice *d, uint32_t addr, uint32_t val, int l)

View File

@ -59,6 +59,7 @@ static sPAPRTCETable *spapr_tce_find_by_liobn(uint32_t liobn)
return NULL;
}
/* Called from RCU critical section */
static IOMMUTLBEntry spapr_tce_translate_iommu(MemoryRegion *iommu, hwaddr addr,
bool is_write)
{

View File

@ -24,6 +24,7 @@
#include "hw/virtio/virtio-scsi.h"
#include "hw/virtio/virtio-bus.h"
#include "hw/virtio/virtio-access.h"
#include "hw/fw-path-provider.h"
/* Features supported by host kernel. */
static const int kernel_feature_bits[] = {
@ -250,6 +251,12 @@ static void vhost_scsi_realize(DeviceState *dev, Error **errp)
return;
}
/* At present, channel and lun both are 0 for bootable vhost-scsi disk */
s->channel = 0;
s->lun = 0;
/* Note: we can also get the minimum tpgt from kernel */
s->target = vs->conf.boot_tpgt;
error_setg(&s->migration_blocker,
"vhost-scsi does not support migration");
migrate_add_blocker(s->migration_blocker);
@ -271,6 +278,19 @@ static void vhost_scsi_unrealize(DeviceState *dev, Error **errp)
virtio_scsi_common_unrealize(dev, errp);
}
/*
* Implementation of an interface to adjust firmware path
* for the bootindex property handling.
*/
static char *vhost_scsi_get_fw_dev_path(FWPathProvider *p, BusState *bus,
DeviceState *dev)
{
VHostSCSI *s = VHOST_SCSI(dev);
/* format: channel@channel/vhost-scsi@target,lun */
return g_strdup_printf("channel@%x/%s@%x,%x", s->channel,
qdev_fw_name(dev), s->target, s->lun);
}
static Property vhost_scsi_properties[] = {
DEFINE_VHOST_SCSI_PROPERTIES(VHostSCSI, parent_obj.conf),
DEFINE_PROP_END_OF_LIST(),
@ -280,6 +300,7 @@ static void vhost_scsi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass);
FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(klass);
dc->props = vhost_scsi_properties;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
@ -288,6 +309,15 @@ static void vhost_scsi_class_init(ObjectClass *klass, void *data)
vdc->get_features = vhost_scsi_get_features;
vdc->set_config = vhost_scsi_set_config;
vdc->set_status = vhost_scsi_set_status;
fwc->get_dev_path = vhost_scsi_get_fw_dev_path;
}
static void vhost_scsi_instance_init(Object *obj)
{
VHostSCSI *dev = VHOST_SCSI(obj);
device_add_bootindex_property(obj, &dev->bootindex, "bootindex", NULL,
DEVICE(dev), NULL);
}
static const TypeInfo vhost_scsi_info = {
@ -295,6 +325,11 @@ static const TypeInfo vhost_scsi_info = {
.parent = TYPE_VIRTIO_SCSI_COMMON,
.instance_size = sizeof(VHostSCSI),
.class_init = vhost_scsi_class_init,
.instance_init = vhost_scsi_instance_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_FW_PATH_PROVIDER },
{ }
},
};
static void virtio_register_types(void)

View File

@ -1238,6 +1238,8 @@ static void vhost_scsi_pci_instance_init(Object *obj)
virtio_instance_init_common(obj, &dev->vdev, sizeof(dev->vdev),
TYPE_VHOST_SCSI);
object_property_add_alias(obj, "bootindex", OBJECT(&dev->vdev),
"bootindex", &error_abort);
}
static const TypeInfo vhost_scsi_pci_info = {

View File

@ -24,6 +24,7 @@
#include "exec/memory.h"
#include "qemu/thread.h"
#include "qom/cpu.h"
#include "qemu/rcu.h"
/* some important defines:
*
@ -268,6 +269,7 @@ CPUArchState *cpu_copy(CPUArchState *env);
typedef struct RAMBlock RAMBlock;
struct RAMBlock {
struct rcu_head rcu;
struct MemoryRegion *mr;
uint8_t *host;
ram_addr_t offset;
@ -275,11 +277,10 @@ struct RAMBlock {
ram_addr_t max_length;
void (*resized)(const char*, uint64_t length, void *host);
uint32_t flags;
/* Protected by iothread lock. */
char idstr[256];
/* Reads can take either the iothread or the ramlist lock.
* Writes must take both locks.
*/
QTAILQ_ENTRY(RAMBlock) next;
/* RCU-enabled, writes protected by the ramlist lock */
QLIST_ENTRY(RAMBlock) next;
int fd;
};
@ -295,8 +296,8 @@ typedef struct RAMList {
/* Protected by the iothread lock. */
unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
RAMBlock *mru_block;
/* Protected by the ramlist lock. */
QTAILQ_HEAD(, RAMBlock) blocks;
/* RCU-enabled, writes protected by the ramlist lock. */
QLIST_HEAD(, RAMBlock) blocks;
uint32_t version;
} RAMList;
extern RAMList ram_list;

View File

@ -34,7 +34,7 @@ extern int tlb_flush_count;
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
MemoryRegionSection *
address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
address_space_translate_for_iotlb(CPUState *cpu, hwaddr addr, hwaddr *xlat,
hwaddr *plen);
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
MemoryRegionSection *section,

View File

@ -96,6 +96,8 @@ void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
int is_cpu_write_access);
#if !defined(CONFIG_USER_ONLY)
bool qemu_in_vcpu_thread(void);
void cpu_reload_memory_map(CPUState *cpu);
void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as);
/* cputlb.c */
void tlb_flush_page(CPUState *cpu, target_ulong addr);
@ -337,7 +339,8 @@ extern uintptr_t tci_tb_ptr;
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align));
struct MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index);
struct MemoryRegion *iotlb_to_region(CPUState *cpu,
hwaddr index);
bool io_mem_read(struct MemoryRegion *mr, hwaddr addr,
uint64_t *pvalue, unsigned size);
bool io_mem_write(struct MemoryRegion *mr, hwaddr addr,

View File

@ -41,6 +41,7 @@ void shpc_reset(PCIDevice *d);
int shpc_bar_size(PCIDevice *dev);
int shpc_init(PCIDevice *dev, PCIBus *sec_bus, MemoryRegion *bar, unsigned off);
void shpc_cleanup(PCIDevice *dev, MemoryRegion *bar);
void shpc_free(PCIDevice *dev);
void shpc_cap_write_config(PCIDevice *d, uint32_t addr, uint32_t val, int len);

View File

@ -342,6 +342,7 @@ void qbus_reset_all_fn(void *opaque);
BusState *sysbus_get_default(void);
char *qdev_get_fw_dev_path(DeviceState *dev);
char *qdev_get_own_fw_dev_path_from_handler(BusState *bus, DeviceState *dev);
/**
* @qdev_machine_init

View File

@ -60,11 +60,16 @@ typedef struct VHostSCSI {
Error *migration_blocker;
struct vhost_dev dev;
int32_t bootindex;
int channel;
int target;
int lun;
} VHostSCSI;
#define DEFINE_VHOST_SCSI_PROPERTIES(_state, _conf_field) \
DEFINE_PROP_STRING("vhostfd", _state, _conf_field.vhostfd), \
DEFINE_PROP_STRING("wwpn", _state, _conf_field.wwpn), \
DEFINE_PROP_UINT32("boot_tpgt", _state, _conf_field.boot_tpgt, 0), \
DEFINE_PROP_UINT32("num_queues", _state, _conf_field.num_queues, 1), \
DEFINE_PROP_UINT32("max_sectors", _state, _conf_field.max_sectors, 0xFFFF), \
DEFINE_PROP_UINT32("cmd_per_lun", _state, _conf_field.cmd_per_lun, 128)

View File

@ -153,6 +153,7 @@ struct VirtIOSCSIConf {
uint32_t cmd_per_lun;
char *vhostfd;
char *wwpn;
uint32_t boot_tpgt;
IOThread *iothread;
};

View File

@ -139,17 +139,6 @@ struct { \
(elm)->field.le_prev = &(head)->lh_first; \
} while (/*CONSTCOND*/0)
#define QLIST_INSERT_HEAD_RCU(head, elm, field) do { \
(elm)->field.le_prev = &(head)->lh_first; \
(elm)->field.le_next = (head)->lh_first; \
smp_wmb(); /* fill elm before linking it */ \
if ((head)->lh_first != NULL) { \
(head)->lh_first->field.le_prev = &(elm)->field.le_next; \
} \
(head)->lh_first = (elm); \
smp_wmb(); \
} while (/* CONSTCOND*/0)
#define QLIST_REMOVE(elm, field) do { \
if ((elm)->field.le_next != NULL) \
(elm)->field.le_next->field.le_prev = \

View File

@ -140,6 +140,14 @@ extern void call_rcu1(struct rcu_head *head, RCUCBFunc *func);
}), \
(RCUCBFunc *)(func))
#define g_free_rcu(obj, field) \
call_rcu1(({ \
char __attribute__((unused)) \
offset_must_be_zero[-offsetof(typeof(*(obj)), field)]; \
&(obj)->field; \
}), \
(RCUCBFunc *)g_free);
#ifdef __cplusplus
}
#endif

134
include/qemu/rcu_queue.h Normal file
View File

@ -0,0 +1,134 @@
#ifndef QEMU_RCU_QUEUE_H
#define QEMU_RCU_QUEUE_H
/*
* rcu_queue.h
*
* RCU-friendly versions of the queue.h primitives.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Copyright (c) 2013 Mike D. Day, IBM Corporation.
*
* IBM's contributions to this file may be relicensed under LGPLv2 or later.
*/
#include "qemu/queue.h"
#include "qemu/atomic.h"
#ifdef __cplusplus
extern "C" {
#endif
/*
* List access methods.
*/
#define QLIST_EMPTY_RCU(head) (atomic_rcu_read(&(head)->lh_first) == NULL)
#define QLIST_FIRST_RCU(head) (atomic_rcu_read(&(head)->lh_first))
#define QLIST_NEXT_RCU(elm, field) (atomic_rcu_read(&(elm)->field.le_next))
/*
* List functions.
*/
/*
* The difference between atomic_read/set and atomic_rcu_read/set
* is in the including of a read/write memory barrier to the volatile
* access. atomic_rcu_* macros include the memory barrier, the
* plain atomic macros do not. Therefore, it should be correct to
* issue a series of reads or writes to the same element using only
* the atomic_* macro, until the last read or write, which should be
* atomic_rcu_* to introduce a read or write memory barrier as
* appropriate.
*/
/* Upon publication of the listelm->next value, list readers
* will see the new node when following next pointers from
* antecedent nodes, but may not see the new node when following
* prev pointers from subsequent nodes until after the RCU grace
* period expires.
* see linux/include/rculist.h __list_add_rcu(new, prev, next)
*/
#define QLIST_INSERT_AFTER_RCU(listelm, elm, field) do { \
(elm)->field.le_next = (listelm)->field.le_next; \
(elm)->field.le_prev = &(listelm)->field.le_next; \
atomic_rcu_set(&(listelm)->field.le_next, (elm)); \
if ((elm)->field.le_next != NULL) { \
(elm)->field.le_next->field.le_prev = \
&(elm)->field.le_next; \
} \
} while (/*CONSTCOND*/0)
/* Upon publication of the listelm->prev->next value, list
* readers will see the new element when following prev pointers
* from subsequent elements, but may not see the new element
* when following next pointers from antecedent elements
* until after the RCU grace period expires.
*/
#define QLIST_INSERT_BEFORE_RCU(listelm, elm, field) do { \
(elm)->field.le_prev = (listelm)->field.le_prev; \
(elm)->field.le_next = (listelm); \
atomic_rcu_set((listelm)->field.le_prev, (elm)); \
(listelm)->field.le_prev = &(elm)->field.le_next; \
} while (/*CONSTCOND*/0)
/* Upon publication of the head->first value, list readers
* will see the new element when following the head, but may
* not see the new element when following prev pointers from
* subsequent elements until after the RCU grace period has
* expired.
*/
#define QLIST_INSERT_HEAD_RCU(head, elm, field) do { \
(elm)->field.le_prev = &(head)->lh_first; \
(elm)->field.le_next = (head)->lh_first; \
atomic_rcu_set((&(head)->lh_first), (elm)); \
if ((elm)->field.le_next != NULL) { \
(elm)->field.le_next->field.le_prev = \
&(elm)->field.le_next; \
} \
} while (/*CONSTCOND*/0)
/* prior to publication of the elm->prev->next value, some list
* readers may still see the removed element when following
* the antecedent's next pointer.
*/
#define QLIST_REMOVE_RCU(elm, field) do { \
if ((elm)->field.le_next != NULL) { \
(elm)->field.le_next->field.le_prev = \
(elm)->field.le_prev; \
} \
*(elm)->field.le_prev = (elm)->field.le_next; \
} while (/*CONSTCOND*/0)
/* List traversal must occur within an RCU critical section. */
#define QLIST_FOREACH_RCU(var, head, field) \
for ((var) = atomic_rcu_read(&(head)->lh_first); \
(var); \
(var) = atomic_rcu_read(&(var)->field.le_next))
/* List traversal must occur within an RCU critical section. */
#define QLIST_FOREACH_SAFE_RCU(var, head, field, next_var) \
for ((var) = (atomic_rcu_read(&(head)->lh_first)); \
(var) && \
((next_var) = atomic_rcu_read(&(var)->field.le_next), 1); \
(var) = (next_var))
#ifdef __cplusplus
}
#endif
#endif /* QEMU_RCU_QUEUE.H */

View File

@ -256,6 +256,7 @@ struct CPUState {
sigjmp_buf jmp_env;
AddressSpace *as;
struct AddressSpaceDispatch *memory_dispatch;
MemoryListener *tcg_as_listener;
void *env_ptr; /* CPUArchState */

View File

@ -1943,6 +1943,7 @@ void memory_listener_unregister(MemoryListener *listener)
void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
{
memory_region_ref(root);
memory_region_transaction_begin();
as->root = root;
as->current_map = g_new(FlatView, 1);
@ -1969,10 +1970,13 @@ static void do_address_space_destroy(AddressSpace *as)
flatview_unref(as->current_map);
g_free(as->name);
g_free(as->ioeventfds);
memory_region_unref(as->root);
}
void address_space_destroy(AddressSpace *as)
{
MemoryRegion *root = as->root;
/* Flush out anything from MemoryListeners listening in on this */
memory_region_transaction_begin();
as->root = NULL;
@ -1984,6 +1988,7 @@ void address_space_destroy(AddressSpace *as)
* entries that the guest should never use. Wait for the old
* values to expire before freeing the data.
*/
as->root = root;
call_rcu(as, do_address_space_destroy, rcu);
}

View File

@ -108,16 +108,16 @@ shape and this command should mostly work."""
assert (val["hi"] == 0)
return val["lo"]
def qtailq_foreach(self, head, field_str):
var_p = head["tqh_first"]
def qlist_foreach(self, head, field_str):
var_p = head["lh_first"]
while (var_p != 0):
var = var_p.dereference()
yield var
var_p = var[field_str]["tqe_next"]
var_p = var[field_str]["le_next"]
def qemu_get_ram_block(self, ram_addr):
ram_blocks = gdb.parse_and_eval("ram_list.blocks")
for block in self.qtailq_foreach(ram_blocks, "next"):
for block in self.qlist_foreach(ram_blocks, "next"):
if (ram_addr - block["offset"] < block["length"]):
return block
raise gdb.GdbError("Bad ram offset %x" % ram_addr)

View File

@ -145,6 +145,45 @@ svm_exit_reasons = {
0x400: 'NPF',
}
# EC definition of HSR (from arch/arm64/include/asm/kvm_arm.h)
aarch64_exit_reasons = {
0x00: 'UNKNOWN',
0x01: 'WFI',
0x03: 'CP15_32',
0x04: 'CP15_64',
0x05: 'CP14_MR',
0x06: 'CP14_LS',
0x07: 'FP_ASIMD',
0x08: 'CP10_ID',
0x0C: 'CP14_64',
0x0E: 'ILL_ISS',
0x11: 'SVC32',
0x12: 'HVC32',
0x13: 'SMC32',
0x15: 'SVC64',
0x16: 'HVC64',
0x17: 'SMC64',
0x18: 'SYS64',
0x20: 'IABT',
0x21: 'IABT_HYP',
0x22: 'PC_ALIGN',
0x24: 'DABT',
0x25: 'DABT_HYP',
0x26: 'SP_ALIGN',
0x28: 'FP_EXC32',
0x2C: 'FP_EXC64',
0x2F: 'SERROR',
0x30: 'BREAKPT',
0x31: 'BREAKPT_HYP',
0x32: 'SOFTSTP',
0x33: 'SOFTSTP_HYP',
0x34: 'WATCHPT',
0x35: 'WATCHPT_HYP',
0x38: 'BKPT32',
0x3A: 'VECTOR32',
0x3C: 'BRK64',
}
# From include/uapi/linux/kvm.h, KVM_EXIT_xxx
userspace_exit_reasons = {
0: 'UNKNOWN',
@ -212,7 +251,8 @@ def ppc_init():
def aarch64_init():
globals().update({
'sc_perf_evt_open' : 241
'sc_perf_evt_open' : 241,
'exit_reasons' : aarch64_exit_reasons,
})
def detect_platform():

View File

@ -149,7 +149,7 @@ static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
{
uint64_t val;
CPUState *cpu = ENV_GET_CPU(env);
MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
MemoryRegion *mr = iotlb_to_region(cpu, physaddr);
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
cpu->mem_io_pc = retaddr;
@ -369,7 +369,7 @@ static inline void glue(io_write, SUFFIX)(CPUArchState *env,
uintptr_t retaddr)
{
CPUState *cpu = ENV_GET_CPU(env);
MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
MemoryRegion *mr = iotlb_to_region(cpu, physaddr);
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {

View File

@ -62,6 +62,8 @@ check-unit-y += tests/test-int128$(EXESUF)
gcov-files-test-int128-y =
check-unit-y += tests/rcutorture$(EXESUF)
gcov-files-rcutorture-y = util/rcu.c
check-unit-y += tests/test-rcu-list$(EXESUF)
gcov-files-test-rcu-list-y = util/rcu.c
check-unit-y += tests/test-bitops$(EXESUF)
check-unit-$(CONFIG_HAS_GLIB_SUBPROCESS_TESTS) += tests/test-qdev-global-props$(EXESUF)
check-unit-y += tests/check-qom-interface$(EXESUF)
@ -228,7 +230,7 @@ test-obj-y = tests/check-qint.o tests/check-qstring.o tests/check-qdict.o \
tests/test-qmp-commands.o tests/test-visitor-serialization.o \
tests/test-x86-cpuid.o tests/test-mul64.o tests/test-int128.o \
tests/test-opts-visitor.o tests/test-qmp-event.o \
tests/rcutorture.o
tests/rcutorture.o tests/test-rcu-list.o
test-qapi-obj-y = tests/test-qapi-visit.o tests/test-qapi-types.o \
tests/test-qapi-event.o
@ -257,7 +259,8 @@ tests/test-x86-cpuid$(EXESUF): tests/test-x86-cpuid.o
tests/test-xbzrle$(EXESUF): tests/test-xbzrle.o migration/xbzrle.o page_cache.o libqemuutil.a
tests/test-cutils$(EXESUF): tests/test-cutils.o util/cutils.o
tests/test-int128$(EXESUF): tests/test-int128.o
tests/rcutorture$(EXESUF): tests/rcutorture.o libqemuutil.a
tests/rcutorture$(EXESUF): tests/rcutorture.o libqemuutil.a libqemustub.a
tests/test-rcu-list$(EXESUF): tests/test-rcu-list.o libqemuutil.a libqemustub.a
tests/test-qdev-global-props$(EXESUF): tests/test-qdev-global-props.o \
hw/core/qdev.o hw/core/qdev-properties.o hw/core/hotplug.o\

306
tests/test-rcu-list.c Normal file
View File

@ -0,0 +1,306 @@
/*
* rcuq_test.c
*
* usage: rcuq_test <readers> <duration>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (c) 2013 Mike D. Day, IBM Corporation.
*/
#include <glib.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "qemu/atomic.h"
#include "qemu/rcu.h"
#include "qemu/compiler.h"
#include "qemu/osdep.h"
#include "qemu/thread.h"
#include "qemu/rcu_queue.h"
/*
* Test variables.
*/
long long n_reads = 0LL;
long long n_updates = 0LL;
long long n_reclaims = 0LL;
long long n_nodes_removed = 0LL;
long long n_nodes = 0LL;
int g_test_in_charge = 0;
int nthreadsrunning;
char argsbuf[64];
#define GOFLAG_INIT 0
#define GOFLAG_RUN 1
#define GOFLAG_STOP 2
static volatile int goflag = GOFLAG_INIT;
#define RCU_READ_RUN 1000
#define RCU_UPDATE_RUN 10
#define NR_THREADS 100
#define RCU_Q_LEN 100
static QemuThread threads[NR_THREADS];
static struct rcu_reader_data *data[NR_THREADS];
static int n_threads;
static int select_random_el(int max)
{
return (rand() % max);
}
static void create_thread(void *(*func)(void *))
{
if (n_threads >= NR_THREADS) {
fprintf(stderr, "Thread limit of %d exceeded!\n", NR_THREADS);
exit(-1);
}
qemu_thread_create(&threads[n_threads], "test", func, &data[n_threads],
QEMU_THREAD_JOINABLE);
n_threads++;
}
static void wait_all_threads(void)
{
int i;
for (i = 0; i < n_threads; i++) {
qemu_thread_join(&threads[i]);
}
n_threads = 0;
}
struct list_element {
QLIST_ENTRY(list_element) entry;
struct rcu_head rcu;
long long val;
};
static void reclaim_list_el(struct rcu_head *prcu)
{
struct list_element *el = container_of(prcu, struct list_element, rcu);
g_free(el);
atomic_add(&n_reclaims, 1);
}
static QLIST_HEAD(q_list_head, list_element) Q_list_head;
static void *rcu_q_reader(void *arg)
{
long long j, n_reads_local = 0;
struct list_element *el;
*(struct rcu_reader_data **)arg = &rcu_reader;
atomic_inc(&nthreadsrunning);
while (goflag == GOFLAG_INIT) {
g_usleep(1000);
}
while (goflag == GOFLAG_RUN) {
rcu_read_lock();
QLIST_FOREACH_RCU(el, &Q_list_head, entry) {
j = atomic_read(&el->val);
(void)j;
n_reads_local++;
if (goflag == GOFLAG_STOP) {
break;
}
}
rcu_read_unlock();
g_usleep(100);
}
atomic_add(&n_reads, n_reads_local);
return NULL;
}
static void *rcu_q_updater(void *arg)
{
int j, target_el;
long long n_updates_local = 0;
long long n_removed_local = 0;
struct list_element *el, *prev_el;
*(struct rcu_reader_data **)arg = &rcu_reader;
atomic_inc(&nthreadsrunning);
while (goflag == GOFLAG_INIT) {
g_usleep(1000);
}
while (goflag == GOFLAG_RUN) {
target_el = select_random_el(RCU_Q_LEN);
j = 0;
/* FOREACH_RCU could work here but let's use both macros */
QLIST_FOREACH_SAFE_RCU(prev_el, &Q_list_head, entry, el) {
j++;
if (target_el == j) {
QLIST_REMOVE_RCU(prev_el, entry);
/* may be more than one updater in the future */
call_rcu1(&prev_el->rcu, reclaim_list_el);
n_removed_local++;
break;
}
}
if (goflag == GOFLAG_STOP) {
break;
}
target_el = select_random_el(RCU_Q_LEN);
j = 0;
QLIST_FOREACH_RCU(el, &Q_list_head, entry) {
j++;
if (target_el == j) {
prev_el = g_new(struct list_element, 1);
atomic_add(&n_nodes, 1);
prev_el->val = atomic_read(&n_nodes);
QLIST_INSERT_BEFORE_RCU(el, prev_el, entry);
break;
}
}
n_updates_local += 2;
synchronize_rcu();
}
synchronize_rcu();
atomic_add(&n_updates, n_updates_local);
atomic_add(&n_nodes_removed, n_removed_local);
return NULL;
}
static void rcu_qtest_init(void)
{
struct list_element *new_el;
int i;
nthreadsrunning = 0;
srand(time(0));
for (i = 0; i < RCU_Q_LEN; i++) {
new_el = g_new(struct list_element, 1);
new_el->val = i;
QLIST_INSERT_HEAD_RCU(&Q_list_head, new_el, entry);
}
atomic_add(&n_nodes, RCU_Q_LEN);
}
static void rcu_qtest_run(int duration, int nreaders)
{
int nthreads = nreaders + 1;
while (atomic_read(&nthreadsrunning) < nthreads) {
g_usleep(1000);
}
goflag = GOFLAG_RUN;
sleep(duration);
goflag = GOFLAG_STOP;
wait_all_threads();
}
static void rcu_qtest(const char *test, int duration, int nreaders)
{
int i;
long long n_removed_local = 0;
struct list_element *el, *prev_el;
rcu_qtest_init();
for (i = 0; i < nreaders; i++) {
create_thread(rcu_q_reader);
}
create_thread(rcu_q_updater);
rcu_qtest_run(duration, nreaders);
QLIST_FOREACH_SAFE_RCU(prev_el, &Q_list_head, entry, el) {
QLIST_REMOVE_RCU(prev_el, entry);
call_rcu1(&prev_el->rcu, reclaim_list_el);
n_removed_local++;
}
atomic_add(&n_nodes_removed, n_removed_local);
synchronize_rcu();
while (n_nodes_removed > n_reclaims) {
g_usleep(100);
synchronize_rcu();
}
if (g_test_in_charge) {
g_assert_cmpint(n_nodes_removed, ==, n_reclaims);
} else {
printf("%s: %d readers; 1 updater; nodes read: " \
"%lld, nodes removed: %lld; nodes reclaimed: %lld\n",
test, nthreadsrunning - 1, n_reads, n_nodes_removed, n_reclaims);
exit(0);
}
}
static void usage(int argc, char *argv[])
{
fprintf(stderr, "Usage: %s duration nreaders\n", argv[0]);
exit(-1);
}
static int gtest_seconds;
static void gtest_rcuq_one(void)
{
rcu_qtest("rcuqtest", gtest_seconds / 4, 1);
}
static void gtest_rcuq_few(void)
{
rcu_qtest("rcuqtest", gtest_seconds / 4, 5);
}
static void gtest_rcuq_many(void)
{
rcu_qtest("rcuqtest", gtest_seconds / 2, 20);
}
int main(int argc, char *argv[])
{
int duration = 0, readers = 0;
if (argc >= 2) {
if (argv[1][0] == '-') {
g_test_init(&argc, &argv, NULL);
if (g_test_quick()) {
gtest_seconds = 4;
} else {
gtest_seconds = 20;
}
g_test_add_func("/rcu/qlist/single-threaded", gtest_rcuq_one);
g_test_add_func("/rcu/qlist/short-few", gtest_rcuq_few);
g_test_add_func("/rcu/qlist/long-many", gtest_rcuq_many);
g_test_in_charge = 1;
return g_test_run();
}
duration = strtoul(argv[1], NULL, 0);
}
if (argc >= 3) {
readers = strtoul(argv[2], NULL, 0);
}
if (duration && readers) {
rcu_qtest(argv[0], duration, readers);
return 0;
}
usage(argc, argv);
return -1;
}

View File

@ -35,6 +35,7 @@
#include "qemu/rcu.h"
#include "qemu/atomic.h"
#include "qemu/thread.h"
#include "qemu/main-loop.h"
/*
* Global grace period counter. Bit 0 is always one in rcu_gp_ctr.
@ -223,32 +224,38 @@ static void *call_rcu_thread(void *opaque)
* Fetch rcu_call_count now, we only must process elements that were
* added before synchronize_rcu() starts.
*/
while (n < RCU_CALL_MIN_SIZE && ++tries <= 5) {
g_usleep(100000);
while (n == 0 || (n < RCU_CALL_MIN_SIZE && ++tries <= 5)) {
g_usleep(10000);
if (n == 0) {
qemu_event_reset(&rcu_call_ready_event);
n = atomic_read(&rcu_call_count);
if (n < RCU_CALL_MIN_SIZE) {
if (n == 0) {
qemu_event_wait(&rcu_call_ready_event);
n = atomic_read(&rcu_call_count);
}
}
n = atomic_read(&rcu_call_count);
}
atomic_sub(&rcu_call_count, n);
synchronize_rcu();
qemu_mutex_lock_iothread();
while (n > 0) {
node = try_dequeue();
while (!node) {
qemu_mutex_unlock_iothread();
qemu_event_reset(&rcu_call_ready_event);
node = try_dequeue();
if (!node) {
qemu_event_wait(&rcu_call_ready_event);
node = try_dequeue();
}
qemu_mutex_lock_iothread();
}
n--;
node->func(node);
}
qemu_mutex_unlock_iothread();
}
abort();
}