hw/riscv: spike: Decouple create_fdt() dependency to ELF loading

At present create_fdt() calls htif_uses_elf_symbols() to determine
whether to insert a <reg> property for the HTIF. This unfortunately
creates a hidden dependency to riscv_load_{firmware,kernel} that
create_fdt() must be called after the ELF {firmware,kernel} image
has been loaded.

Decouple such dependency be adding a new parameter to create_fdt(),
whether custom HTIF base address is used. The flag will be set if
non ELF {firmware,kernel} image is given by user.

Signed-off-by: Bin Meng <bmeng@tinylab.org>
Reviewed-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com>
Message-Id: <20221229091828.1945072-13-bmeng@tinylab.org>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
This commit is contained in:
Bin Meng 2022-12-29 18:31:23 +08:00 committed by Alistair Francis
parent 8f6196266e
commit 71d68c48be
3 changed files with 59 additions and 24 deletions

View File

@ -52,20 +52,17 @@
#define PK_SYS_WRITE 64
static uint64_t fromhost_addr, tohost_addr;
static int address_symbol_set;
void htif_symbol_callback(const char *st_name, int st_info, uint64_t st_value,
uint64_t st_size)
{
if (strcmp("fromhost", st_name) == 0) {
address_symbol_set |= 1;
fromhost_addr = st_value;
if (st_size != 8) {
error_report("HTIF fromhost must be 8 bytes");
exit(1);
}
} else if (strcmp("tohost", st_name) == 0) {
address_symbol_set |= 2;
tohost_addr = st_value;
if (st_size != 8) {
error_report("HTIF tohost must be 8 bytes");
@ -275,19 +272,19 @@ static const MemoryRegionOps htif_mm_ops = {
.write = htif_mm_write,
};
bool htif_uses_elf_symbols(void)
{
return (address_symbol_set == 3) ? true : false;
}
HTIFState *htif_mm_init(MemoryRegion *address_space, Chardev *chr,
uint64_t nonelf_base)
uint64_t nonelf_base, bool custom_base)
{
uint64_t base, size, tohost_offset, fromhost_offset;
if (!htif_uses_elf_symbols()) {
if (custom_base) {
fromhost_addr = nonelf_base;
tohost_addr = nonelf_base + 8;
} else {
if (!fromhost_addr || !tohost_addr) {
error_report("Invalid HTIF fromhost or tohost address");
exit(1);
}
}
base = MIN(tohost_addr, fromhost_addr);

View File

@ -49,7 +49,8 @@ static const MemMapEntry spike_memmap[] = {
};
static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
uint64_t mem_size, const char *cmdline, bool is_32_bit)
uint64_t mem_size, const char *cmdline,
bool is_32_bit, bool htif_custom_base)
{
void *fdt;
uint64_t addr, size;
@ -77,7 +78,7 @@ static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
qemu_fdt_add_subnode(fdt, "/htif");
qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
if (!htif_uses_elf_symbols()) {
if (htif_custom_base) {
qemu_fdt_setprop_cells(fdt, "/htif", "reg",
0x0, memmap[SPIKE_HTIF].base, 0x0, memmap[SPIKE_HTIF].size);
}
@ -183,18 +184,33 @@ static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
}
}
static bool spike_test_elf_image(char *filename)
{
Error *err = NULL;
load_elf_hdr(filename, NULL, NULL, &err);
if (err) {
error_free(err);
return false;
} else {
return true;
}
}
static void spike_board_init(MachineState *machine)
{
const MemMapEntry *memmap = spike_memmap;
SpikeState *s = SPIKE_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
target_ulong firmware_end_addr, kernel_start_addr;
const char *firmware_name;
target_ulong firmware_end_addr = memmap[SPIKE_DRAM].base;
target_ulong kernel_start_addr;
char *firmware_name;
uint32_t fdt_load_addr;
uint64_t kernel_entry;
char *soc_name;
int i, base_hartid, hart_count;
bool htif_custom_base = false;
/* Check socket count limit */
if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
@ -256,10 +272,34 @@ static void spike_board_init(MachineState *machine)
memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
mask_rom);
firmware_name = riscv_default_firmware_name(&s->soc[0]);
firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
/* Find firmware */
firmware_name = riscv_find_firmware(machine->firmware,
riscv_default_firmware_name(&s->soc[0]));
/*
* Test the given firmware or kernel file to see if it is an ELF image.
* If it is an ELF, we assume it contains the symbols required for
* the HTIF console, otherwise we fall back to use the custom base
* passed from device tree for the HTIF console.
*/
if (!firmware_name && !machine->kernel_filename) {
htif_custom_base = true;
} else {
if (firmware_name) {
htif_custom_base = !spike_test_elf_image(firmware_name);
}
if (!htif_custom_base && machine->kernel_filename) {
htif_custom_base = !spike_test_elf_image(machine->kernel_filename);
}
}
/* Load firmware */
if (firmware_name) {
firmware_end_addr = riscv_load_firmware(firmware_name,
memmap[SPIKE_DRAM].base,
htif_symbol_callback);
g_free(firmware_name);
}
/* Load kernel */
if (machine->kernel_filename) {
@ -279,7 +319,7 @@ static void spike_board_init(MachineState *machine)
/* Create device tree */
create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
riscv_is_32bit(&s->soc[0]));
riscv_is_32bit(&s->soc[0]), htif_custom_base);
/* Load initrd */
if (machine->kernel_filename && machine->initrd_filename) {
@ -307,7 +347,8 @@ static void spike_board_init(MachineState *machine)
fdt_load_addr);
/* initialize HTIF using symbols found in load_kernel */
htif_mm_init(system_memory, serial_hd(0), memmap[SPIKE_HTIF].base);
htif_mm_init(system_memory, serial_hd(0), memmap[SPIKE_HTIF].base,
htif_custom_base);
}
static void spike_machine_instance_init(Object *obj)

View File

@ -44,11 +44,8 @@ typedef struct HTIFState {
void htif_symbol_callback(const char *st_name, int st_info, uint64_t st_value,
uint64_t st_size);
/* Check if HTIF uses ELF symbols */
bool htif_uses_elf_symbols(void);
/* legacy pre qom */
HTIFState *htif_mm_init(MemoryRegion *address_space, Chardev *chr,
uint64_t nonelf_base);
uint64_t nonelf_base, bool custom_base);
#endif