SMP support

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1640 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
bellard 2005-11-21 23:25:50 +00:00
parent f0aca8227f
commit 6a00d60127
9 changed files with 296 additions and 138 deletions

View File

@ -96,6 +96,7 @@ typedef struct CPUTLBEntry {
#define CPU_COMMON \ #define CPU_COMMON \
struct TranslationBlock *current_tb; /* currently executing TB */ \ struct TranslationBlock *current_tb; /* currently executing TB */ \
int cpu_halted; /* TRUE if cpu is halted (sleep mode) */ \
/* soft mmu support */ \ /* soft mmu support */ \
/* in order to avoid passing too many arguments to the memory \ /* in order to avoid passing too many arguments to the memory \
write helpers, we store some rarely used information in the CPU \ write helpers, we store some rarely used information in the CPU \
@ -115,9 +116,9 @@ typedef struct CPUTLBEntry {
int nb_breakpoints; \ int nb_breakpoints; \
int singlestep_enabled; \ int singlestep_enabled; \
\ \
void *next_cpu; /* next CPU sharing TB cache */ \
int cpu_index; /* CPU index (informative) */ \
/* user data */ \ /* user data */ \
void *opaque; void *opaque;
#endif #endif

View File

@ -251,6 +251,8 @@ int cpu_exec(CPUState *env1)
TranslationBlock *tb; TranslationBlock *tb;
uint8_t *tc_ptr; uint8_t *tc_ptr;
cpu_single_env = env1;
/* first we save global registers */ /* first we save global registers */
saved_env = env; saved_env = env;
env = env1; env = env1;
@ -755,6 +757,8 @@ int cpu_exec(CPUState *env1)
T2 = saved_T2; T2 = saved_T2;
#endif #endif
env = saved_env; env = saved_env;
/* fail safe : never use cpu_single_env outside cpu_exec() */
cpu_single_env = NULL;
return ret; return ret;
} }

10
disas.c
View File

@ -138,6 +138,7 @@ print_insn_thumb1(bfd_vma pc, disassemble_info *info)
values: values:
i386 - nonzero means 16 bit code i386 - nonzero means 16 bit code
arm - nonzero means thumb code arm - nonzero means thumb code
ppc - nonzero means little endian
other targets - unused other targets - unused
*/ */
void target_disas(FILE *out, target_ulong code, target_ulong size, int flags) void target_disas(FILE *out, target_ulong code, target_ulong size, int flags)
@ -177,7 +178,7 @@ void target_disas(FILE *out, target_ulong code, target_ulong size, int flags)
disasm_info.mach = bfd_mach_sparc_v9b; disasm_info.mach = bfd_mach_sparc_v9b;
#endif #endif
#elif defined(TARGET_PPC) #elif defined(TARGET_PPC)
if (cpu_single_env->msr[MSR_LE]) if (flags)
disasm_info.endian = BFD_ENDIAN_LITTLE; disasm_info.endian = BFD_ENDIAN_LITTLE;
#ifdef TARGET_PPC64 #ifdef TARGET_PPC64
disasm_info.mach = bfd_mach_ppc64; disasm_info.mach = bfd_mach_ppc64;
@ -314,6 +315,7 @@ void term_vprintf(const char *fmt, va_list ap);
void term_printf(const char *fmt, ...); void term_printf(const char *fmt, ...);
static int monitor_disas_is_physical; static int monitor_disas_is_physical;
static CPUState *monitor_disas_env;
static int static int
monitor_read_memory (memaddr, myaddr, length, info) monitor_read_memory (memaddr, myaddr, length, info)
@ -325,7 +327,7 @@ monitor_read_memory (memaddr, myaddr, length, info)
if (monitor_disas_is_physical) { if (monitor_disas_is_physical) {
cpu_physical_memory_rw(memaddr, myaddr, length, 0); cpu_physical_memory_rw(memaddr, myaddr, length, 0);
} else { } else {
cpu_memory_rw_debug(cpu_single_env, memaddr,myaddr, length, 0); cpu_memory_rw_debug(monitor_disas_env, memaddr,myaddr, length, 0);
} }
return 0; return 0;
} }
@ -339,7 +341,8 @@ static int monitor_fprintf(FILE *stream, const char *fmt, ...)
return 0; return 0;
} }
void monitor_disas(target_ulong pc, int nb_insn, int is_physical, int flags) void monitor_disas(CPUState *env,
target_ulong pc, int nb_insn, int is_physical, int flags)
{ {
int count, i; int count, i;
struct disassemble_info disasm_info; struct disassemble_info disasm_info;
@ -347,6 +350,7 @@ void monitor_disas(target_ulong pc, int nb_insn, int is_physical, int flags)
INIT_DISASSEMBLE_INFO(disasm_info, NULL, monitor_fprintf); INIT_DISASSEMBLE_INFO(disasm_info, NULL, monitor_fprintf);
monitor_disas_env = env;
monitor_disas_is_physical = is_physical; monitor_disas_is_physical = is_physical;
disasm_info.read_memory_func = monitor_read_memory; disasm_info.read_memory_func = monitor_read_memory;

View File

@ -91,7 +91,7 @@ int cpu_restore_state_copy(struct TranslationBlock *tb,
CPUState *env, unsigned long searched_pc, CPUState *env, unsigned long searched_pc,
void *puc); void *puc);
void cpu_resume_from_signal(CPUState *env1, void *puc); void cpu_resume_from_signal(CPUState *env1, void *puc);
void cpu_exec_init(void); void cpu_exec_init(CPUState *env);
int page_unprotect(unsigned long address, unsigned long pc, void *puc); int page_unprotect(unsigned long address, unsigned long pc, void *puc);
void tb_invalidate_phys_page_range(target_ulong start, target_ulong end, void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
int is_cpu_write_access); int is_cpu_write_access);

104
exec.c
View File

@ -74,6 +74,11 @@ int phys_ram_fd;
uint8_t *phys_ram_base; uint8_t *phys_ram_base;
uint8_t *phys_ram_dirty; uint8_t *phys_ram_dirty;
CPUState *first_cpu;
/* current CPU in the current thread. It is only valid inside
cpu_exec() */
CPUState *cpu_single_env;
typedef struct PageDesc { typedef struct PageDesc {
/* list of TBs intersecting this ram page */ /* list of TBs intersecting this ram page */
TranslationBlock *first_tb; TranslationBlock *first_tb;
@ -233,19 +238,30 @@ static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
} }
#if !defined(CONFIG_USER_ONLY) #if !defined(CONFIG_USER_ONLY)
static void tlb_protect_code(CPUState *env, ram_addr_t ram_addr, static void tlb_protect_code(ram_addr_t ram_addr);
target_ulong vaddr);
static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
target_ulong vaddr); target_ulong vaddr);
#endif #endif
void cpu_exec_init(void) void cpu_exec_init(CPUState *env)
{ {
CPUState **penv;
int cpu_index;
if (!code_gen_ptr) { if (!code_gen_ptr) {
code_gen_ptr = code_gen_buffer; code_gen_ptr = code_gen_buffer;
page_init(); page_init();
io_mem_init(); io_mem_init();
} }
env->next_cpu = NULL;
penv = &first_cpu;
cpu_index = 0;
while (*penv != NULL) {
penv = (CPUState **)&(*penv)->next_cpu;
cpu_index++;
}
env->cpu_index = cpu_index;
*penv = env;
} }
static inline void invalidate_page_bitmap(PageDesc *p) static inline void invalidate_page_bitmap(PageDesc *p)
@ -277,8 +293,9 @@ static void page_flush_tb(void)
/* flush all the translation blocks */ /* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */ /* XXX: tb_flush is currently not thread safe */
void tb_flush(CPUState *env) void tb_flush(CPUState *env1)
{ {
CPUState *env;
#if defined(DEBUG_FLUSH) #if defined(DEBUG_FLUSH)
printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n", printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
code_gen_ptr - code_gen_buffer, code_gen_ptr - code_gen_buffer,
@ -286,7 +303,10 @@ void tb_flush(CPUState *env)
nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0); nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
#endif #endif
nb_tbs = 0; nb_tbs = 0;
memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
for(env = first_cpu; env != NULL; env = env->next_cpu) {
memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
}
memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
page_flush_tb(); page_flush_tb();
@ -424,6 +444,7 @@ static inline void tb_reset_jump(TranslationBlock *tb, int n)
static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr) static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
{ {
CPUState *env;
PageDesc *p; PageDesc *p;
unsigned int h, n1; unsigned int h, n1;
target_ulong phys_pc; target_ulong phys_pc;
@ -451,7 +472,10 @@ static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_ad
/* remove the TB from the hash list */ /* remove the TB from the hash list */
h = tb_jmp_cache_hash_func(tb->pc); h = tb_jmp_cache_hash_func(tb->pc);
cpu_single_env->tb_jmp_cache[h] = NULL; for(env = first_cpu; env != NULL; env = env->next_cpu) {
if (env->tb_jmp_cache[h] == tb)
env->tb_jmp_cache[h] = NULL;
}
/* suppress this TB from the two jump lists */ /* suppress this TB from the two jump lists */
tb_jmp_remove(tb, 0); tb_jmp_remove(tb, 0);
@ -818,10 +842,7 @@ static inline void tb_alloc_page(TranslationBlock *tb,
protected. So we handle the case where only the first TB is protected. So we handle the case where only the first TB is
allocated in a physical page */ allocated in a physical page */
if (!last_first_tb) { if (!last_first_tb) {
target_ulong virt_addr; tlb_protect_code(page_addr);
virt_addr = (tb->pc & TARGET_PAGE_MASK) + (n << TARGET_PAGE_BITS);
tlb_protect_code(cpu_single_env, page_addr, virt_addr);
} }
#endif #endif
@ -1246,40 +1267,13 @@ void tlb_flush_page(CPUState *env, target_ulong addr)
#endif #endif
} }
static inline void tlb_protect_code1(CPUTLBEntry *tlb_entry, target_ulong addr)
{
if (addr == (tlb_entry->address &
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) &&
(tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
}
}
/* update the TLBs so that writes to code in the virtual page 'addr' /* update the TLBs so that writes to code in the virtual page 'addr'
can be detected */ can be detected */
static void tlb_protect_code(CPUState *env, ram_addr_t ram_addr, static void tlb_protect_code(ram_addr_t ram_addr)
target_ulong vaddr)
{ {
int i; cpu_physical_memory_reset_dirty(ram_addr,
ram_addr + TARGET_PAGE_SIZE,
vaddr &= TARGET_PAGE_MASK; CODE_DIRTY_FLAG);
i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
tlb_protect_code1(&env->tlb_write[0][i], vaddr);
tlb_protect_code1(&env->tlb_write[1][i], vaddr);
#ifdef USE_KQEMU
if (env->kqemu_enabled) {
kqemu_set_notdirty(env, ram_addr);
}
#endif
phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] &= ~CODE_DIRTY_FLAG;
#if !defined(CONFIG_SOFTMMU)
/* NOTE: as we generated the code for this page, it is already at
least readable */
if (vaddr < MMAP_AREA_END)
mprotect((void *)vaddr, TARGET_PAGE_SIZE, PROT_READ);
#endif
} }
/* update the TLB so that writes in physical page 'phys_addr' are no longer /* update the TLB so that writes in physical page 'phys_addr' are no longer
@ -1317,8 +1311,9 @@ void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
if (length == 0) if (length == 0)
return; return;
len = length >> TARGET_PAGE_BITS; len = length >> TARGET_PAGE_BITS;
env = cpu_single_env;
#ifdef USE_KQEMU #ifdef USE_KQEMU
/* XXX: should not depend on cpu context */
env = first_cpu;
if (env->kqemu_enabled) { if (env->kqemu_enabled) {
ram_addr_t addr; ram_addr_t addr;
addr = start; addr = start;
@ -1336,10 +1331,12 @@ void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
/* we modify the TLB cache so that the dirty bit will be set again /* we modify the TLB cache so that the dirty bit will be set again
when accessing the range */ when accessing the range */
start1 = start + (unsigned long)phys_ram_base; start1 = start + (unsigned long)phys_ram_base;
for(i = 0; i < CPU_TLB_SIZE; i++) for(env = first_cpu; env != NULL; env = env->next_cpu) {
tlb_reset_dirty_range(&env->tlb_write[0][i], start1, length); for(i = 0; i < CPU_TLB_SIZE; i++)
for(i = 0; i < CPU_TLB_SIZE; i++) tlb_reset_dirty_range(&env->tlb_write[0][i], start1, length);
tlb_reset_dirty_range(&env->tlb_write[1][i], start1, length); for(i = 0; i < CPU_TLB_SIZE; i++)
tlb_reset_dirty_range(&env->tlb_write[1][i], start1, length);
}
#if !defined(CONFIG_SOFTMMU) #if !defined(CONFIG_SOFTMMU)
/* XXX: this is expensive */ /* XXX: this is expensive */
@ -1407,9 +1404,9 @@ static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
/* update the TLB corresponding to virtual page vaddr and phys addr /* update the TLB corresponding to virtual page vaddr and phys addr
addr so that it is no longer dirty */ addr so that it is no longer dirty */
static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr) static inline void tlb_set_dirty(CPUState *env,
unsigned long addr, target_ulong vaddr)
{ {
CPUState *env = cpu_single_env;
int i; int i;
addr &= TARGET_PAGE_MASK; addr &= TARGET_PAGE_MASK;
@ -1723,7 +1720,8 @@ void page_unprotect_range(uint8_t *data, unsigned long data_size)
} }
} }
static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr) static inline void tlb_set_dirty(CPUState *env,
unsigned long addr, target_ulong vaddr)
{ {
} }
#endif /* defined(CONFIG_USER_ONLY) */ #endif /* defined(CONFIG_USER_ONLY) */
@ -1787,7 +1785,7 @@ static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t
/* we remove the notdirty callback only if the code has been /* we remove the notdirty callback only if the code has been
flushed */ flushed */
if (dirty_flags == 0xff) if (dirty_flags == 0xff)
tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr); tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
} }
static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
@ -1808,7 +1806,7 @@ static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t
/* we remove the notdirty callback only if the code has been /* we remove the notdirty callback only if the code has been
flushed */ flushed */
if (dirty_flags == 0xff) if (dirty_flags == 0xff)
tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr); tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
} }
static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
@ -1829,7 +1827,7 @@ static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t
/* we remove the notdirty callback only if the code has been /* we remove the notdirty callback only if the code has been
flushed */ flushed */
if (dirty_flags == 0xff) if (dirty_flags == 0xff)
tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr); tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
} }
static CPUReadMemoryFunc *error_mem_read[3] = { static CPUReadMemoryFunc *error_mem_read[3] = {
@ -1953,6 +1951,8 @@ void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
if (is_write) { if (is_write) {
if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
/* XXX: could force cpu_single_env to NULL to avoid
potential bugs */
if (l >= 4 && ((addr & 3) == 0)) { if (l >= 4 && ((addr & 3) == 0)) {
/* 32 bit write access */ /* 32 bit write access */
val = ldl_p(buf); val = ldl_p(buf);

View File

@ -47,6 +47,7 @@ enum RSState {
static int gdbserver_fd = -1; static int gdbserver_fd = -1;
typedef struct GDBState { typedef struct GDBState {
CPUState *env; /* current CPU */
enum RSState state; /* parsing state */ enum RSState state; /* parsing state */
int fd; int fd;
char line_buf[4096]; char line_buf[4096];
@ -576,10 +577,10 @@ static void gdb_vm_stopped(void *opaque, int reason)
int ret; int ret;
/* disable single step if it was enable */ /* disable single step if it was enable */
cpu_single_step(cpu_single_env, 0); cpu_single_step(s->env, 0);
if (reason == EXCP_DEBUG) { if (reason == EXCP_DEBUG) {
tb_flush(cpu_single_env); tb_flush(s->env);
ret = SIGTRAP; ret = SIGTRAP;
} }
else else
@ -589,8 +590,9 @@ static void gdb_vm_stopped(void *opaque, int reason)
} }
#endif #endif
static void gdb_read_byte(GDBState *s, CPUState *env, int ch) static void gdb_read_byte(GDBState *s, int ch)
{ {
CPUState *env = s->env;
int i, csum; int i, csum;
char reply[1]; char reply[1];
@ -676,7 +678,7 @@ gdb_handlesig (CPUState *env, int sig)
int i; int i;
for (i = 0; i < n; i++) for (i = 0; i < n; i++)
gdb_read_byte (s, env, buf[i]); gdb_read_byte (s, buf[i]);
} }
else if (n == 0 || errno != EAGAIN) else if (n == 0 || errno != EAGAIN)
{ {
@ -721,7 +723,7 @@ static void gdb_read(void *opaque)
vm_start(); vm_start();
} else { } else {
for(i = 0; i < size; i++) for(i = 0; i < size; i++)
gdb_read_byte(s, cpu_single_env, buf[i]); gdb_read_byte(s, buf[i]);
} }
} }
@ -759,6 +761,7 @@ static void gdb_accept(void *opaque)
return; return;
} }
#endif #endif
s->env = first_cpu; /* XXX: allow to change CPU */
s->fd = fd; s->fd = fd;
fcntl(fd, F_SETFL, O_NONBLOCK); fcntl(fd, F_SETFL, O_NONBLOCK);

190
monitor.c
View File

@ -64,6 +64,8 @@ static int term_outbuf_index;
static void monitor_start_input(void); static void monitor_start_input(void);
CPUState *mon_cpu = NULL;
void term_flush(void) void term_flush(void)
{ {
if (term_outbuf_index > 0) { if (term_outbuf_index > 0) {
@ -201,17 +203,69 @@ static void do_info_block(void)
bdrv_info(); bdrv_info();
} }
/* get the current CPU defined by the user */
int mon_set_cpu(int cpu_index)
{
CPUState *env;
for(env = first_cpu; env != NULL; env = env->next_cpu) {
if (env->cpu_index == cpu_index) {
mon_cpu = env;
return 0;
}
}
return -1;
}
CPUState *mon_get_cpu(void)
{
if (!mon_cpu) {
mon_set_cpu(0);
}
return mon_cpu;
}
static void do_info_registers(void) static void do_info_registers(void)
{ {
CPUState *env;
env = mon_get_cpu();
if (!env)
return;
#ifdef TARGET_I386 #ifdef TARGET_I386
cpu_dump_state(cpu_single_env, NULL, monitor_fprintf, cpu_dump_state(env, NULL, monitor_fprintf,
X86_DUMP_FPU); X86_DUMP_FPU);
#else #else
cpu_dump_state(cpu_single_env, NULL, monitor_fprintf, cpu_dump_state(env, NULL, monitor_fprintf,
0); 0);
#endif #endif
} }
static void do_info_cpus(void)
{
CPUState *env;
/* just to set the default cpu if not already done */
mon_get_cpu();
for(env = first_cpu; env != NULL; env = env->next_cpu) {
term_printf("%c CPU #%d:",
(env == mon_cpu) ? '*' : ' ',
env->cpu_index);
#if defined(TARGET_I386)
term_printf(" pc=0x" TARGET_FMT_lx, env->eip + env->segs[R_CS].base);
if (env->cpu_halted)
term_printf(" (halted)");
#endif
term_printf("\n");
}
}
static void do_cpu_set(int index)
{
if (mon_set_cpu(index) < 0)
term_printf("Invalid CPU index\n");
}
static void do_info_jit(void) static void do_info_jit(void)
{ {
dump_exec_info(NULL, monitor_fprintf); dump_exec_info(NULL, monitor_fprintf);
@ -381,6 +435,7 @@ static void term_printc(int c)
static void memory_dump(int count, int format, int wsize, static void memory_dump(int count, int format, int wsize,
target_ulong addr, int is_physical) target_ulong addr, int is_physical)
{ {
CPUState *env;
int nb_per_line, l, line_size, i, max_digits, len; int nb_per_line, l, line_size, i, max_digits, len;
uint8_t buf[16]; uint8_t buf[16];
uint64_t v; uint64_t v;
@ -388,19 +443,22 @@ static void memory_dump(int count, int format, int wsize,
if (format == 'i') { if (format == 'i') {
int flags; int flags;
flags = 0; flags = 0;
env = mon_get_cpu();
if (!env && !is_physical)
return;
#ifdef TARGET_I386 #ifdef TARGET_I386
if (wsize == 2) { if (wsize == 2) {
flags = 1; flags = 1;
} else if (wsize == 4) { } else if (wsize == 4) {
flags = 0; flags = 0;
} else { } else {
/* as default we use the current CS size */ /* as default we use the current CS size */
flags = 0; flags = 0;
if (!(cpu_single_env->segs[R_CS].flags & DESC_B_MASK)) if (env && !(env->segs[R_CS].flags & DESC_B_MASK))
flags = 1; flags = 1;
} }
#endif #endif
monitor_disas(addr, count, is_physical, flags); monitor_disas(env, addr, count, is_physical, flags);
return; return;
} }
@ -437,7 +495,10 @@ static void memory_dump(int count, int format, int wsize,
if (is_physical) { if (is_physical) {
cpu_physical_memory_rw(addr, buf, l, 0); cpu_physical_memory_rw(addr, buf, l, 0);
} else { } else {
cpu_memory_rw_debug(cpu_single_env, addr, buf, l, 0); env = mon_get_cpu();
if (!env)
break;
cpu_memory_rw_debug(env, addr, buf, l, 0);
} }
i = 0; i = 0;
while (i < l) { while (i < l) {
@ -776,10 +837,14 @@ static void print_pte(uint32_t addr, uint32_t pte, uint32_t mask)
static void tlb_info(void) static void tlb_info(void)
{ {
CPUState *env = cpu_single_env; CPUState *env;
int l1, l2; int l1, l2;
uint32_t pgd, pde, pte; uint32_t pgd, pde, pte;
env = mon_get_cpu();
if (!env)
return;
if (!(env->cr[0] & CR0_PG_MASK)) { if (!(env->cr[0] & CR0_PG_MASK)) {
term_printf("PG disabled\n"); term_printf("PG disabled\n");
return; return;
@ -830,10 +895,14 @@ static void mem_print(uint32_t *pstart, int *plast_prot,
static void mem_info(void) static void mem_info(void)
{ {
CPUState *env = cpu_single_env; CPUState *env;
int l1, l2, prot, last_prot; int l1, l2, prot, last_prot;
uint32_t pgd, pde, pte, start, end; uint32_t pgd, pde, pte, start, end;
env = mon_get_cpu();
if (!env)
return;
if (!(env->cr[0] & CR0_PG_MASK)) { if (!(env->cr[0] & CR0_PG_MASK)) {
term_printf("PG disabled\n"); term_printf("PG disabled\n");
return; return;
@ -874,10 +943,15 @@ static void mem_info(void)
static void do_info_kqemu(void) static void do_info_kqemu(void)
{ {
#ifdef USE_KQEMU #ifdef USE_KQEMU
CPUState *env;
int val; int val;
val = 0; val = 0;
if (cpu_single_env) env = mon_get_cpu();
val = cpu_single_env->kqemu_enabled; if (!env) {
term_printf("No cpu initialized yet");
return;
}
val = env->kqemu_enabled;
term_printf("kqemu is %s\n", val ? "enabled" : "disabled"); term_printf("kqemu is %s\n", val ? "enabled" : "disabled");
#else #else
term_printf("kqemu support is not compiled\n"); term_printf("kqemu support is not compiled\n");
@ -934,6 +1008,8 @@ static term_cmd_t term_cmds[] = {
"device", "add USB device (e.g. 'host:bus.addr' or 'host:vendor_id:product_id')" }, "device", "add USB device (e.g. 'host:bus.addr' or 'host:vendor_id:product_id')" },
{ "usb_del", "s", do_usb_del, { "usb_del", "s", do_usb_del,
"device", "remove USB device 'bus.addr'" }, "device", "remove USB device 'bus.addr'" },
{ "cpu", "i", do_cpu_set,
"index", "set the default CPU" },
{ NULL, NULL, }, { NULL, NULL, },
}; };
@ -946,6 +1022,8 @@ static term_cmd_t info_cmds[] = {
"", "show the block devices" }, "", "show the block devices" },
{ "registers", "", do_info_registers, { "registers", "", do_info_registers,
"", "show the cpu registers" }, "", "show the cpu registers" },
{ "cpus", "", do_info_cpus,
"", "show infos for each CPU" },
{ "history", "", do_info_history, { "history", "", do_info_history,
"", "show the command line history", }, "", "show the command line history", },
{ "irq", "", irq_info, { "irq", "", irq_info,
@ -989,63 +1067,85 @@ typedef struct MonitorDef {
#if defined(TARGET_I386) #if defined(TARGET_I386)
static target_long monitor_get_pc (struct MonitorDef *md, int val) static target_long monitor_get_pc (struct MonitorDef *md, int val)
{ {
return cpu_single_env->eip + cpu_single_env->segs[R_CS].base; CPUState *env = mon_get_cpu();
if (!env)
return 0;
return env->eip + env->segs[R_CS].base;
} }
#endif #endif
#if defined(TARGET_PPC) #if defined(TARGET_PPC)
static target_long monitor_get_ccr (struct MonitorDef *md, int val) static target_long monitor_get_ccr (struct MonitorDef *md, int val)
{ {
CPUState *env = mon_get_cpu();
unsigned int u; unsigned int u;
int i; int i;
if (!env)
return 0;
u = 0; u = 0;
for (i = 0; i < 8; i++) for (i = 0; i < 8; i++)
u |= cpu_single_env->crf[i] << (32 - (4 * i)); u |= env->crf[i] << (32 - (4 * i));
return u; return u;
} }
static target_long monitor_get_msr (struct MonitorDef *md, int val) static target_long monitor_get_msr (struct MonitorDef *md, int val)
{ {
return (cpu_single_env->msr[MSR_POW] << MSR_POW) | CPUState *env = mon_get_cpu();
(cpu_single_env->msr[MSR_ILE] << MSR_ILE) | if (!env)
(cpu_single_env->msr[MSR_EE] << MSR_EE) | return 0;
(cpu_single_env->msr[MSR_PR] << MSR_PR) | return (env->msr[MSR_POW] << MSR_POW) |
(cpu_single_env->msr[MSR_FP] << MSR_FP) | (env->msr[MSR_ILE] << MSR_ILE) |
(cpu_single_env->msr[MSR_ME] << MSR_ME) | (env->msr[MSR_EE] << MSR_EE) |
(cpu_single_env->msr[MSR_FE0] << MSR_FE0) | (env->msr[MSR_PR] << MSR_PR) |
(cpu_single_env->msr[MSR_SE] << MSR_SE) | (env->msr[MSR_FP] << MSR_FP) |
(cpu_single_env->msr[MSR_BE] << MSR_BE) | (env->msr[MSR_ME] << MSR_ME) |
(cpu_single_env->msr[MSR_FE1] << MSR_FE1) | (env->msr[MSR_FE0] << MSR_FE0) |
(cpu_single_env->msr[MSR_IP] << MSR_IP) | (env->msr[MSR_SE] << MSR_SE) |
(cpu_single_env->msr[MSR_IR] << MSR_IR) | (env->msr[MSR_BE] << MSR_BE) |
(cpu_single_env->msr[MSR_DR] << MSR_DR) | (env->msr[MSR_FE1] << MSR_FE1) |
(cpu_single_env->msr[MSR_RI] << MSR_RI) | (env->msr[MSR_IP] << MSR_IP) |
(cpu_single_env->msr[MSR_LE] << MSR_LE); (env->msr[MSR_IR] << MSR_IR) |
(env->msr[MSR_DR] << MSR_DR) |
(env->msr[MSR_RI] << MSR_RI) |
(env->msr[MSR_LE] << MSR_LE);
} }
static target_long monitor_get_xer (struct MonitorDef *md, int val) static target_long monitor_get_xer (struct MonitorDef *md, int val)
{ {
return (cpu_single_env->xer[XER_SO] << XER_SO) | CPUState *env = mon_get_cpu();
(cpu_single_env->xer[XER_OV] << XER_OV) | if (!env)
(cpu_single_env->xer[XER_CA] << XER_CA) | return 0;
(cpu_single_env->xer[XER_BC] << XER_BC); return (env->xer[XER_SO] << XER_SO) |
(env->xer[XER_OV] << XER_OV) |
(env->xer[XER_CA] << XER_CA) |
(env->xer[XER_BC] << XER_BC);
} }
static target_long monitor_get_decr (struct MonitorDef *md, int val) static target_long monitor_get_decr (struct MonitorDef *md, int val)
{ {
return cpu_ppc_load_decr(cpu_single_env); CPUState *env = mon_get_cpu();
if (!env)
return 0;
return cpu_ppc_load_decr(env);
} }
static target_long monitor_get_tbu (struct MonitorDef *md, int val) static target_long monitor_get_tbu (struct MonitorDef *md, int val)
{ {
return cpu_ppc_load_tbu(cpu_single_env); CPUState *env = mon_get_cpu();
if (!env)
return 0;
return cpu_ppc_load_tbu(env);
} }
static target_long monitor_get_tbl (struct MonitorDef *md, int val) static target_long monitor_get_tbl (struct MonitorDef *md, int val)
{ {
return cpu_ppc_load_tbl(cpu_single_env); CPUState *env = mon_get_cpu();
if (!env)
return 0;
return cpu_ppc_load_tbl(env);
} }
#endif #endif
@ -1053,13 +1153,19 @@ static target_long monitor_get_tbl (struct MonitorDef *md, int val)
#ifndef TARGET_SPARC64 #ifndef TARGET_SPARC64
static target_long monitor_get_psr (struct MonitorDef *md, int val) static target_long monitor_get_psr (struct MonitorDef *md, int val)
{ {
return GET_PSR(cpu_single_env); CPUState *env = mon_get_cpu();
if (!env)
return 0;
return GET_PSR(env);
} }
#endif #endif
static target_long monitor_get_reg(struct MonitorDef *md, int val) static target_long monitor_get_reg(struct MonitorDef *md, int val)
{ {
return cpu_single_env->regwptr[val]; CPUState *env = mon_get_cpu();
if (!env)
return 0;
return env->regwptr[val];
} }
#endif #endif
@ -1269,6 +1375,7 @@ static void expr_error(const char *fmt)
longjmp(expr_env, 1); longjmp(expr_env, 1);
} }
/* return 0 if OK, -1 if not found, -2 if no CPU defined */
static int get_monitor_def(target_long *pval, const char *name) static int get_monitor_def(target_long *pval, const char *name)
{ {
MonitorDef *md; MonitorDef *md;
@ -1279,7 +1386,10 @@ static int get_monitor_def(target_long *pval, const char *name)
if (md->get_value) { if (md->get_value) {
*pval = md->get_value(md, md->offset); *pval = md->get_value(md, md->offset);
} else { } else {
ptr = (uint8_t *)cpu_single_env + md->offset; CPUState *env = mon_get_cpu();
if (!env)
return -2;
ptr = (uint8_t *)env + md->offset;
switch(md->type) { switch(md->type) {
case MD_I32: case MD_I32:
*pval = *(int32_t *)ptr; *pval = *(int32_t *)ptr;
@ -1313,6 +1423,7 @@ static target_long expr_unary(void)
{ {
target_long n; target_long n;
char *p; char *p;
int ret;
switch(*pch) { switch(*pch) {
case '+': case '+':
@ -1362,8 +1473,11 @@ static target_long expr_unary(void)
while (isspace(*pch)) while (isspace(*pch))
pch++; pch++;
*q = 0; *q = 0;
if (get_monitor_def(&n, buf)) ret = get_monitor_def(&n, buf);
if (ret == -1)
expr_error("unknown register"); expr_error("unknown register");
else if (ret == -2)
expr_error("no cpu defined");
} }
break; break;
case '\0': case '\0':

99
vl.c
View File

@ -83,8 +83,6 @@
#include "exec-all.h" #include "exec-all.h"
//#define DO_TB_FLUSH
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup" #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
//#define DEBUG_UNUSED_IOPORT //#define DEBUG_UNUSED_IOPORT
@ -109,8 +107,6 @@
const char *bios_dir = CONFIG_QEMU_SHAREDIR; const char *bios_dir = CONFIG_QEMU_SHAREDIR;
char phys_ram_file[1024]; char phys_ram_file[1024];
CPUState *global_env;
CPUState *cpu_single_env;
void *ioport_opaque[MAX_IOPORTS]; void *ioport_opaque[MAX_IOPORTS];
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS]; IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS]; IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
@ -156,6 +152,7 @@ int usb_enabled = 0;
USBPort *vm_usb_ports[MAX_VM_USB_PORTS]; USBPort *vm_usb_ports[MAX_VM_USB_PORTS];
USBDevice *vm_usb_hub; USBDevice *vm_usb_hub;
static VLANState *first_vlan; static VLANState *first_vlan;
int smp_cpus = 1;
/***********************************************************/ /***********************************************************/
/* x86 ISA bus support */ /* x86 ISA bus support */
@ -427,16 +424,20 @@ int cpu_inl(CPUState *env, int addr)
void hw_error(const char *fmt, ...) void hw_error(const char *fmt, ...)
{ {
va_list ap; va_list ap;
CPUState *env;
va_start(ap, fmt); va_start(ap, fmt);
fprintf(stderr, "qemu: hardware error: "); fprintf(stderr, "qemu: hardware error: ");
vfprintf(stderr, fmt, ap); vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n"); fprintf(stderr, "\n");
for(env = first_cpu; env != NULL; env = env->next_cpu) {
fprintf(stderr, "CPU #%d:\n", env->cpu_index);
#ifdef TARGET_I386 #ifdef TARGET_I386
cpu_dump_state(global_env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
#else #else
cpu_dump_state(global_env, stderr, fprintf, 0); cpu_dump_state(env, stderr, fprintf, 0);
#endif #endif
}
va_end(ap); va_end(ap);
abort(); abort();
} }
@ -879,13 +880,16 @@ static void host_alarm_handler(int host_signum)
qemu_get_clock(vm_clock)) || qemu_get_clock(vm_clock)) ||
qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME], qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
qemu_get_clock(rt_clock))) { qemu_get_clock(rt_clock))) {
/* stop the cpu because a timer occured */ CPUState *env = cpu_single_env;
cpu_interrupt(global_env, CPU_INTERRUPT_EXIT); if (env) {
/* stop the currently executing cpu because a timer occured */
cpu_interrupt(env, CPU_INTERRUPT_EXIT);
#ifdef USE_KQEMU #ifdef USE_KQEMU
if (global_env->kqemu_enabled) { if (env->kqemu_enabled) {
kqemu_cpu_interrupt(global_env); kqemu_cpu_interrupt(env);
} }
#endif #endif
}
} }
} }
@ -2970,9 +2974,6 @@ int qemu_loadvm(const char *filename)
goto the_end; goto the_end;
} }
for(;;) { for(;;) {
#if defined (DO_TB_FLUSH)
tb_flush(global_env);
#endif
len = qemu_get_byte(f); len = qemu_get_byte(f);
if (feof(f)) if (feof(f))
break; break;
@ -3583,27 +3584,22 @@ void qemu_system_reset(void)
void qemu_system_reset_request(void) void qemu_system_reset_request(void)
{ {
reset_requested = 1; reset_requested = 1;
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT); if (cpu_single_env)
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
} }
void qemu_system_shutdown_request(void) void qemu_system_shutdown_request(void)
{ {
shutdown_requested = 1; shutdown_requested = 1;
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT); if (cpu_single_env)
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
} }
void qemu_system_powerdown_request(void) void qemu_system_powerdown_request(void)
{ {
powerdown_requested = 1; powerdown_requested = 1;
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT); if (cpu_single_env)
} cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
static void main_cpu_reset(void *opaque)
{
#if defined(TARGET_I386) || defined(TARGET_SPARC)
CPUState *env = opaque;
cpu_reset(env);
#endif
} }
void main_loop_wait(int timeout) void main_loop_wait(int timeout)
@ -3684,14 +3680,42 @@ void main_loop_wait(int timeout)
qemu_get_clock(rt_clock)); qemu_get_clock(rt_clock));
} }
static CPUState *cur_cpu;
static CPUState *find_next_cpu(void)
{
CPUState *env;
env = cur_cpu;
for(;;) {
/* get next cpu */
env = env->next_cpu;
if (!env)
env = first_cpu;
if (!env->cpu_halted)
break;
/* all CPUs are halted ? */
if (env == cur_cpu)
return NULL;
}
cur_cpu = env;
return env;
}
int main_loop(void) int main_loop(void)
{ {
int ret, timeout; int ret, timeout;
CPUState *env = global_env; CPUState *env;
cur_cpu = first_cpu;
for(;;) { for(;;) {
if (vm_running) { if (vm_running) {
ret = cpu_exec(env); /* find next cpu to run */
/* XXX: handle HLT correctly */
env = find_next_cpu();
if (!env)
ret = EXCP_HLT;
else
ret = cpu_exec(env);
if (shutdown_requested) { if (shutdown_requested) {
ret = EXCP_INTERRUPT; ret = EXCP_INTERRUPT;
break; break;
@ -3774,7 +3798,7 @@ void help(void)
" connect the host TAP network interface to VLAN 'n' and use\n" " connect the host TAP network interface to VLAN 'n' and use\n"
" the network script 'file' (default=%s);\n" " the network script 'file' (default=%s);\n"
" use 'fd=h' to connect to an already opened TAP interface\n" " use 'fd=h' to connect to an already opened TAP interface\n"
"-net socket[,vlan=n][,fd=x][,listen=[host]:port][,connect=host:port]\n" "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
" connect the vlan 'n' to another VLAN using a socket connection\n" " connect the vlan 'n' to another VLAN using a socket connection\n"
#endif #endif
"-net none use it alone to have zero network devices; if no -net option\n" "-net none use it alone to have zero network devices; if no -net option\n"
@ -3899,6 +3923,7 @@ enum {
QEMU_OPTION_win2k_hack, QEMU_OPTION_win2k_hack,
QEMU_OPTION_usb, QEMU_OPTION_usb,
QEMU_OPTION_usbdevice, QEMU_OPTION_usbdevice,
QEMU_OPTION_smp,
}; };
typedef struct QEMUOption { typedef struct QEMUOption {
@ -3965,6 +3990,7 @@ const QEMUOption qemu_options[] = {
{ "pidfile", HAS_ARG, QEMU_OPTION_pidfile }, { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
{ "win2k-hack", 0, QEMU_OPTION_win2k_hack }, { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
{ "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice }, { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
{ "smp", HAS_ARG, QEMU_OPTION_smp },
/* temporary options */ /* temporary options */
{ "usb", 0, QEMU_OPTION_usb }, { "usb", 0, QEMU_OPTION_usb },
@ -4120,7 +4146,6 @@ int main(int argc, char **argv)
#endif #endif
int i, cdrom_index; int i, cdrom_index;
int snapshot, linux_boot; int snapshot, linux_boot;
CPUState *env;
const char *initrd_filename; const char *initrd_filename;
const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD]; const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
const char *kernel_filename, *kernel_cmdline; const char *kernel_filename, *kernel_cmdline;
@ -4511,6 +4536,13 @@ int main(int argc, char **argv)
optarg); optarg);
usb_devices_index++; usb_devices_index++;
break; break;
case QEMU_OPTION_smp:
smp_cpus = atoi(optarg);
if (smp_cpus < 1 || smp_cpus > 8) {
fprintf(stderr, "Invalid number of CPUs\n");
exit(1);
}
break;
} }
} }
} }
@ -4659,15 +4691,8 @@ int main(int argc, char **argv)
} }
} }
/* init CPU state */ register_savevm("timer", 0, 1, timer_save, timer_load, NULL);
env = cpu_init();
global_env = env;
cpu_single_env = env;
register_savevm("timer", 0, 1, timer_save, timer_load, env);
register_savevm("cpu", 0, 3, cpu_save, cpu_load, env);
register_savevm("ram", 0, 1, ram_save, ram_load, NULL); register_savevm("ram", 0, 1, ram_save, ram_load, NULL);
qemu_register_reset(main_cpu_reset, global_env);
init_ioports(); init_ioports();
cpu_calibrate_ticks(); cpu_calibrate_ticks();

7
vl.h
View File

@ -142,6 +142,7 @@ extern const char *keyboard_layout;
extern int kqemu_allowed; extern int kqemu_allowed;
extern int win2k_install_hack; extern int win2k_install_hack;
extern int usb_enabled; extern int usb_enabled;
extern int smp_cpus;
/* XXX: make it dynamic */ /* XXX: make it dynamic */
#if defined (TARGET_PPC) #if defined (TARGET_PPC)
@ -429,6 +430,9 @@ int register_savevm(const char *idstr,
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts); void qemu_get_timer(QEMUFile *f, QEMUTimer *ts);
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts); void qemu_put_timer(QEMUFile *f, QEMUTimer *ts);
void cpu_save(QEMUFile *f, void *opaque);
int cpu_load(QEMUFile *f, void *opaque, int version_id);
/* block.c */ /* block.c */
typedef struct BlockDriverState BlockDriverState; typedef struct BlockDriverState BlockDriverState;
typedef struct BlockDriver BlockDriver; typedef struct BlockDriver BlockDriver;
@ -774,6 +778,9 @@ int pit_get_out(PITState *pit, int channel, int64_t current_time);
extern QEMUMachine pc_machine; extern QEMUMachine pc_machine;
extern QEMUMachine isapc_machine; extern QEMUMachine isapc_machine;
void ioport_set_a20(int enable);
int ioport_get_a20(void);
/* ppc.c */ /* ppc.c */
extern QEMUMachine prep_machine; extern QEMUMachine prep_machine;
extern QEMUMachine core99_machine; extern QEMUMachine core99_machine;