RISC-V: Copy the fdt in dram instead of ROM

Currently, the fdt is copied to the ROM after the reset vector. The firmware
has to copy it to DRAM. Instead of this, directly copy the device tree to a
pre-computed dram address. The device tree load address should be as far as
possible from kernel and initrd images. That's why it is kept at the end of
the DRAM or 4GB whichever is lesser.

Signed-off-by: Atish Patra <atish.patra@wdc.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Bin Meng <bin.meng@windriver.com>
Tested-by: Bin Meng <bin.meng@windriver.com>
Message-Id: <20200701183949.398134-3-atish.patra@wdc.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
This commit is contained in:
Atish Patra 2020-07-01 11:39:47 -07:00 committed by Alistair Francis
parent 43cf723adc
commit 66b1205bc5
5 changed files with 66 additions and 33 deletions

View File

@ -159,45 +159,68 @@ hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
return *start + size; return *start + size;
} }
uint32_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
{
uint32_t temp, fdt_addr;
hwaddr dram_end = dram_base + mem_size;
int fdtsize = fdt_totalsize(fdt);
if (fdtsize <= 0) {
error_report("invalid device-tree");
exit(1);
}
/*
* We should put fdt as far as possible to avoid kernel/initrd overwriting
* its content. But it should be addressable by 32 bit system as well.
* Thus, put it at an aligned address that less than fdt size from end of
* dram or 4GB whichever is lesser.
*/
temp = MIN(dram_end, 4096 * MiB);
fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
fdt_pack(fdt);
/* copy in the device tree */
qemu_fdt_dumpdtb(fdt, fdtsize);
rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
&address_space_memory);
return fdt_addr;
}
void riscv_setup_rom_reset_vec(hwaddr start_addr, hwaddr rom_base, void riscv_setup_rom_reset_vec(hwaddr start_addr, hwaddr rom_base,
hwaddr rom_size, void *fdt) hwaddr rom_size,
uint32_t fdt_load_addr, void *fdt)
{ {
int i; int i;
/* reset vector */ /* reset vector */
uint32_t reset_vec[8] = { uint32_t reset_vec[10] = {
0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */ 0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */
0x02028593, /* addi a1, t0, %pcrel_lo(1b) */
0xf1402573, /* csrr a0, mhartid */ 0xf1402573, /* csrr a0, mhartid */
#if defined(TARGET_RISCV32) #if defined(TARGET_RISCV32)
0x0202a583, /* lw a1, 32(t0) */
0x0182a283, /* lw t0, 24(t0) */ 0x0182a283, /* lw t0, 24(t0) */
#elif defined(TARGET_RISCV64) #elif defined(TARGET_RISCV64)
0x0202b583, /* ld a1, 32(t0) */
0x0182b283, /* ld t0, 24(t0) */ 0x0182b283, /* ld t0, 24(t0) */
#endif #endif
0x00028067, /* jr t0 */ 0x00028067, /* jr t0 */
0x00000000, 0x00000000,
start_addr, /* start: .dword */ start_addr, /* start: .dword */
0x00000000,
fdt_load_addr, /* fdt_laddr: .dword */
0x00000000, 0x00000000,
/* dtb: */ /* dtb: */
}; };
/* copy in the reset vector in little_endian byte order */ /* copy in the reset vector in little_endian byte order */
for (i = 0; i < sizeof(reset_vec) >> 2; i++) { for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
reset_vec[i] = cpu_to_le32(reset_vec[i]); reset_vec[i] = cpu_to_le32(reset_vec[i]);
} }
rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec), rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
rom_base, &address_space_memory); rom_base, &address_space_memory);
/* copy in the device tree */
if (fdt_pack(fdt) || fdt_totalsize(fdt) >
rom_size - sizeof(reset_vec)) {
error_report("not enough space to store device-tree");
exit(1);
}
qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
rom_add_blob_fixed_as("mrom.fdt", fdt, fdt_totalsize(fdt),
rom_base + sizeof(reset_vec),
&address_space_memory);
return; return;
} }

View File

@ -379,6 +379,7 @@ static void sifive_u_machine_init(MachineState *machine)
MemoryRegion *flash0 = g_new(MemoryRegion, 1); MemoryRegion *flash0 = g_new(MemoryRegion, 1);
target_ulong start_addr = memmap[SIFIVE_U_DRAM].base; target_ulong start_addr = memmap[SIFIVE_U_DRAM].base;
int i; int i;
uint32_t fdt_load_addr;
/* Initialize SoC */ /* Initialize SoC */
object_initialize_child(OBJECT(machine), "soc", &s->soc, TYPE_RISCV_U_SOC); object_initialize_child(OBJECT(machine), "soc", &s->soc, TYPE_RISCV_U_SOC);
@ -450,40 +451,37 @@ static void sifive_u_machine_init(MachineState *machine)
} }
} }
/* Compute the fdt load address in dram */
fdt_load_addr = riscv_load_fdt(memmap[SIFIVE_U_DRAM].base,
machine->ram_size, s->fdt);
/* reset vector */ /* reset vector */
uint32_t reset_vec[8] = { uint32_t reset_vec[11] = {
s->msel, /* MSEL pin state */ s->msel, /* MSEL pin state */
0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */ 0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */
0x01c28593, /* addi a1, t0, %pcrel_lo(1b) */
0xf1402573, /* csrr a0, mhartid */ 0xf1402573, /* csrr a0, mhartid */
#if defined(TARGET_RISCV32) #if defined(TARGET_RISCV32)
0x0202a583, /* lw a1, 32(t0) */
0x0182a283, /* lw t0, 24(t0) */ 0x0182a283, /* lw t0, 24(t0) */
#elif defined(TARGET_RISCV64) #elif defined(TARGET_RISCV64)
0x0182e283, /* lwu t0, 24(t0) */ 0x0202b583, /* ld a1, 32(t0) */
0x0182b283, /* ld t0, 24(t0) */
#endif #endif
0x00028067, /* jr t0 */ 0x00028067, /* jr t0 */
0x00000000, 0x00000000,
start_addr, /* start: .dword */ start_addr, /* start: .dword */
0x00000000,
fdt_load_addr, /* fdt_laddr: .dword */
0x00000000,
/* dtb: */ /* dtb: */
}; };
/* copy in the reset vector in little_endian byte order */ /* copy in the reset vector in little_endian byte order */
for (i = 0; i < sizeof(reset_vec) >> 2; i++) { for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
reset_vec[i] = cpu_to_le32(reset_vec[i]); reset_vec[i] = cpu_to_le32(reset_vec[i]);
} }
rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec), rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
memmap[SIFIVE_U_MROM].base, &address_space_memory); memmap[SIFIVE_U_MROM].base, &address_space_memory);
/* copy in the device tree */
if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) >
memmap[SIFIVE_U_MROM].size - sizeof(reset_vec)) {
error_report("not enough space to store device-tree");
exit(1);
}
qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt));
rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt),
memmap[SIFIVE_U_MROM].base + sizeof(reset_vec),
&address_space_memory);
} }
static bool sifive_u_machine_get_start_in_flash(Object *obj, Error **errp) static bool sifive_u_machine_get_start_in_flash(Object *obj, Error **errp)

View File

@ -163,6 +163,7 @@ static void spike_board_init(MachineState *machine)
MemoryRegion *main_mem = g_new(MemoryRegion, 1); MemoryRegion *main_mem = g_new(MemoryRegion, 1);
MemoryRegion *mask_rom = g_new(MemoryRegion, 1); MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
unsigned int smp_cpus = machine->smp.cpus; unsigned int smp_cpus = machine->smp.cpus;
uint32_t fdt_load_addr;
/* Initialize SOC */ /* Initialize SOC */
object_initialize_child(OBJECT(machine), "soc", &s->soc, object_initialize_child(OBJECT(machine), "soc", &s->soc,
@ -208,9 +209,13 @@ static void spike_board_init(MachineState *machine)
} }
} }
/* Compute the fdt load address in dram */
fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
machine->ram_size, s->fdt);
/* load the reset vector */ /* load the reset vector */
riscv_setup_rom_reset_vec(memmap[SPIKE_DRAM].base, memmap[SPIKE_MROM].base, riscv_setup_rom_reset_vec(memmap[SPIKE_DRAM].base, memmap[SPIKE_MROM].base,
memmap[SPIKE_MROM].size, s->fdt); memmap[SPIKE_MROM].size,
fdt_load_addr, s->fdt);
/* initialize HTIF using symbols found in load_kernel */ /* initialize HTIF using symbols found in load_kernel */
htif_mm_init(system_memory, mask_rom, &s->soc.harts[0].env, serial_hd(0)); htif_mm_init(system_memory, mask_rom, &s->soc.harts[0].env, serial_hd(0));

View File

@ -478,6 +478,7 @@ static void virt_machine_init(MachineState *machine)
char *plic_hart_config; char *plic_hart_config;
size_t plic_hart_config_len; size_t plic_hart_config_len;
target_ulong start_addr = memmap[VIRT_DRAM].base; target_ulong start_addr = memmap[VIRT_DRAM].base;
uint32_t fdt_load_addr;
int i; int i;
unsigned int smp_cpus = machine->smp.cpus; unsigned int smp_cpus = machine->smp.cpus;
@ -532,9 +533,13 @@ static void virt_machine_init(MachineState *machine)
start_addr = virt_memmap[VIRT_FLASH].base; start_addr = virt_memmap[VIRT_FLASH].base;
} }
/* Compute the fdt load address in dram */
fdt_load_addr = riscv_load_fdt(memmap[VIRT_DRAM].base,
machine->ram_size, s->fdt);
/* load the reset vector */ /* load the reset vector */
riscv_setup_rom_reset_vec(start_addr, virt_memmap[VIRT_MROM].base, riscv_setup_rom_reset_vec(start_addr, virt_memmap[VIRT_MROM].base,
virt_memmap[VIRT_MROM].size, s->fdt); virt_memmap[VIRT_MROM].size,
fdt_load_addr, s->fdt);
/* create PLIC hart topology configuration string */ /* create PLIC hart topology configuration string */
plic_hart_config_len = (strlen(VIRT_PLIC_HART_CONFIG) + 1) * smp_cpus; plic_hart_config_len = (strlen(VIRT_PLIC_HART_CONFIG) + 1) * smp_cpus;

View File

@ -35,7 +35,9 @@ target_ulong riscv_load_kernel(const char *kernel_filename,
symbol_fn_t sym_cb); symbol_fn_t sym_cb);
hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size, hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
uint64_t kernel_entry, hwaddr *start); uint64_t kernel_entry, hwaddr *start);
uint32_t riscv_load_fdt(hwaddr dram_start, uint64_t dram_size, void *fdt);
void riscv_setup_rom_reset_vec(hwaddr saddr, hwaddr rom_base, void riscv_setup_rom_reset_vec(hwaddr saddr, hwaddr rom_base,
hwaddr rom_size, void *fdt); hwaddr rom_size,
uint32_t fdt_load_addr, void *fdt);
#endif /* RISCV_BOOT_H */ #endif /* RISCV_BOOT_H */