target/hppa: Implement tlb_fill
However since HPPA has a software-managed TLB, and the relevant TLB manipulation instructions are not implemented, this does not actually do anything. Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
parent
c301f34e79
commit
650cdb2a2e
@ -165,6 +165,22 @@ typedef int64_t target_sreg;
|
|||||||
#define TREG_FMT_ld "%"PRId64
|
#define TREG_FMT_ld "%"PRId64
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
uint64_t va_b;
|
||||||
|
uint64_t va_e;
|
||||||
|
target_ureg pa;
|
||||||
|
unsigned u : 1;
|
||||||
|
unsigned t : 1;
|
||||||
|
unsigned d : 1;
|
||||||
|
unsigned b : 1;
|
||||||
|
unsigned page_size : 4;
|
||||||
|
unsigned ar_type : 3;
|
||||||
|
unsigned ar_pl1 : 2;
|
||||||
|
unsigned ar_pl2 : 2;
|
||||||
|
unsigned entry_valid : 1;
|
||||||
|
unsigned access_id : 16;
|
||||||
|
} hppa_tlb_entry;
|
||||||
|
|
||||||
struct CPUHPPAState {
|
struct CPUHPPAState {
|
||||||
target_ureg gr[32];
|
target_ureg gr[32];
|
||||||
uint64_t fr[32];
|
uint64_t fr[32];
|
||||||
@ -198,6 +214,12 @@ struct CPUHPPAState {
|
|||||||
|
|
||||||
/* Those resources are used only in QEMU core */
|
/* Those resources are used only in QEMU core */
|
||||||
CPU_COMMON
|
CPU_COMMON
|
||||||
|
|
||||||
|
/* ??? The number of entries isn't specified by the architecture. */
|
||||||
|
/* ??? Implement a unified itlb/dtlb for the moment. */
|
||||||
|
/* ??? We should use a more intelligent data structure. */
|
||||||
|
hppa_tlb_entry tlb[256];
|
||||||
|
uint32_t tlb_last;
|
||||||
};
|
};
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -307,13 +329,18 @@ void cpu_hppa_loaded_fr0(CPUHPPAState *env);
|
|||||||
#define cpu_signal_handler cpu_hppa_signal_handler
|
#define cpu_signal_handler cpu_hppa_signal_handler
|
||||||
|
|
||||||
int cpu_hppa_signal_handler(int host_signum, void *pinfo, void *puc);
|
int cpu_hppa_signal_handler(int host_signum, void *pinfo, void *puc);
|
||||||
int hppa_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int size,
|
|
||||||
int rw, int midx);
|
|
||||||
hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr);
|
hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr);
|
||||||
int hppa_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
|
int hppa_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
|
||||||
int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
|
int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
|
||||||
void hppa_cpu_do_interrupt(CPUState *cpu);
|
void hppa_cpu_do_interrupt(CPUState *cpu);
|
||||||
bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req);
|
bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req);
|
||||||
void hppa_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function, int);
|
void hppa_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function, int);
|
||||||
|
#ifdef CONFIG_USER_ONLY
|
||||||
|
int hppa_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int size,
|
||||||
|
int rw, int midx);
|
||||||
|
#else
|
||||||
|
int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
|
||||||
|
int type, hwaddr *pphys, int *pprot);
|
||||||
|
#endif
|
||||||
|
|
||||||
#endif /* HPPA_CPU_H */
|
#endif /* HPPA_CPU_H */
|
||||||
|
@ -79,12 +79,24 @@ void hppa_cpu_do_interrupt(CPUState *cs)
|
|||||||
{
|
{
|
||||||
/* Avoid reading directly from the virtual address, lest we
|
/* Avoid reading directly from the virtual address, lest we
|
||||||
raise another exception from some sort of TLB issue. */
|
raise another exception from some sort of TLB issue. */
|
||||||
|
/* ??? An alternate fool-proof method would be to store the
|
||||||
|
instruction data into the unwind info. That's probably
|
||||||
|
a bit too much in the way of extra storage required. */
|
||||||
vaddr vaddr;
|
vaddr vaddr;
|
||||||
hwaddr paddr;
|
hwaddr paddr;
|
||||||
|
|
||||||
paddr = vaddr = iaoq_f & -4;
|
paddr = vaddr = iaoq_f & -4;
|
||||||
if (old_psw & PSW_C) {
|
if (old_psw & PSW_C) {
|
||||||
vaddr = hppa_form_gva_psw(old_psw, iasq_f, iaoq_f & -4);
|
int prot, t;
|
||||||
|
|
||||||
|
vaddr = hppa_form_gva_psw(old_psw, iasq_f, vaddr);
|
||||||
|
t = hppa_get_physical_address(env, vaddr, MMU_KERNEL_IDX,
|
||||||
|
0, &paddr, &prot);
|
||||||
|
if (t >= 0) {
|
||||||
|
/* We can't re-load the instruction. */
|
||||||
|
env->cr[CR_IIR] = 0;
|
||||||
|
break;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
env->cr[CR_IIR] = ldl_phys(cs->as, paddr);
|
env->cr[CR_IIR] = ldl_phys(cs->as, paddr);
|
||||||
}
|
}
|
||||||
|
@ -36,18 +36,166 @@ int hppa_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
|
static hppa_tlb_entry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
|
||||||
|
for (i = 0; i < ARRAY_SIZE(env->tlb); ++i) {
|
||||||
|
hppa_tlb_entry *ent = &env->tlb[i];
|
||||||
|
if (ent->va_b <= addr && addr <= ent->va_e && ent->entry_valid) {
|
||||||
|
return ent;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
|
||||||
|
int type, hwaddr *pphys, int *pprot)
|
||||||
|
{
|
||||||
|
hwaddr phys;
|
||||||
|
int prot, r_prot, w_prot, x_prot;
|
||||||
|
hppa_tlb_entry *ent;
|
||||||
|
int ret = -1;
|
||||||
|
|
||||||
|
/* Virtual translation disabled. Direct map virtual to physical. */
|
||||||
|
if (mmu_idx == MMU_PHYS_IDX) {
|
||||||
|
phys = addr;
|
||||||
|
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
||||||
|
goto egress;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Find a valid tlb entry that matches the virtual address. */
|
||||||
|
ent = hppa_find_tlb(env, addr);
|
||||||
|
if (ent == NULL) {
|
||||||
|
phys = 0;
|
||||||
|
prot = 0;
|
||||||
|
ret = (type & PAGE_EXEC ? EXCP_ITLB_MISS : EXCP_DTLB_MISS);
|
||||||
|
goto egress;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* We now know the physical address. */
|
||||||
|
phys = ent->pa + (addr & ~TARGET_PAGE_MASK);
|
||||||
|
|
||||||
|
/* Map TLB access_rights field to QEMU protection. */
|
||||||
|
r_prot = (mmu_idx <= ent->ar_pl1) * PAGE_READ;
|
||||||
|
w_prot = (mmu_idx <= ent->ar_pl2) * PAGE_WRITE;
|
||||||
|
x_prot = (ent->ar_pl2 <= mmu_idx && mmu_idx <= ent->ar_pl1) * PAGE_EXEC;
|
||||||
|
switch (ent->ar_type) {
|
||||||
|
case 0: /* read-only: data page */
|
||||||
|
prot = r_prot;
|
||||||
|
break;
|
||||||
|
case 1: /* read/write: dynamic data page */
|
||||||
|
prot = r_prot | w_prot;
|
||||||
|
break;
|
||||||
|
case 2: /* read/execute: normal code page */
|
||||||
|
prot = r_prot | x_prot;
|
||||||
|
break;
|
||||||
|
case 3: /* read/write/execute: dynamic code page */
|
||||||
|
prot = r_prot | w_prot | x_prot;
|
||||||
|
break;
|
||||||
|
default: /* execute: promote to privilege level type & 3 */
|
||||||
|
prot = x_prot;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ??? Check PSW_P and ent->access_prot. This can remove PAGE_WRITE. */
|
||||||
|
|
||||||
|
/* No guest access type indicates a non-architectural access from
|
||||||
|
within QEMU. Bypass checks for access, D, B and T bits. */
|
||||||
|
if (type == 0) {
|
||||||
|
goto egress;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (unlikely(!(prot & type))) {
|
||||||
|
/* The access isn't allowed -- Inst/Data Memory Protection Fault. */
|
||||||
|
ret = (type & PAGE_EXEC ? EXCP_IMP : EXCP_DMP);
|
||||||
|
goto egress;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* In reverse priority order, check for conditions which raise faults.
|
||||||
|
As we go, remove PROT bits that cover the condition we want to check.
|
||||||
|
In this way, the resulting PROT will force a re-check of the
|
||||||
|
architectural TLB entry for the next access. */
|
||||||
|
if (unlikely(!ent->d)) {
|
||||||
|
if (type & PAGE_WRITE) {
|
||||||
|
/* The D bit is not set -- TLB Dirty Bit Fault. */
|
||||||
|
ret = EXCP_TLB_DIRTY;
|
||||||
|
}
|
||||||
|
prot &= PAGE_READ | PAGE_EXEC;
|
||||||
|
}
|
||||||
|
if (unlikely(ent->b)) {
|
||||||
|
if (type & PAGE_WRITE) {
|
||||||
|
/* The B bit is set -- Data Memory Break Fault. */
|
||||||
|
ret = EXCP_DMB;
|
||||||
|
}
|
||||||
|
prot &= PAGE_READ | PAGE_EXEC;
|
||||||
|
}
|
||||||
|
if (unlikely(ent->t)) {
|
||||||
|
if (!(type & PAGE_EXEC)) {
|
||||||
|
/* The T bit is set -- Page Reference Fault. */
|
||||||
|
ret = EXCP_PAGE_REF;
|
||||||
|
}
|
||||||
|
prot &= PAGE_EXEC;
|
||||||
|
}
|
||||||
|
|
||||||
|
egress:
|
||||||
|
*pphys = phys;
|
||||||
|
*pprot = prot;
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
|
hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
|
||||||
{
|
{
|
||||||
/* Stub */
|
HPPACPU *cpu = HPPA_CPU(cs);
|
||||||
|
hwaddr phys;
|
||||||
|
int prot, excp;
|
||||||
|
|
||||||
|
/* If the (data) mmu is disabled, bypass translation. */
|
||||||
|
/* ??? We really ought to know if the code mmu is disabled too,
|
||||||
|
in order to get the correct debugging dumps. */
|
||||||
|
if (!(cpu->env.psw & PSW_D)) {
|
||||||
return addr;
|
return addr;
|
||||||
}
|
}
|
||||||
|
|
||||||
void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType type,
|
excp = hppa_get_physical_address(&cpu->env, addr, MMU_KERNEL_IDX, 0,
|
||||||
int mmu_idx, uintptr_t retaddr)
|
&phys, &prot);
|
||||||
|
|
||||||
|
/* Since we're translating for debugging, the only error that is a
|
||||||
|
hard error is no translation at all. Otherwise, while a real cpu
|
||||||
|
access might not have permission, the debugger does. */
|
||||||
|
return excp == EXCP_DTLB_MISS ? -1 : phys;
|
||||||
|
}
|
||||||
|
|
||||||
|
void tlb_fill(CPUState *cs, target_ulong addr, int size,
|
||||||
|
MMUAccessType type, int mmu_idx, uintptr_t retaddr)
|
||||||
{
|
{
|
||||||
/* Stub */
|
HPPACPU *cpu = HPPA_CPU(cs);
|
||||||
int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
int prot, excp, a_prot;
|
||||||
hwaddr phys = addr;
|
hwaddr phys;
|
||||||
|
|
||||||
|
switch (type) {
|
||||||
|
case MMU_INST_FETCH:
|
||||||
|
a_prot = PAGE_EXEC;
|
||||||
|
break;
|
||||||
|
case MMU_DATA_STORE:
|
||||||
|
a_prot = PAGE_WRITE;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
a_prot = PAGE_READ;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx,
|
||||||
|
a_prot, &phys, &prot);
|
||||||
|
if (unlikely(excp >= 0)) {
|
||||||
|
/* Failure. Raise the indicated exception. */
|
||||||
|
cs->exception_index = excp;
|
||||||
|
if (cpu->env.psw & PSW_Q) {
|
||||||
|
/* ??? Needs tweaking for hppa64. */
|
||||||
|
cpu->env.cr[CR_IOR] = addr;
|
||||||
|
cpu->env.cr[CR_ISR] = addr >> 32;
|
||||||
|
}
|
||||||
|
cpu_loop_exit_restore(cs, retaddr);
|
||||||
|
}
|
||||||
|
|
||||||
/* Success! Store the translation into the QEMU TLB. */
|
/* Success! Store the translation into the QEMU TLB. */
|
||||||
tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
|
tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
|
||||||
|
Loading…
Reference in New Issue
Block a user