gdbstub: x86: Switch 64/32 bit registers dynamically

Commit 56aebc8916 changed gdbstub in way
that debugging 32 or 16-bit guest code is no longer possible with qemu
for x86_64 guest CPUs. Since that commit, qemu only provides registers
sets for 64-bit, forcing current and foreseeable gdb to also switch its
architecture to 64-bit. And this breaks if the inferior is 32 or 16 bit.

No question, this is a gdb issue. But, as it was confirmed in several
discusssions with gdb people, it is a non-trivial thing to fix. So until
qemu finds a gdb version attach with a rework x86 support, we have to
work around it by switching the register layout as the guest switches
its execution mode between 16/32 and 64 bit.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
This commit is contained in:
Jan Kiszka 2009-09-17 18:14:13 +02:00 committed by Anthony Liguori
parent 6875204c78
commit 5f30fa18ad
2 changed files with 47 additions and 15 deletions

View File

@ -505,8 +505,9 @@ static const int gpr_map[16] = {
8, 9, 10, 11, 12, 13, 14, 15 8, 9, 10, 11, 12, 13, 14, 15
}; };
#else #else
static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7}; #define gpr_map gpr_map32
#endif #endif
static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25) #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
@ -520,7 +521,11 @@ static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{ {
if (n < CPU_NB_REGS) { if (n < CPU_NB_REGS) {
GET_REGL(env->regs[gpr_map[n]]); if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
GET_REG64(env->regs[gpr_map[n]]);
} else if (n < CPU_NB_REGS32) {
GET_REG32(env->regs[gpr_map32[n]]);
}
} else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
#ifdef USE_X86LDOUBLE #ifdef USE_X86LDOUBLE
/* FIXME: byteswap float values - after fixing fpregs layout. */ /* FIXME: byteswap float values - after fixing fpregs layout. */
@ -531,12 +536,20 @@ static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
return 10; return 10;
} else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
n -= IDX_XMM_REGS; n -= IDX_XMM_REGS;
stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0)); if (n < CPU_NB_REGS32 ||
stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1)); (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
return 16; stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
return 16;
}
} else { } else {
switch (n) { switch (n) {
case IDX_IP_REG: GET_REGL(env->eip); case IDX_IP_REG:
if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
GET_REG64(env->eip);
} else {
GET_REG32(env->eip);
}
case IDX_FLAGS_REG: GET_REG32(env->eflags); case IDX_FLAGS_REG: GET_REG32(env->eflags);
case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector); case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
@ -592,8 +605,15 @@ static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
uint32_t tmp; uint32_t tmp;
if (n < CPU_NB_REGS) { if (n < CPU_NB_REGS) {
env->regs[gpr_map[n]] = ldtul_p(mem_buf); if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
return sizeof(target_ulong); env->regs[gpr_map[n]] = ldtul_p(mem_buf);
return sizeof(target_ulong);
} else if (n < CPU_NB_REGS32) {
n = gpr_map32[n];
env->regs[n] &= ~0xffffffffUL;
env->regs[n] |= (uint32_t)ldl_p(mem_buf);
return 4;
}
} else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
#ifdef USE_X86LDOUBLE #ifdef USE_X86LDOUBLE
/* FIXME: byteswap float values - after fixing fpregs layout. */ /* FIXME: byteswap float values - after fixing fpregs layout. */
@ -602,14 +622,23 @@ static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
return 10; return 10;
} else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
n -= IDX_XMM_REGS; n -= IDX_XMM_REGS;
env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf); if (n < CPU_NB_REGS32 ||
env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8); (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
return 16; env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
return 16;
}
} else { } else {
switch (n) { switch (n) {
case IDX_IP_REG: case IDX_IP_REG:
env->eip = ldtul_p(mem_buf); if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
return sizeof(target_ulong); env->eip = ldq_p(mem_buf);
return 8;
} else {
env->eip &= ~0xffffffffUL;
env->eip |= (uint32_t)ldl_p(mem_buf);
return 4;
}
case IDX_FLAGS_REG: case IDX_FLAGS_REG:
env->eflags = ldl_p(mem_buf); env->eflags = ldl_p(mem_buf);
return 4; return 4;

View File

@ -570,10 +570,13 @@ typedef struct {
uint64_t mask; uint64_t mask;
} MTRRVar; } MTRRVar;
#define CPU_NB_REGS64 16
#define CPU_NB_REGS32 8
#ifdef TARGET_X86_64 #ifdef TARGET_X86_64
#define CPU_NB_REGS 16 #define CPU_NB_REGS CPU_NB_REGS64
#else #else
#define CPU_NB_REGS 8 #define CPU_NB_REGS CPU_NB_REGS32
#endif #endif
#define NB_MMU_MODES 2 #define NB_MMU_MODES 2