softfloat: Inline float32 compare specializations
Replace the float32 compare specializations with inline functions that call the standard float32_compare{,_quiet} functions. Use bool as the return type. Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
parent
71bfd65c5f
commit
5da2d2d8e5
216
fpu/softfloat.c
216
fpu/softfloat.c
@ -4733,222 +4733,6 @@ float32 float32_log2(float32 a, float_status *status)
|
|||||||
return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
|
return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
|
||||||
}
|
}
|
||||||
|
|
||||||
/*----------------------------------------------------------------------------
|
|
||||||
| Returns 1 if the single-precision floating-point value `a' is equal to
|
|
||||||
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
||||||
| raised if either operand is a NaN. Otherwise, the comparison is performed
|
|
||||||
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
||||||
*----------------------------------------------------------------------------*/
|
|
||||||
|
|
||||||
int float32_eq(float32 a, float32 b, float_status *status)
|
|
||||||
{
|
|
||||||
uint32_t av, bv;
|
|
||||||
a = float32_squash_input_denormal(a, status);
|
|
||||||
b = float32_squash_input_denormal(b, status);
|
|
||||||
|
|
||||||
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
||||||
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
||||||
) {
|
|
||||||
float_raise(float_flag_invalid, status);
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
av = float32_val(a);
|
|
||||||
bv = float32_val(b);
|
|
||||||
return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
|
|
||||||
}
|
|
||||||
|
|
||||||
/*----------------------------------------------------------------------------
|
|
||||||
| Returns 1 if the single-precision floating-point value `a' is less than
|
|
||||||
| or equal to the corresponding value `b', and 0 otherwise. The invalid
|
|
||||||
| exception is raised if either operand is a NaN. The comparison is performed
|
|
||||||
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
||||||
*----------------------------------------------------------------------------*/
|
|
||||||
|
|
||||||
int float32_le(float32 a, float32 b, float_status *status)
|
|
||||||
{
|
|
||||||
bool aSign, bSign;
|
|
||||||
uint32_t av, bv;
|
|
||||||
a = float32_squash_input_denormal(a, status);
|
|
||||||
b = float32_squash_input_denormal(b, status);
|
|
||||||
|
|
||||||
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
||||||
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
||||||
) {
|
|
||||||
float_raise(float_flag_invalid, status);
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
aSign = extractFloat32Sign( a );
|
|
||||||
bSign = extractFloat32Sign( b );
|
|
||||||
av = float32_val(a);
|
|
||||||
bv = float32_val(b);
|
|
||||||
if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
|
|
||||||
return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*----------------------------------------------------------------------------
|
|
||||||
| Returns 1 if the single-precision floating-point value `a' is less than
|
|
||||||
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
||||||
| raised if either operand is a NaN. The comparison is performed according
|
|
||||||
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
||||||
*----------------------------------------------------------------------------*/
|
|
||||||
|
|
||||||
int float32_lt(float32 a, float32 b, float_status *status)
|
|
||||||
{
|
|
||||||
bool aSign, bSign;
|
|
||||||
uint32_t av, bv;
|
|
||||||
a = float32_squash_input_denormal(a, status);
|
|
||||||
b = float32_squash_input_denormal(b, status);
|
|
||||||
|
|
||||||
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
||||||
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
||||||
) {
|
|
||||||
float_raise(float_flag_invalid, status);
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
aSign = extractFloat32Sign( a );
|
|
||||||
bSign = extractFloat32Sign( b );
|
|
||||||
av = float32_val(a);
|
|
||||||
bv = float32_val(b);
|
|
||||||
if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
|
|
||||||
return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*----------------------------------------------------------------------------
|
|
||||||
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
|
|
||||||
| be compared, and 0 otherwise. The invalid exception is raised if either
|
|
||||||
| operand is a NaN. The comparison is performed according to the IEC/IEEE
|
|
||||||
| Standard for Binary Floating-Point Arithmetic.
|
|
||||||
*----------------------------------------------------------------------------*/
|
|
||||||
|
|
||||||
int float32_unordered(float32 a, float32 b, float_status *status)
|
|
||||||
{
|
|
||||||
a = float32_squash_input_denormal(a, status);
|
|
||||||
b = float32_squash_input_denormal(b, status);
|
|
||||||
|
|
||||||
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
||||||
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
||||||
) {
|
|
||||||
float_raise(float_flag_invalid, status);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*----------------------------------------------------------------------------
|
|
||||||
| Returns 1 if the single-precision floating-point value `a' is equal to
|
|
||||||
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
||||||
| exception. The comparison is performed according to the IEC/IEEE Standard
|
|
||||||
| for Binary Floating-Point Arithmetic.
|
|
||||||
*----------------------------------------------------------------------------*/
|
|
||||||
|
|
||||||
int float32_eq_quiet(float32 a, float32 b, float_status *status)
|
|
||||||
{
|
|
||||||
a = float32_squash_input_denormal(a, status);
|
|
||||||
b = float32_squash_input_denormal(b, status);
|
|
||||||
|
|
||||||
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
||||||
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
||||||
) {
|
|
||||||
if (float32_is_signaling_nan(a, status)
|
|
||||||
|| float32_is_signaling_nan(b, status)) {
|
|
||||||
float_raise(float_flag_invalid, status);
|
|
||||||
}
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
return ( float32_val(a) == float32_val(b) ) ||
|
|
||||||
( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
|
|
||||||
}
|
|
||||||
|
|
||||||
/*----------------------------------------------------------------------------
|
|
||||||
| Returns 1 if the single-precision floating-point value `a' is less than or
|
|
||||||
| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
|
||||||
| cause an exception. Otherwise, the comparison is performed according to the
|
|
||||||
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
||||||
*----------------------------------------------------------------------------*/
|
|
||||||
|
|
||||||
int float32_le_quiet(float32 a, float32 b, float_status *status)
|
|
||||||
{
|
|
||||||
bool aSign, bSign;
|
|
||||||
uint32_t av, bv;
|
|
||||||
a = float32_squash_input_denormal(a, status);
|
|
||||||
b = float32_squash_input_denormal(b, status);
|
|
||||||
|
|
||||||
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
||||||
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
||||||
) {
|
|
||||||
if (float32_is_signaling_nan(a, status)
|
|
||||||
|| float32_is_signaling_nan(b, status)) {
|
|
||||||
float_raise(float_flag_invalid, status);
|
|
||||||
}
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
aSign = extractFloat32Sign( a );
|
|
||||||
bSign = extractFloat32Sign( b );
|
|
||||||
av = float32_val(a);
|
|
||||||
bv = float32_val(b);
|
|
||||||
if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
|
|
||||||
return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*----------------------------------------------------------------------------
|
|
||||||
| Returns 1 if the single-precision floating-point value `a' is less than
|
|
||||||
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
||||||
| exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
|
||||||
| Standard for Binary Floating-Point Arithmetic.
|
|
||||||
*----------------------------------------------------------------------------*/
|
|
||||||
|
|
||||||
int float32_lt_quiet(float32 a, float32 b, float_status *status)
|
|
||||||
{
|
|
||||||
bool aSign, bSign;
|
|
||||||
uint32_t av, bv;
|
|
||||||
a = float32_squash_input_denormal(a, status);
|
|
||||||
b = float32_squash_input_denormal(b, status);
|
|
||||||
|
|
||||||
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
||||||
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
||||||
) {
|
|
||||||
if (float32_is_signaling_nan(a, status)
|
|
||||||
|| float32_is_signaling_nan(b, status)) {
|
|
||||||
float_raise(float_flag_invalid, status);
|
|
||||||
}
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
aSign = extractFloat32Sign( a );
|
|
||||||
bSign = extractFloat32Sign( b );
|
|
||||||
av = float32_val(a);
|
|
||||||
bv = float32_val(b);
|
|
||||||
if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
|
|
||||||
return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*----------------------------------------------------------------------------
|
|
||||||
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
|
|
||||||
| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
|
|
||||||
| comparison is performed according to the IEC/IEEE Standard for Binary
|
|
||||||
| Floating-Point Arithmetic.
|
|
||||||
*----------------------------------------------------------------------------*/
|
|
||||||
|
|
||||||
int float32_unordered_quiet(float32 a, float32 b, float_status *status)
|
|
||||||
{
|
|
||||||
a = float32_squash_input_denormal(a, status);
|
|
||||||
b = float32_squash_input_denormal(b, status);
|
|
||||||
|
|
||||||
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
||||||
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
||||||
) {
|
|
||||||
if (float32_is_signaling_nan(a, status)
|
|
||||||
|| float32_is_signaling_nan(b, status)) {
|
|
||||||
float_raise(float_flag_invalid, status);
|
|
||||||
}
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*----------------------------------------------------------------------------
|
/*----------------------------------------------------------------------------
|
||||||
| Returns the result of converting the double-precision floating-point value
|
| Returns the result of converting the double-precision floating-point value
|
||||||
| `a' to the extended double-precision floating-point format. The conversion
|
| `a' to the extended double-precision floating-point format. The conversion
|
||||||
|
@ -343,14 +343,6 @@ float32 float32_muladd(float32, float32, float32, int, float_status *status);
|
|||||||
float32 float32_sqrt(float32, float_status *status);
|
float32 float32_sqrt(float32, float_status *status);
|
||||||
float32 float32_exp2(float32, float_status *status);
|
float32 float32_exp2(float32, float_status *status);
|
||||||
float32 float32_log2(float32, float_status *status);
|
float32 float32_log2(float32, float_status *status);
|
||||||
int float32_eq(float32, float32, float_status *status);
|
|
||||||
int float32_le(float32, float32, float_status *status);
|
|
||||||
int float32_lt(float32, float32, float_status *status);
|
|
||||||
int float32_unordered(float32, float32, float_status *status);
|
|
||||||
int float32_eq_quiet(float32, float32, float_status *status);
|
|
||||||
int float32_le_quiet(float32, float32, float_status *status);
|
|
||||||
int float32_lt_quiet(float32, float32, float_status *status);
|
|
||||||
int float32_unordered_quiet(float32, float32, float_status *status);
|
|
||||||
FloatRelation float32_compare(float32, float32, float_status *status);
|
FloatRelation float32_compare(float32, float32, float_status *status);
|
||||||
FloatRelation float32_compare_quiet(float32, float32, float_status *status);
|
FloatRelation float32_compare_quiet(float32, float32, float_status *status);
|
||||||
float32 float32_min(float32, float32, float_status *status);
|
float32 float32_min(float32, float32, float_status *status);
|
||||||
@ -425,6 +417,47 @@ static inline float32 float32_set_sign(float32 a, int sign)
|
|||||||
return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
|
return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static inline bool float32_eq(float32 a, float32 b, float_status *s)
|
||||||
|
{
|
||||||
|
return float32_compare(a, b, s) == float_relation_equal;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline bool float32_le(float32 a, float32 b, float_status *s)
|
||||||
|
{
|
||||||
|
return float32_compare(a, b, s) <= float_relation_equal;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline bool float32_lt(float32 a, float32 b, float_status *s)
|
||||||
|
{
|
||||||
|
return float32_compare(a, b, s) < float_relation_equal;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline bool float32_unordered(float32 a, float32 b, float_status *s)
|
||||||
|
{
|
||||||
|
return float32_compare(a, b, s) == float_relation_unordered;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline bool float32_eq_quiet(float32 a, float32 b, float_status *s)
|
||||||
|
{
|
||||||
|
return float32_compare_quiet(a, b, s) == float_relation_equal;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline bool float32_le_quiet(float32 a, float32 b, float_status *s)
|
||||||
|
{
|
||||||
|
return float32_compare_quiet(a, b, s) <= float_relation_equal;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline bool float32_lt_quiet(float32 a, float32 b, float_status *s)
|
||||||
|
{
|
||||||
|
return float32_compare_quiet(a, b, s) < float_relation_equal;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline bool float32_unordered_quiet(float32 a, float32 b,
|
||||||
|
float_status *s)
|
||||||
|
{
|
||||||
|
return float32_compare_quiet(a, b, s) == float_relation_unordered;
|
||||||
|
}
|
||||||
|
|
||||||
#define float32_zero make_float32(0)
|
#define float32_zero make_float32(0)
|
||||||
#define float32_half make_float32(0x3f000000)
|
#define float32_half make_float32(0x3f000000)
|
||||||
#define float32_one make_float32(0x3f800000)
|
#define float32_one make_float32(0x3f800000)
|
||||||
|
Loading…
Reference in New Issue
Block a user