memory: RCU ram_list.dirty_memory[] for safe RAM hotplug

Although accesses to ram_list.dirty_memory[] use atomics so multiple
threads can safely dirty the bitmap, the data structure is not fully
thread-safe yet.

This patch handles the RAM hotplug case where ram_list.dirty_memory[] is
grown.  ram_list.dirty_memory[] is change from a regular bitmap to an
RCU array of pointers to fixed-size bitmap blocks.  Threads can continue
accessing bitmap blocks while the array is being extended.  See the
comments in the code for an in-depth explanation of struct
DirtyMemoryBlocks.

I have tested that live migration with virtio-blk dataplane works.

Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <1453728801-5398-2-git-send-email-stefanha@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Stefan Hajnoczi 2016-01-25 13:33:20 +00:00 committed by Paolo Bonzini
parent 8bafcb2164
commit 5b82b703b6
3 changed files with 225 additions and 43 deletions

75
exec.c
View File

@ -980,8 +980,9 @@ bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
DirtyMemoryBlocks *blocks;
unsigned long end, page;
bool dirty;
bool dirty = false;
if (length == 0) {
return false;
@ -989,8 +990,22 @@ bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client],
page, end - page);
rcu_read_lock();
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
while (page < end) {
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
offset, num);
page += num;
}
rcu_read_unlock();
if (dirty && tcg_enabled()) {
tlb_reset_dirty_range_all(start, length);
@ -1504,6 +1519,47 @@ int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
return 0;
}
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
ram_addr_t new_ram_size)
{
ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
DIRTY_MEMORY_BLOCK_SIZE);
ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
DIRTY_MEMORY_BLOCK_SIZE);
int i;
/* Only need to extend if block count increased */
if (new_num_blocks <= old_num_blocks) {
return;
}
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
DirtyMemoryBlocks *old_blocks;
DirtyMemoryBlocks *new_blocks;
int j;
old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
new_blocks = g_malloc(sizeof(*new_blocks) +
sizeof(new_blocks->blocks[0]) * new_num_blocks);
if (old_num_blocks) {
memcpy(new_blocks->blocks, old_blocks->blocks,
old_num_blocks * sizeof(old_blocks->blocks[0]));
}
for (j = old_num_blocks; j < new_num_blocks; j++) {
new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
}
atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
if (old_blocks) {
g_free_rcu(old_blocks, rcu);
}
}
}
static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
{
RAMBlock *block;
@ -1543,6 +1599,7 @@ static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
(new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
if (new_ram_size > old_ram_size) {
migration_bitmap_extend(old_ram_size, new_ram_size);
dirty_memory_extend(old_ram_size, new_ram_size);
}
/* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
* QLIST (which has an RCU-friendly variant) does not have insertion at
@ -1568,18 +1625,6 @@ static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
ram_list.version++;
qemu_mutex_unlock_ramlist();
new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
if (new_ram_size > old_ram_size) {
int i;
/* ram_list.dirty_memory[] is protected by the iothread lock. */
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
ram_list.dirty_memory[i] =
bitmap_zero_extend(ram_list.dirty_memory[i],
old_ram_size, new_ram_size);
}
}
cpu_physical_memory_set_dirty_range(new_block->offset,
new_block->used_length,
DIRTY_CLIENTS_ALL);

View File

@ -49,13 +49,43 @@ static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
return (char *)block->host + offset;
}
/* The dirty memory bitmap is split into fixed-size blocks to allow growth
* under RCU. The bitmap for a block can be accessed as follows:
*
* rcu_read_lock();
*
* DirtyMemoryBlocks *blocks =
* atomic_rcu_read(&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]);
*
* ram_addr_t idx = (addr >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
* unsigned long *block = blocks.blocks[idx];
* ...access block bitmap...
*
* rcu_read_unlock();
*
* Remember to check for the end of the block when accessing a range of
* addresses. Move on to the next block if you reach the end.
*
* Organization into blocks allows dirty memory to grow (but not shrink) under
* RCU. When adding new RAMBlocks requires the dirty memory to grow, a new
* DirtyMemoryBlocks array is allocated with pointers to existing blocks kept
* the same. Other threads can safely access existing blocks while dirty
* memory is being grown. When no threads are using the old DirtyMemoryBlocks
* anymore it is freed by RCU (but the underlying blocks stay because they are
* pointed to from the new DirtyMemoryBlocks).
*/
#define DIRTY_MEMORY_BLOCK_SIZE ((ram_addr_t)256 * 1024 * 8)
typedef struct {
struct rcu_head rcu;
unsigned long *blocks[];
} DirtyMemoryBlocks;
typedef struct RAMList {
QemuMutex mutex;
/* Protected by the iothread lock. */
unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
RAMBlock *mru_block;
/* RCU-enabled, writes protected by the ramlist lock. */
QLIST_HEAD(, RAMBlock) blocks;
DirtyMemoryBlocks *dirty_memory[DIRTY_MEMORY_NUM];
uint32_t version;
} RAMList;
extern RAMList ram_list;
@ -89,30 +119,70 @@ static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
unsigned long end, page, next;
DirtyMemoryBlocks *blocks;
unsigned long end, page;
bool dirty = false;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
next = find_next_bit(ram_list.dirty_memory[client], end, page);
return next < end;
rcu_read_lock();
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
while (page < end) {
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
if (find_next_bit(blocks->blocks[idx], offset, num) < num) {
dirty = true;
break;
}
page += num;
}
rcu_read_unlock();
return dirty;
}
static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
unsigned long end, page, next;
DirtyMemoryBlocks *blocks;
unsigned long end, page;
bool dirty = true;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
next = find_next_zero_bit(ram_list.dirty_memory[client], end, page);
return next >= end;
rcu_read_lock();
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
while (page < end) {
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
if (find_next_zero_bit(blocks->blocks[idx], offset, num) < num) {
dirty = false;
break;
}
page += num;
}
rcu_read_unlock();
return dirty;
}
static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
@ -154,16 +224,31 @@ static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
unsigned client)
{
unsigned long page, idx, offset;
DirtyMemoryBlocks *blocks;
assert(client < DIRTY_MEMORY_NUM);
set_bit_atomic(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
page = addr >> TARGET_PAGE_BITS;
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
rcu_read_lock();
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
set_bit_atomic(offset, blocks->blocks[idx]);
rcu_read_unlock();
}
static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
ram_addr_t length,
uint8_t mask)
{
DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
unsigned long end, page;
unsigned long **d = ram_list.dirty_memory;
int i;
if (!mask && !xen_enabled()) {
return;
@ -171,15 +256,36 @@ static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
rcu_read_lock();
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
}
while (page < end) {
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
bitmap_set_atomic(d[DIRTY_MEMORY_MIGRATION], page, end - page);
bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
offset, num);
}
if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
bitmap_set_atomic(d[DIRTY_MEMORY_VGA], page, end - page);
bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
offset, num);
}
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page);
bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
offset, num);
}
page += num;
}
rcu_read_unlock();
xen_modified_memory(start, length);
}
@ -199,21 +305,41 @@ static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
/* start address is aligned at the start of a word? */
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
(hpratio == 1)) {
unsigned long **blocks[DIRTY_MEMORY_NUM];
unsigned long idx;
unsigned long offset;
long k;
long nr = BITS_TO_LONGS(pages);
idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
DIRTY_MEMORY_BLOCK_SIZE);
rcu_read_lock();
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
}
for (k = 0; k < nr; k++) {
if (bitmap[k]) {
unsigned long temp = leul_to_cpu(bitmap[k]);
unsigned long **d = ram_list.dirty_memory;
atomic_or(&d[DIRTY_MEMORY_MIGRATION][page + k], temp);
atomic_or(&d[DIRTY_MEMORY_VGA][page + k], temp);
atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp);
atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
if (tcg_enabled()) {
atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp);
atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
}
}
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
offset = 0;
idx++;
}
}
rcu_read_unlock();
xen_modified_memory(start, pages << TARGET_PAGE_BITS);
} else {
uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
@ -265,18 +391,33 @@ uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
int k;
int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
unsigned long * const *src;
unsigned long idx = (page * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
unsigned long offset = BIT_WORD((page * BITS_PER_LONG) %
DIRTY_MEMORY_BLOCK_SIZE);
rcu_read_lock();
src = atomic_rcu_read(
&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
for (k = page; k < page + nr; k++) {
if (src[k]) {
unsigned long bits = atomic_xchg(&src[k], 0);
if (src[idx][offset]) {
unsigned long bits = atomic_xchg(&src[idx][offset], 0);
unsigned long new_dirty;
new_dirty = ~dest[k];
dest[k] |= bits;
new_dirty &= bits;
num_dirty += ctpopl(new_dirty);
}
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
offset = 0;
idx++;
}
}
rcu_read_unlock();
} else {
for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
if (cpu_physical_memory_test_and_clear_dirty(

View File

@ -609,7 +609,6 @@ static void migration_bitmap_sync_init(void)
iterations_prev = 0;
}
/* Called with iothread lock held, to protect ram_list.dirty_memory[] */
static void migration_bitmap_sync(void)
{
RAMBlock *block;
@ -1921,8 +1920,6 @@ static int ram_save_setup(QEMUFile *f, void *opaque)
acct_clear();
}
/* iothread lock needed for ram_list.dirty_memory[] */
qemu_mutex_lock_iothread();
qemu_mutex_lock_ramlist();
rcu_read_lock();
bytes_transferred = 0;
@ -1947,7 +1944,6 @@ static int ram_save_setup(QEMUFile *f, void *opaque)
memory_global_dirty_log_start();
migration_bitmap_sync();
qemu_mutex_unlock_ramlist();
qemu_mutex_unlock_iothread();
qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);