diff --git a/docs/devel/migration.rst b/docs/devel/migration.rst index 6fe275b1ec..974505e4a7 100644 --- a/docs/devel/migration.rst +++ b/docs/devel/migration.rst @@ -1138,3 +1138,100 @@ machine types to have the right value:: + { "virtio-blk-device", "num-queues", "1"}, ... }; + +A device with diferent features on both sides +--------------------------------------------- + +Let's assume that we are using the same QEMU binary on both sides, +just to make the things easier. But we have a device that has +different features on both sides of the migration. That can be +because the devices are different, because the kernel driver of both +devices have different features, whatever. + +How can we get this to work with migration. The way to do that is +"theoretically" easy. You have to get the features that the device +has in the source of the migration. The features that the device has +on the target of the migration, you get the intersection of the +features of both sides, and that is the way that you should launch +QEMU. + +Notice that this is not completely related to QEMU. The most +important thing here is that this should be handled by the managing +application that launches QEMU. If QEMU is configured correctly, the +migration will succeed. + +That said, actually doing it is complicated. Almost all devices are +bad at being able to be launched with only some features enabled. +With one big exception: cpus. + +You can read the documentation for QEMU x86 cpu models here: + +https://qemu-project.gitlab.io/qemu/system/qemu-cpu-models.html + +See when they talk about migration they recommend that one chooses the +newest cpu model that is supported for all cpus. + +Let's say that we have: + +Host A: + +Device X has the feature Y + +Host B: + +Device X has not the feature Y + +If we try to migrate without any care from host A to host B, it will +fail because when migration tries to load the feature Y on +destination, it will find that the hardware is not there. + +Doing this would be the equivalent of doing with cpus: + +Host A: + +$ qemu-system-x86_64 -cpu host + +Host B: + +$ qemu-system-x86_64 -cpu host + +When both hosts have different cpu features this is guaranteed to +fail. Especially if Host B has less features than host A. If host A +has less features than host B, sometimes it works. Important word of +last sentence is "sometimes". + +So, forgetting about cpu models and continuing with the -cpu host +example, let's see that the differences of the cpus is that Host A and +B have the following features: + +Features: 'pcid' 'stibp' 'taa-no' +Host A: X X +Host B: X + +And we want to migrate between them, the way configure both QEMU cpu +will be: + +Host A: + +$ qemu-system-x86_64 -cpu host,pcid=off,stibp=off + +Host B: + +$ qemu-system-x86_64 -cpu host,taa-no=off + +And you would be able to migrate between them. It is responsability +of the management application or of the user to make sure that the +configuration is correct. QEMU doesn't know how to look at this kind +of features in general. + +Notice that we don't recomend to use -cpu host for migration. It is +used in this example because it makes the example simpler. + +Other devices have worse control about individual features. If they +want to be able to migrate between hosts that show different features, +the device needs a way to configure which ones it is going to use. + +In this section we have considered that we are using the same QEMU +binary in both sides of the migration. If we use different QEMU +versions process, then we need to have into account all other +differences and the examples become even more complicated.