cpus: prepare new CpusAccel cpu accelerator interface

The new interface starts unused, will start being used by the
next patches.

It provides methods for each accelerator to start a vcpu, kick a vcpu,
synchronize state, get cpu virtual clock and elapsed ticks.

In qemu_wait_io_event, make it clear that APC is used only for HAX
on Windows.

Signed-off-by: Claudio Fontana <cfontana@suse.de>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Claudio Fontana 2020-07-31 12:23:42 +02:00 committed by Paolo Bonzini
parent 8191d36841
commit 430065dab0
11 changed files with 225 additions and 123 deletions

View File

@ -33,6 +33,7 @@
#include "hw/qdev-properties.h"
#include "trace/trace-root.h"
#include "qemu/plugin.h"
#include "sysemu/hw_accel.h"
CPUInterruptHandler cpu_interrupt_handler;

View File

@ -522,7 +522,7 @@ static long get_file_size(FILE *f)
/* TSC handling */
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpu_get_ticks();
return cpus_get_elapsed_ticks();
}
/* IRQ handling */

View File

@ -70,9 +70,8 @@ void cpu_enable_ticks(void);
void cpu_disable_ticks(void);
/*
* return the time elapsed in VM between vm_start and vm_stop. Unless
* icount is active, cpu_get_ticks() uses units of the host CPU cycle
* counter.
* return the time elapsed in VM between vm_start and vm_stop.
* cpu_get_ticks() uses units of the host CPU cycle counter.
*/
int64_t cpu_get_ticks(void);
@ -84,4 +83,8 @@ int64_t cpu_get_clock(void);
void qemu_timer_notify_cb(void *opaque, QEMUClockType type);
/* get the VIRTUAL clock and VM elapsed ticks via the cpus accel interface */
int64_t cpus_get_virtual_clock(void);
int64_t cpus_get_elapsed_ticks(void);
#endif /* SYSEMU_CPU_TIMERS_H */

View File

@ -4,7 +4,43 @@
#include "qemu/timer.h"
/* cpus.c */
/* CPU execution threads */
typedef struct CpusAccel {
void (*create_vcpu_thread)(CPUState *cpu); /* MANDATORY */
void (*kick_vcpu_thread)(CPUState *cpu);
void (*synchronize_post_reset)(CPUState *cpu);
void (*synchronize_post_init)(CPUState *cpu);
void (*synchronize_state)(CPUState *cpu);
void (*synchronize_pre_loadvm)(CPUState *cpu);
int64_t (*get_virtual_clock)(void);
int64_t (*get_elapsed_ticks)(void);
} CpusAccel;
/* register accel-specific cpus interface implementation */
void cpus_register_accel(const CpusAccel *i);
/* interface available for cpus accelerator threads */
/* For temporary buffers for forming a name */
#define VCPU_THREAD_NAME_SIZE 16
void cpus_kick_thread(CPUState *cpu);
bool cpu_work_list_empty(CPUState *cpu);
bool cpu_thread_is_idle(CPUState *cpu);
bool all_cpu_threads_idle(void);
bool cpu_can_run(CPUState *cpu);
void qemu_wait_io_event_common(CPUState *cpu);
void qemu_wait_io_event(CPUState *cpu);
void cpu_thread_signal_created(CPUState *cpu);
void cpu_thread_signal_destroyed(CPUState *cpu);
void cpu_handle_guest_debug(CPUState *cpu);
/* end interface for cpus accelerator threads */
bool qemu_in_vcpu_thread(void);
void qemu_init_cpu_loop(void);
void resume_all_vcpus(void);

View File

@ -1,5 +1,5 @@
/*
* QEMU Hardware accelertors support
* QEMU Hardware accelerators support
*
* Copyright 2016 Google, Inc.
*
@ -17,68 +17,9 @@
#include "sysemu/hvf.h"
#include "sysemu/whpx.h"
static inline void cpu_synchronize_state(CPUState *cpu)
{
if (kvm_enabled()) {
kvm_cpu_synchronize_state(cpu);
}
if (hax_enabled()) {
hax_cpu_synchronize_state(cpu);
}
if (hvf_enabled()) {
hvf_cpu_synchronize_state(cpu);
}
if (whpx_enabled()) {
whpx_cpu_synchronize_state(cpu);
}
}
static inline void cpu_synchronize_post_reset(CPUState *cpu)
{
if (kvm_enabled()) {
kvm_cpu_synchronize_post_reset(cpu);
}
if (hax_enabled()) {
hax_cpu_synchronize_post_reset(cpu);
}
if (hvf_enabled()) {
hvf_cpu_synchronize_post_reset(cpu);
}
if (whpx_enabled()) {
whpx_cpu_synchronize_post_reset(cpu);
}
}
static inline void cpu_synchronize_post_init(CPUState *cpu)
{
if (kvm_enabled()) {
kvm_cpu_synchronize_post_init(cpu);
}
if (hax_enabled()) {
hax_cpu_synchronize_post_init(cpu);
}
if (hvf_enabled()) {
hvf_cpu_synchronize_post_init(cpu);
}
if (whpx_enabled()) {
whpx_cpu_synchronize_post_init(cpu);
}
}
static inline void cpu_synchronize_pre_loadvm(CPUState *cpu)
{
if (kvm_enabled()) {
kvm_cpu_synchronize_pre_loadvm(cpu);
}
if (hax_enabled()) {
hax_cpu_synchronize_pre_loadvm(cpu);
}
if (hvf_enabled()) {
hvf_cpu_synchronize_pre_loadvm(cpu);
}
if (whpx_enabled()) {
whpx_cpu_synchronize_pre_loadvm(cpu);
}
}
void cpu_synchronize_state(CPUState *cpu);
void cpu_synchronize_post_reset(CPUState *cpu);
void cpu_synchronize_post_init(CPUState *cpu);
void cpu_synchronize_pre_loadvm(CPUState *cpu);
#endif /* QEMU_HW_ACCEL_H */

View File

@ -61,18 +61,13 @@ static int64_t cpu_get_ticks_locked(void)
}
/*
* return the time elapsed in VM between vm_start and vm_stop. Unless
* icount is active, cpu_get_ticks() uses units of the host CPU cycle
* counter.
* return the time elapsed in VM between vm_start and vm_stop.
* cpu_get_ticks() uses units of the host CPU cycle counter.
*/
int64_t cpu_get_ticks(void)
{
int64_t ticks;
if (icount_enabled()) {
return icount_get();
}
qemu_spin_lock(&timers_state.vm_clock_lock);
ticks = cpu_get_ticks_locked();
qemu_spin_unlock(&timers_state.vm_clock_lock);

View File

@ -87,7 +87,7 @@ bool cpu_is_stopped(CPUState *cpu)
return cpu->stopped || !runstate_is_running();
}
static inline bool cpu_work_list_empty(CPUState *cpu)
bool cpu_work_list_empty(CPUState *cpu)
{
bool ret;
@ -97,7 +97,7 @@ static inline bool cpu_work_list_empty(CPUState *cpu)
return ret;
}
static bool cpu_thread_is_idle(CPUState *cpu)
bool cpu_thread_is_idle(CPUState *cpu)
{
if (cpu->stop || !cpu_work_list_empty(cpu)) {
return false;
@ -215,6 +215,11 @@ void hw_error(const char *fmt, ...)
abort();
}
/*
* The chosen accelerator is supposed to register this.
*/
static const CpusAccel *cpus_accel;
void cpu_synchronize_all_states(void)
{
CPUState *cpu;
@ -251,6 +256,102 @@ void cpu_synchronize_all_pre_loadvm(void)
}
}
void cpu_synchronize_state(CPUState *cpu)
{
if (cpus_accel && cpus_accel->synchronize_state) {
cpus_accel->synchronize_state(cpu);
}
if (kvm_enabled()) {
kvm_cpu_synchronize_state(cpu);
}
if (hax_enabled()) {
hax_cpu_synchronize_state(cpu);
}
if (whpx_enabled()) {
whpx_cpu_synchronize_state(cpu);
}
}
void cpu_synchronize_post_reset(CPUState *cpu)
{
if (cpus_accel && cpus_accel->synchronize_post_reset) {
cpus_accel->synchronize_post_reset(cpu);
}
if (kvm_enabled()) {
kvm_cpu_synchronize_post_reset(cpu);
}
if (hax_enabled()) {
hax_cpu_synchronize_post_reset(cpu);
}
if (whpx_enabled()) {
whpx_cpu_synchronize_post_reset(cpu);
}
}
void cpu_synchronize_post_init(CPUState *cpu)
{
if (cpus_accel && cpus_accel->synchronize_post_init) {
cpus_accel->synchronize_post_init(cpu);
}
if (kvm_enabled()) {
kvm_cpu_synchronize_post_init(cpu);
}
if (hax_enabled()) {
hax_cpu_synchronize_post_init(cpu);
}
if (whpx_enabled()) {
whpx_cpu_synchronize_post_init(cpu);
}
}
void cpu_synchronize_pre_loadvm(CPUState *cpu)
{
if (cpus_accel && cpus_accel->synchronize_pre_loadvm) {
cpus_accel->synchronize_pre_loadvm(cpu);
}
if (kvm_enabled()) {
kvm_cpu_synchronize_pre_loadvm(cpu);
}
if (hax_enabled()) {
hax_cpu_synchronize_pre_loadvm(cpu);
}
if (hvf_enabled()) {
hvf_cpu_synchronize_pre_loadvm(cpu);
}
if (whpx_enabled()) {
whpx_cpu_synchronize_pre_loadvm(cpu);
}
}
int64_t cpus_get_virtual_clock(void)
{
if (cpus_accel && cpus_accel->get_virtual_clock) {
return cpus_accel->get_virtual_clock();
}
if (icount_enabled()) {
return icount_get();
} else if (qtest_enabled()) { /* for qtest_clock_warp */
return qtest_get_virtual_clock();
}
return cpu_get_clock();
}
/*
* return the time elapsed in VM between vm_start and vm_stop. Unless
* icount is active, cpus_get_elapsed_ticks() uses units of the host CPU cycle
* counter.
*/
int64_t cpus_get_elapsed_ticks(void)
{
if (cpus_accel && cpus_accel->get_elapsed_ticks) {
return cpus_accel->get_elapsed_ticks();
}
if (icount_enabled()) {
return icount_get();
}
return cpu_get_ticks();
}
static int do_vm_stop(RunState state, bool send_stop)
{
int ret = 0;
@ -279,7 +380,7 @@ int vm_shutdown(void)
return do_vm_stop(RUN_STATE_SHUTDOWN, false);
}
static bool cpu_can_run(CPUState *cpu)
bool cpu_can_run(CPUState *cpu)
{
if (cpu->stop) {
return false;
@ -290,7 +391,7 @@ static bool cpu_can_run(CPUState *cpu)
return true;
}
static void cpu_handle_guest_debug(CPUState *cpu)
void cpu_handle_guest_debug(CPUState *cpu)
{
gdb_set_stop_cpu(cpu);
qemu_system_debug_request();
@ -396,7 +497,7 @@ static void qemu_cpu_stop(CPUState *cpu, bool exit)
qemu_cond_broadcast(&qemu_pause_cond);
}
static void qemu_wait_io_event_common(CPUState *cpu)
void qemu_wait_io_event_common(CPUState *cpu)
{
qatomic_mb_set(&cpu->thread_kicked, false);
if (cpu->stop) {
@ -421,7 +522,7 @@ static void qemu_tcg_rr_wait_io_event(void)
}
}
static void qemu_wait_io_event(CPUState *cpu)
void qemu_wait_io_event(CPUState *cpu)
{
bool slept = false;
@ -437,8 +538,8 @@ static void qemu_wait_io_event(CPUState *cpu)
}
#ifdef _WIN32
/* Eat dummy APC queued by qemu_cpu_kick_thread. */
if (!tcg_enabled()) {
/* Eat dummy APC queued by cpus_kick_thread. */
if (hax_enabled()) {
SleepEx(0, TRUE);
}
#endif
@ -467,8 +568,7 @@ static void *qemu_kvm_cpu_thread_fn(void *arg)
kvm_init_cpu_signals(cpu);
/* signal CPU creation */
cpu->created = true;
qemu_cond_signal(&qemu_cpu_cond);
cpu_thread_signal_created(cpu);
qemu_guest_random_seed_thread_part2(cpu->random_seed);
do {
@ -482,8 +582,7 @@ static void *qemu_kvm_cpu_thread_fn(void *arg)
} while (!cpu->unplug || cpu_can_run(cpu));
qemu_kvm_destroy_vcpu(cpu);
cpu->created = false;
qemu_cond_signal(&qemu_cpu_cond);
cpu_thread_signal_destroyed(cpu);
qemu_mutex_unlock_iothread();
rcu_unregister_thread();
return NULL;
@ -511,8 +610,7 @@ static void *qemu_dummy_cpu_thread_fn(void *arg)
sigaddset(&waitset, SIG_IPI);
/* signal CPU creation */
cpu->created = true;
qemu_cond_signal(&qemu_cpu_cond);
cpu_thread_signal_created(cpu);
qemu_guest_random_seed_thread_part2(cpu->random_seed);
do {
@ -660,8 +758,7 @@ static void deal_with_unplugged_cpus(void)
CPU_FOREACH(cpu) {
if (cpu->unplug && !cpu_can_run(cpu)) {
qemu_tcg_destroy_vcpu(cpu);
cpu->created = false;
qemu_cond_signal(&qemu_cpu_cond);
cpu_thread_signal_destroyed(cpu);
break;
}
}
@ -688,9 +785,8 @@ static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
qemu_thread_get_self(cpu->thread);
cpu->thread_id = qemu_get_thread_id();
cpu->created = true;
cpu->can_do_io = 1;
qemu_cond_signal(&qemu_cpu_cond);
cpu_thread_signal_created(cpu);
qemu_guest_random_seed_thread_part2(cpu->random_seed);
/* wait for initial kick-off after machine start */
@ -800,11 +896,9 @@ static void *qemu_hax_cpu_thread_fn(void *arg)
qemu_thread_get_self(cpu->thread);
cpu->thread_id = qemu_get_thread_id();
cpu->created = true;
current_cpu = cpu;
hax_init_vcpu(cpu);
qemu_cond_signal(&qemu_cpu_cond);
cpu_thread_signal_created(cpu);
qemu_guest_random_seed_thread_part2(cpu->random_seed);
do {
@ -843,8 +937,7 @@ static void *qemu_hvf_cpu_thread_fn(void *arg)
hvf_init_vcpu(cpu);
/* signal CPU creation */
cpu->created = true;
qemu_cond_signal(&qemu_cpu_cond);
cpu_thread_signal_created(cpu);
qemu_guest_random_seed_thread_part2(cpu->random_seed);
do {
@ -858,8 +951,7 @@ static void *qemu_hvf_cpu_thread_fn(void *arg)
} while (!cpu->unplug || cpu_can_run(cpu));
hvf_vcpu_destroy(cpu);
cpu->created = false;
qemu_cond_signal(&qemu_cpu_cond);
cpu_thread_signal_destroyed(cpu);
qemu_mutex_unlock_iothread();
rcu_unregister_thread();
return NULL;
@ -884,8 +976,7 @@ static void *qemu_whpx_cpu_thread_fn(void *arg)
}
/* signal CPU creation */
cpu->created = true;
qemu_cond_signal(&qemu_cpu_cond);
cpu_thread_signal_created(cpu);
qemu_guest_random_seed_thread_part2(cpu->random_seed);
do {
@ -902,8 +993,7 @@ static void *qemu_whpx_cpu_thread_fn(void *arg)
} while (!cpu->unplug || cpu_can_run(cpu));
whpx_destroy_vcpu(cpu);
cpu->created = false;
qemu_cond_signal(&qemu_cpu_cond);
cpu_thread_signal_destroyed(cpu);
qemu_mutex_unlock_iothread();
rcu_unregister_thread();
return NULL;
@ -936,10 +1026,9 @@ static void *qemu_tcg_cpu_thread_fn(void *arg)
qemu_thread_get_self(cpu->thread);
cpu->thread_id = qemu_get_thread_id();
cpu->created = true;
cpu->can_do_io = 1;
current_cpu = cpu;
qemu_cond_signal(&qemu_cpu_cond);
cpu_thread_signal_created(cpu);
qemu_guest_random_seed_thread_part2(cpu->random_seed);
/* process any pending work */
@ -980,14 +1069,13 @@ static void *qemu_tcg_cpu_thread_fn(void *arg)
} while (!cpu->unplug || cpu_can_run(cpu));
qemu_tcg_destroy_vcpu(cpu);
cpu->created = false;
qemu_cond_signal(&qemu_cpu_cond);
cpu_thread_signal_destroyed(cpu);
qemu_mutex_unlock_iothread();
rcu_unregister_thread();
return NULL;
}
static void qemu_cpu_kick_thread(CPUState *cpu)
void cpus_kick_thread(CPUState *cpu)
{
#ifndef _WIN32
int err;
@ -1017,7 +1105,10 @@ static void qemu_cpu_kick_thread(CPUState *cpu)
void qemu_cpu_kick(CPUState *cpu)
{
qemu_cond_broadcast(cpu->halt_cond);
if (tcg_enabled()) {
if (cpus_accel && cpus_accel->kick_vcpu_thread) {
cpus_accel->kick_vcpu_thread(cpu);
} else if (tcg_enabled()) {
if (qemu_tcg_mttcg_enabled()) {
cpu_exit(cpu);
} else {
@ -1031,14 +1122,14 @@ void qemu_cpu_kick(CPUState *cpu)
*/
cpu->exit_request = 1;
}
qemu_cpu_kick_thread(cpu);
cpus_kick_thread(cpu);
}
}
void qemu_cpu_kick_self(void)
{
assert(current_cpu);
qemu_cpu_kick_thread(current_cpu);
cpus_kick_thread(current_cpu);
}
bool qemu_cpu_is_self(CPUState *cpu)
@ -1088,6 +1179,21 @@ void qemu_cond_timedwait_iothread(QemuCond *cond, int ms)
qemu_cond_timedwait(cond, &qemu_global_mutex, ms);
}
/* signal CPU creation */
void cpu_thread_signal_created(CPUState *cpu)
{
cpu->created = true;
qemu_cond_signal(&qemu_cpu_cond);
}
/* signal CPU destruction */
void cpu_thread_signal_destroyed(CPUState *cpu)
{
cpu->created = false;
qemu_cond_signal(&qemu_cpu_cond);
}
static bool all_vcpus_paused(void)
{
CPUState *cpu;
@ -1163,9 +1269,6 @@ void cpu_remove_sync(CPUState *cpu)
qemu_mutex_lock_iothread();
}
/* For temporary buffers for forming a name */
#define VCPU_THREAD_NAME_SIZE 16
static void qemu_tcg_init_vcpu(CPUState *cpu)
{
char thread_name[VCPU_THREAD_NAME_SIZE];
@ -1295,6 +1398,13 @@ static void qemu_whpx_start_vcpu(CPUState *cpu)
#endif
}
void cpus_register_accel(const CpusAccel *ca)
{
assert(ca != NULL);
assert(ca->create_vcpu_thread != NULL); /* mandatory */
cpus_accel = ca;
}
static void qemu_dummy_start_vcpu(CPUState *cpu)
{
char thread_name[VCPU_THREAD_NAME_SIZE];
@ -1325,7 +1435,10 @@ void qemu_init_vcpu(CPUState *cpu)
cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
}
if (kvm_enabled()) {
if (cpus_accel) {
/* accelerator already implements the CpusAccel interface */
cpus_accel->create_vcpu_thread(cpu);
} else if (kvm_enabled()) {
qemu_kvm_start_vcpu(cpu);
} else if (hax_enabled()) {
qemu_hax_start_vcpu(cpu);

View File

@ -0,0 +1,9 @@
#include "qemu/osdep.h"
#include "sysemu/hw_accel.h"
void cpu_synchronize_state(CPUState *cpu)
{
}
void cpu_synchronize_post_init(CPUState *cpu)
{
}

View File

@ -0,0 +1,8 @@
#include "qemu/osdep.h"
#include "sysemu/cpu-timers.h"
#include "qemu/main-loop.h"
int64_t cpus_get_virtual_clock(void)
{
return cpu_get_clock();
}

View File

@ -5,6 +5,7 @@ stub_ss.add(files('blockdev-close-all-bdrv-states.c'))
stub_ss.add(files('change-state-handler.c'))
stub_ss.add(files('cmos.c'))
stub_ss.add(files('cpu-get-clock.c'))
stub_ss.add(files('cpus-get-virtual-clock.c'))
stub_ss.add(files('qemu-timer-notify-cb.c'))
stub_ss.add(files('icount.c'))
stub_ss.add(files('dump.c'))
@ -44,6 +45,7 @@ stub_ss.add(files('vmgenid.c'))
stub_ss.add(files('vmstate.c'))
stub_ss.add(files('vm-stop.c'))
stub_ss.add(files('win32-kbd-hook.c'))
stub_ss.add(files('cpu-synchronize-state.c'))
if have_system
stub_ss.add(files('semihost.c'))
stub_ss.add(files('xen-hw-stub.c'))

View File

@ -635,13 +635,7 @@ int64_t qemu_clock_get_ns(QEMUClockType type)
return get_clock();
default:
case QEMU_CLOCK_VIRTUAL:
if (icount_enabled()) {
return icount_get();
} else if (qtest_enabled()) { /* for qtest_clock_warp */
return qtest_get_virtual_clock();
} else {
return cpu_get_clock();
}
return cpus_get_virtual_clock();
case QEMU_CLOCK_HOST:
return REPLAY_CLOCK(REPLAY_CLOCK_HOST, get_clock_realtime());
case QEMU_CLOCK_VIRTUAL_RT: