migration/multifd: Move nocomp code into multifd-nocomp.c

In preparation for adding new payload types to multifd, move most of
the no-compression code into multifd-nocomp.c. Let's try to keep a
semblance of layering by not mixing general multifd control flow with
the details of transmitting pages of ram.

There are still some pieces leftover, namely the p->normal, p->zero,
etc variables that we use for zero page tracking and the packet
allocation which is heavily dependent on the ram code.

Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Fabiano Rosas <farosas@suse.de>
This commit is contained in:
Fabiano Rosas 2024-08-27 14:46:03 -03:00
parent dc6327d99c
commit 40c9471e40
4 changed files with 402 additions and 375 deletions

View File

@ -21,6 +21,7 @@ system_ss.add(files(
'migration-hmp-cmds.c',
'migration.c',
'multifd.c',
'multifd-nocomp.c',
'multifd-zlib.c',
'multifd-zero-page.c',
'options.c',

394
migration/multifd-nocomp.c Normal file
View File

@ -0,0 +1,394 @@
/*
* Multifd RAM migration without compression
*
* Copyright (c) 2019-2020 Red Hat Inc
*
* Authors:
* Juan Quintela <quintela@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "exec/ramblock.h"
#include "exec/target_page.h"
#include "file.h"
#include "multifd.h"
#include "options.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "trace.h"
static MultiFDSendData *multifd_ram_send;
size_t multifd_ram_payload_size(void)
{
uint32_t n = multifd_ram_page_count();
/*
* We keep an array of page offsets at the end of MultiFDPages_t,
* add space for it in the allocation.
*/
return sizeof(MultiFDPages_t) + n * sizeof(ram_addr_t);
}
void multifd_ram_save_setup(void)
{
multifd_ram_send = multifd_send_data_alloc();
}
void multifd_ram_save_cleanup(void)
{
g_free(multifd_ram_send);
multifd_ram_send = NULL;
}
static void multifd_set_file_bitmap(MultiFDSendParams *p)
{
MultiFDPages_t *pages = &p->data->u.ram;
assert(pages->block);
for (int i = 0; i < pages->normal_num; i++) {
ramblock_set_file_bmap_atomic(pages->block, pages->offset[i], true);
}
for (int i = pages->normal_num; i < pages->num; i++) {
ramblock_set_file_bmap_atomic(pages->block, pages->offset[i], false);
}
}
static int multifd_nocomp_send_setup(MultiFDSendParams *p, Error **errp)
{
uint32_t page_count = multifd_ram_page_count();
if (migrate_zero_copy_send()) {
p->write_flags |= QIO_CHANNEL_WRITE_FLAG_ZERO_COPY;
}
if (!migrate_mapped_ram()) {
/* We need one extra place for the packet header */
p->iov = g_new0(struct iovec, page_count + 1);
} else {
p->iov = g_new0(struct iovec, page_count);
}
return 0;
}
static void multifd_nocomp_send_cleanup(MultiFDSendParams *p, Error **errp)
{
g_free(p->iov);
p->iov = NULL;
return;
}
static void multifd_send_prepare_iovs(MultiFDSendParams *p)
{
MultiFDPages_t *pages = &p->data->u.ram;
uint32_t page_size = multifd_ram_page_size();
for (int i = 0; i < pages->normal_num; i++) {
p->iov[p->iovs_num].iov_base = pages->block->host + pages->offset[i];
p->iov[p->iovs_num].iov_len = page_size;
p->iovs_num++;
}
p->next_packet_size = pages->normal_num * page_size;
}
static int multifd_nocomp_send_prepare(MultiFDSendParams *p, Error **errp)
{
bool use_zero_copy_send = migrate_zero_copy_send();
int ret;
multifd_send_zero_page_detect(p);
if (migrate_mapped_ram()) {
multifd_send_prepare_iovs(p);
multifd_set_file_bitmap(p);
return 0;
}
if (!use_zero_copy_send) {
/*
* Only !zerocopy needs the header in IOV; zerocopy will
* send it separately.
*/
multifd_send_prepare_header(p);
}
multifd_send_prepare_iovs(p);
p->flags |= MULTIFD_FLAG_NOCOMP;
multifd_send_fill_packet(p);
if (use_zero_copy_send) {
/* Send header first, without zerocopy */
ret = qio_channel_write_all(p->c, (void *)p->packet,
p->packet_len, errp);
if (ret != 0) {
return -1;
}
}
return 0;
}
static int multifd_nocomp_recv_setup(MultiFDRecvParams *p, Error **errp)
{
p->iov = g_new0(struct iovec, multifd_ram_page_count());
return 0;
}
static void multifd_nocomp_recv_cleanup(MultiFDRecvParams *p)
{
g_free(p->iov);
p->iov = NULL;
}
static int multifd_nocomp_recv(MultiFDRecvParams *p, Error **errp)
{
uint32_t flags;
if (migrate_mapped_ram()) {
return multifd_file_recv_data(p, errp);
}
flags = p->flags & MULTIFD_FLAG_COMPRESSION_MASK;
if (flags != MULTIFD_FLAG_NOCOMP) {
error_setg(errp, "multifd %u: flags received %x flags expected %x",
p->id, flags, MULTIFD_FLAG_NOCOMP);
return -1;
}
multifd_recv_zero_page_process(p);
if (!p->normal_num) {
return 0;
}
for (int i = 0; i < p->normal_num; i++) {
p->iov[i].iov_base = p->host + p->normal[i];
p->iov[i].iov_len = multifd_ram_page_size();
ramblock_recv_bitmap_set_offset(p->block, p->normal[i]);
}
return qio_channel_readv_all(p->c, p->iov, p->normal_num, errp);
}
static void multifd_pages_reset(MultiFDPages_t *pages)
{
/*
* We don't need to touch offset[] array, because it will be
* overwritten later when reused.
*/
pages->num = 0;
pages->normal_num = 0;
pages->block = NULL;
}
void multifd_ram_fill_packet(MultiFDSendParams *p)
{
MultiFDPacket_t *packet = p->packet;
MultiFDPages_t *pages = &p->data->u.ram;
uint32_t zero_num = pages->num - pages->normal_num;
packet->pages_alloc = cpu_to_be32(multifd_ram_page_count());
packet->normal_pages = cpu_to_be32(pages->normal_num);
packet->zero_pages = cpu_to_be32(zero_num);
if (pages->block) {
strncpy(packet->ramblock, pages->block->idstr, 256);
}
for (int i = 0; i < pages->num; i++) {
/* there are architectures where ram_addr_t is 32 bit */
uint64_t temp = pages->offset[i];
packet->offset[i] = cpu_to_be64(temp);
}
trace_multifd_send_ram_fill(p->id, pages->normal_num,
zero_num);
}
int multifd_ram_unfill_packet(MultiFDRecvParams *p, Error **errp)
{
MultiFDPacket_t *packet = p->packet;
uint32_t page_count = multifd_ram_page_count();
uint32_t page_size = multifd_ram_page_size();
int i;
packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
/*
* If we received a packet that is 100 times bigger than expected
* just stop migration. It is a magic number.
*/
if (packet->pages_alloc > page_count) {
error_setg(errp, "multifd: received packet "
"with size %u and expected a size of %u",
packet->pages_alloc, page_count) ;
return -1;
}
p->normal_num = be32_to_cpu(packet->normal_pages);
if (p->normal_num > packet->pages_alloc) {
error_setg(errp, "multifd: received packet "
"with %u normal pages and expected maximum pages are %u",
p->normal_num, packet->pages_alloc) ;
return -1;
}
p->zero_num = be32_to_cpu(packet->zero_pages);
if (p->zero_num > packet->pages_alloc - p->normal_num) {
error_setg(errp, "multifd: received packet "
"with %u zero pages and expected maximum zero pages are %u",
p->zero_num, packet->pages_alloc - p->normal_num) ;
return -1;
}
if (p->normal_num == 0 && p->zero_num == 0) {
return 0;
}
/* make sure that ramblock is 0 terminated */
packet->ramblock[255] = 0;
p->block = qemu_ram_block_by_name(packet->ramblock);
if (!p->block) {
error_setg(errp, "multifd: unknown ram block %s",
packet->ramblock);
return -1;
}
p->host = p->block->host;
for (i = 0; i < p->normal_num; i++) {
uint64_t offset = be64_to_cpu(packet->offset[i]);
if (offset > (p->block->used_length - page_size)) {
error_setg(errp, "multifd: offset too long %" PRIu64
" (max " RAM_ADDR_FMT ")",
offset, p->block->used_length);
return -1;
}
p->normal[i] = offset;
}
for (i = 0; i < p->zero_num; i++) {
uint64_t offset = be64_to_cpu(packet->offset[p->normal_num + i]);
if (offset > (p->block->used_length - page_size)) {
error_setg(errp, "multifd: offset too long %" PRIu64
" (max " RAM_ADDR_FMT ")",
offset, p->block->used_length);
return -1;
}
p->zero[i] = offset;
}
return 0;
}
static inline bool multifd_queue_empty(MultiFDPages_t *pages)
{
return pages->num == 0;
}
static inline bool multifd_queue_full(MultiFDPages_t *pages)
{
return pages->num == multifd_ram_page_count();
}
static inline void multifd_enqueue(MultiFDPages_t *pages, ram_addr_t offset)
{
pages->offset[pages->num++] = offset;
}
/* Returns true if enqueue successful, false otherwise */
bool multifd_queue_page(RAMBlock *block, ram_addr_t offset)
{
MultiFDPages_t *pages;
retry:
pages = &multifd_ram_send->u.ram;
if (multifd_payload_empty(multifd_ram_send)) {
multifd_pages_reset(pages);
multifd_set_payload_type(multifd_ram_send, MULTIFD_PAYLOAD_RAM);
}
/* If the queue is empty, we can already enqueue now */
if (multifd_queue_empty(pages)) {
pages->block = block;
multifd_enqueue(pages, offset);
return true;
}
/*
* Not empty, meanwhile we need a flush. It can because of either:
*
* (1) The page is not on the same ramblock of previous ones, or,
* (2) The queue is full.
*
* After flush, always retry.
*/
if (pages->block != block || multifd_queue_full(pages)) {
if (!multifd_send(&multifd_ram_send)) {
return false;
}
goto retry;
}
/* Not empty, and we still have space, do it! */
multifd_enqueue(pages, offset);
return true;
}
int multifd_ram_flush_and_sync(void)
{
if (!migrate_multifd()) {
return 0;
}
if (!multifd_payload_empty(multifd_ram_send)) {
if (!multifd_send(&multifd_ram_send)) {
error_report("%s: multifd_send fail", __func__);
return -1;
}
}
return multifd_send_sync_main();
}
bool multifd_send_prepare_common(MultiFDSendParams *p)
{
MultiFDPages_t *pages = &p->data->u.ram;
multifd_send_zero_page_detect(p);
if (!pages->normal_num) {
p->next_packet_size = 0;
return false;
}
multifd_send_prepare_header(p);
return true;
}
static MultiFDMethods multifd_nocomp_ops = {
.send_setup = multifd_nocomp_send_setup,
.send_cleanup = multifd_nocomp_send_cleanup,
.send_prepare = multifd_nocomp_send_prepare,
.recv_setup = multifd_nocomp_recv_setup,
.recv_cleanup = multifd_nocomp_recv_cleanup,
.recv = multifd_nocomp_recv
};
static void multifd_nocomp_register(void)
{
multifd_register_ops(MULTIFD_COMPRESSION_NONE, &multifd_nocomp_ops);
}
migration_init(multifd_nocomp_register);

View File

@ -96,20 +96,7 @@ struct {
MultiFDMethods *ops;
} *multifd_recv_state;
static MultiFDSendData *multifd_ram_send;
static size_t multifd_ram_payload_size(void)
{
uint32_t n = multifd_ram_page_count();
/*
* We keep an array of page offsets at the end of MultiFDPages_t,
* add space for it in the allocation.
*/
return sizeof(MultiFDPages_t) + n * sizeof(ram_addr_t);
}
static MultiFDSendData *multifd_send_data_alloc(void)
MultiFDSendData *multifd_send_data_alloc(void)
{
size_t max_payload_size, size_minus_payload;
@ -131,17 +118,6 @@ static MultiFDSendData *multifd_send_data_alloc(void)
return g_malloc0(size_minus_payload + max_payload_size);
}
void multifd_ram_save_setup(void)
{
multifd_ram_send = multifd_send_data_alloc();
}
void multifd_ram_save_cleanup(void)
{
g_free(multifd_ram_send);
multifd_ram_send = NULL;
}
static bool multifd_use_packets(void)
{
return !migrate_mapped_ram();
@ -152,141 +128,6 @@ void multifd_send_channel_created(void)
qemu_sem_post(&multifd_send_state->channels_created);
}
static void multifd_set_file_bitmap(MultiFDSendParams *p)
{
MultiFDPages_t *pages = &p->data->u.ram;
assert(pages->block);
for (int i = 0; i < pages->normal_num; i++) {
ramblock_set_file_bmap_atomic(pages->block, pages->offset[i], true);
}
for (int i = pages->normal_num; i < pages->num; i++) {
ramblock_set_file_bmap_atomic(pages->block, pages->offset[i], false);
}
}
static int multifd_nocomp_send_setup(MultiFDSendParams *p, Error **errp)
{
uint32_t page_count = multifd_ram_page_count();
if (migrate_zero_copy_send()) {
p->write_flags |= QIO_CHANNEL_WRITE_FLAG_ZERO_COPY;
}
if (multifd_use_packets()) {
/* We need one extra place for the packet header */
p->iov = g_new0(struct iovec, page_count + 1);
} else {
p->iov = g_new0(struct iovec, page_count);
}
return 0;
}
static void multifd_nocomp_send_cleanup(MultiFDSendParams *p, Error **errp)
{
g_free(p->iov);
p->iov = NULL;
return;
}
static void multifd_send_prepare_iovs(MultiFDSendParams *p)
{
MultiFDPages_t *pages = &p->data->u.ram;
uint32_t page_size = multifd_ram_page_size();
for (int i = 0; i < pages->normal_num; i++) {
p->iov[p->iovs_num].iov_base = pages->block->host + pages->offset[i];
p->iov[p->iovs_num].iov_len = page_size;
p->iovs_num++;
}
p->next_packet_size = pages->normal_num * page_size;
}
static int multifd_nocomp_send_prepare(MultiFDSendParams *p, Error **errp)
{
bool use_zero_copy_send = migrate_zero_copy_send();
int ret;
multifd_send_zero_page_detect(p);
if (!multifd_use_packets()) {
multifd_send_prepare_iovs(p);
multifd_set_file_bitmap(p);
return 0;
}
if (!use_zero_copy_send) {
/*
* Only !zerocopy needs the header in IOV; zerocopy will
* send it separately.
*/
multifd_send_prepare_header(p);
}
multifd_send_prepare_iovs(p);
p->flags |= MULTIFD_FLAG_NOCOMP;
multifd_send_fill_packet(p);
if (use_zero_copy_send) {
/* Send header first, without zerocopy */
ret = qio_channel_write_all(p->c, (void *)p->packet,
p->packet_len, errp);
if (ret != 0) {
return -1;
}
}
return 0;
}
static int multifd_nocomp_recv_setup(MultiFDRecvParams *p, Error **errp)
{
p->iov = g_new0(struct iovec, multifd_ram_page_count());
return 0;
}
static void multifd_nocomp_recv_cleanup(MultiFDRecvParams *p)
{
g_free(p->iov);
p->iov = NULL;
}
static int multifd_nocomp_recv(MultiFDRecvParams *p, Error **errp)
{
uint32_t flags;
if (!multifd_use_packets()) {
return multifd_file_recv_data(p, errp);
}
flags = p->flags & MULTIFD_FLAG_COMPRESSION_MASK;
if (flags != MULTIFD_FLAG_NOCOMP) {
error_setg(errp, "multifd %u: flags received %x flags expected %x",
p->id, flags, MULTIFD_FLAG_NOCOMP);
return -1;
}
multifd_recv_zero_page_process(p);
if (!p->normal_num) {
return 0;
}
for (int i = 0; i < p->normal_num; i++) {
p->iov[i].iov_base = p->host + p->normal[i];
p->iov[i].iov_len = multifd_ram_page_size();
ramblock_recv_bitmap_set_offset(p->block, p->normal[i]);
}
return qio_channel_readv_all(p->c, p->iov, p->normal_num, errp);
}
static MultiFDMethods *multifd_ops[MULTIFD_COMPRESSION__MAX] = {};
void multifd_register_ops(int method, MultiFDMethods *ops)
@ -296,18 +137,6 @@ void multifd_register_ops(int method, MultiFDMethods *ops)
multifd_ops[method] = ops;
}
/* Reset a MultiFDPages_t* object for the next use */
static void multifd_pages_reset(MultiFDPages_t *pages)
{
/*
* We don't need to touch offset[] array, because it will be
* overwritten later when reused.
*/
pages->num = 0;
pages->normal_num = 0;
pages->block = NULL;
}
static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
{
MultiFDInit_t msg = {};
@ -372,30 +201,6 @@ static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
return msg.id;
}
static void multifd_ram_fill_packet(MultiFDSendParams *p)
{
MultiFDPacket_t *packet = p->packet;
MultiFDPages_t *pages = &p->data->u.ram;
uint32_t zero_num = pages->num - pages->normal_num;
packet->pages_alloc = cpu_to_be32(multifd_ram_page_count());
packet->normal_pages = cpu_to_be32(pages->normal_num);
packet->zero_pages = cpu_to_be32(zero_num);
if (pages->block) {
strncpy(packet->ramblock, pages->block->idstr, 256);
}
for (int i = 0; i < pages->num; i++) {
/* there are architectures where ram_addr_t is 32 bit */
uint64_t temp = pages->offset[i];
packet->offset[i] = cpu_to_be64(temp);
}
trace_multifd_send_ram_fill(p->id, pages->normal_num, zero_num);
}
void multifd_send_fill_packet(MultiFDSendParams *p)
{
MultiFDPacket_t *packet = p->packet;
@ -423,82 +228,6 @@ void multifd_send_fill_packet(MultiFDSendParams *p)
p->flags, p->next_packet_size);
}
static int multifd_ram_unfill_packet(MultiFDRecvParams *p, Error **errp)
{
MultiFDPacket_t *packet = p->packet;
uint32_t page_count = multifd_ram_page_count();
uint32_t page_size = multifd_ram_page_size();
int i;
packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
/*
* If we received a packet that is 100 times bigger than expected
* just stop migration. It is a magic number.
*/
if (packet->pages_alloc > page_count) {
error_setg(errp, "multifd: received packet "
"with size %u and expected a size of %u",
packet->pages_alloc, page_count) ;
return -1;
}
p->normal_num = be32_to_cpu(packet->normal_pages);
if (p->normal_num > packet->pages_alloc) {
error_setg(errp, "multifd: received packet "
"with %u normal pages and expected maximum pages are %u",
p->normal_num, packet->pages_alloc) ;
return -1;
}
p->zero_num = be32_to_cpu(packet->zero_pages);
if (p->zero_num > packet->pages_alloc - p->normal_num) {
error_setg(errp, "multifd: received packet "
"with %u zero pages and expected maximum zero pages are %u",
p->zero_num, packet->pages_alloc - p->normal_num) ;
return -1;
}
if (p->normal_num == 0 && p->zero_num == 0) {
return 0;
}
/* make sure that ramblock is 0 terminated */
packet->ramblock[255] = 0;
p->block = qemu_ram_block_by_name(packet->ramblock);
if (!p->block) {
error_setg(errp, "multifd: unknown ram block %s",
packet->ramblock);
return -1;
}
p->host = p->block->host;
for (i = 0; i < p->normal_num; i++) {
uint64_t offset = be64_to_cpu(packet->offset[i]);
if (offset > (p->block->used_length - page_size)) {
error_setg(errp, "multifd: offset too long %" PRIu64
" (max " RAM_ADDR_FMT ")",
offset, p->block->used_length);
return -1;
}
p->normal[i] = offset;
}
for (i = 0; i < p->zero_num; i++) {
uint64_t offset = be64_to_cpu(packet->offset[p->normal_num + i]);
if (offset > (p->block->used_length - page_size)) {
error_setg(errp, "multifd: offset too long %" PRIu64
" (max " RAM_ADDR_FMT ")",
offset, p->block->used_length);
return -1;
}
p->zero[i] = offset;
}
return 0;
}
static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
{
MultiFDPacket_t *packet = p->packet;
@ -571,7 +300,7 @@ static void multifd_send_kick_main(MultiFDSendParams *p)
*
* Returns true if succeed, false otherwise.
*/
static bool multifd_send(MultiFDSendData **send_data)
bool multifd_send(MultiFDSendData **send_data)
{
int i;
static int next_channel;
@ -632,61 +361,6 @@ static bool multifd_send(MultiFDSendData **send_data)
return true;
}
static inline bool multifd_queue_empty(MultiFDPages_t *pages)
{
return pages->num == 0;
}
static inline bool multifd_queue_full(MultiFDPages_t *pages)
{
return pages->num == multifd_ram_page_count();
}
static inline void multifd_enqueue(MultiFDPages_t *pages, ram_addr_t offset)
{
pages->offset[pages->num++] = offset;
}
/* Returns true if enqueue successful, false otherwise */
bool multifd_queue_page(RAMBlock *block, ram_addr_t offset)
{
MultiFDPages_t *pages;
retry:
pages = &multifd_ram_send->u.ram;
if (multifd_payload_empty(multifd_ram_send)) {
multifd_pages_reset(pages);
multifd_set_payload_type(multifd_ram_send, MULTIFD_PAYLOAD_RAM);
}
/* If the queue is empty, we can already enqueue now */
if (multifd_queue_empty(pages)) {
pages->block = block;
multifd_enqueue(pages, offset);
return true;
}
/*
* Not empty, meanwhile we need a flush. It can because of either:
*
* (1) The page is not on the same ramblock of previous ones, or,
* (2) The queue is full.
*
* After flush, always retry.
*/
if (pages->block != block || multifd_queue_full(pages)) {
if (!multifd_send(&multifd_ram_send)) {
return false;
}
goto retry;
}
/* Not empty, and we still have space, do it! */
multifd_enqueue(pages, offset);
return true;
}
/* Multifd send side hit an error; remember it and prepare to quit */
static void multifd_send_set_error(Error *err)
{
@ -850,22 +524,6 @@ static int multifd_zero_copy_flush(QIOChannel *c)
return ret;
}
int multifd_ram_flush_and_sync(void)
{
if (!migrate_multifd()) {
return 0;
}
if (!multifd_payload_empty(multifd_ram_send)) {
if (!multifd_send(&multifd_ram_send)) {
error_report("%s: multifd_send fail", __func__);
return -1;
}
}
return multifd_send_sync_main();
}
int multifd_send_sync_main(void)
{
int i;
@ -1676,34 +1334,3 @@ void multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
QEMU_THREAD_JOINABLE);
qatomic_inc(&multifd_recv_state->count);
}
bool multifd_send_prepare_common(MultiFDSendParams *p)
{
MultiFDPages_t *pages = &p->data->u.ram;
multifd_send_zero_page_detect(p);
if (!pages->normal_num) {
p->next_packet_size = 0;
return false;
}
multifd_send_prepare_header(p);
return true;
}
static MultiFDMethods multifd_nocomp_ops = {
.send_setup = multifd_nocomp_send_setup,
.send_cleanup = multifd_nocomp_send_cleanup,
.send_prepare = multifd_nocomp_send_prepare,
.recv_setup = multifd_nocomp_recv_setup,
.recv_cleanup = multifd_nocomp_recv_cleanup,
.recv = multifd_nocomp_recv
};
static void multifd_nocomp_register(void)
{
multifd_register_ops(MULTIFD_COMPRESSION_NONE, &multifd_nocomp_ops);
}
migration_init(multifd_nocomp_register);

View File

@ -257,6 +257,8 @@ static inline void multifd_send_prepare_header(MultiFDSendParams *p)
}
void multifd_channel_connect(MultiFDSendParams *p, QIOChannel *ioc);
bool multifd_send(MultiFDSendData **send_data);
MultiFDSendData *multifd_send_data_alloc(void);
static inline uint32_t multifd_ram_page_size(void)
{
@ -271,4 +273,7 @@ static inline uint32_t multifd_ram_page_count(void)
void multifd_ram_save_setup(void);
void multifd_ram_save_cleanup(void);
int multifd_ram_flush_and_sync(void);
size_t multifd_ram_payload_size(void);
void multifd_ram_fill_packet(MultiFDSendParams *p);
int multifd_ram_unfill_packet(MultiFDRecvParams *p, Error **errp);
#endif