mirror: support more than one in-flight AIO operation

With AIO support in place, we can start copying more than one chunk
in parallel.  This patch introduces the required infrastructure for
this: the buffer is split into multiple granularity-sized chunks,
and there is a free list to access them.

Because of copy-on-write, a single operation may already require
multiple chunks to be available on the free list.

In addition, two different iterations on the HBitmap may want to
copy the same cluster.  We avoid this by keeping a bitmap of in-flight
I/O operations, and blocking until the previous iteration completes.
This should be a pretty rare occurrence, though; as long as there is
no overlap the next iteration can start before the previous one finishes.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
This commit is contained in:
Paolo Bonzini 2013-01-22 09:03:14 +01:00 committed by Kevin Wolf
parent 08e4ed6cde
commit 402a47411b
2 changed files with 94 additions and 12 deletions

View File

@ -17,7 +17,15 @@
#include "qemu/ratelimit.h" #include "qemu/ratelimit.h"
#include "qemu/bitmap.h" #include "qemu/bitmap.h"
#define SLICE_TIME 100000000ULL /* ns */ #define SLICE_TIME 100000000ULL /* ns */
#define MAX_IN_FLIGHT 16
/* The mirroring buffer is a list of granularity-sized chunks.
* Free chunks are organized in a list.
*/
typedef struct MirrorBuffer {
QSIMPLEQ_ENTRY(MirrorBuffer) next;
} MirrorBuffer;
typedef struct MirrorBlockJob { typedef struct MirrorBlockJob {
BlockJob common; BlockJob common;
@ -33,7 +41,10 @@ typedef struct MirrorBlockJob {
unsigned long *cow_bitmap; unsigned long *cow_bitmap;
HBitmapIter hbi; HBitmapIter hbi;
uint8_t *buf; uint8_t *buf;
QSIMPLEQ_HEAD(, MirrorBuffer) buf_free;
int buf_free_count;
unsigned long *in_flight_bitmap;
int in_flight; int in_flight;
int ret; int ret;
} MirrorBlockJob; } MirrorBlockJob;
@ -41,7 +52,6 @@ typedef struct MirrorBlockJob {
typedef struct MirrorOp { typedef struct MirrorOp {
MirrorBlockJob *s; MirrorBlockJob *s;
QEMUIOVector qiov; QEMUIOVector qiov;
struct iovec iov;
int64_t sector_num; int64_t sector_num;
int nb_sectors; int nb_sectors;
} MirrorOp; } MirrorOp;
@ -62,15 +72,24 @@ static BlockErrorAction mirror_error_action(MirrorBlockJob *s, bool read,
static void mirror_iteration_done(MirrorOp *op, int ret) static void mirror_iteration_done(MirrorOp *op, int ret)
{ {
MirrorBlockJob *s = op->s; MirrorBlockJob *s = op->s;
struct iovec *iov;
int64_t chunk_num; int64_t chunk_num;
int nb_chunks, sectors_per_chunk; int i, nb_chunks, sectors_per_chunk;
trace_mirror_iteration_done(s, op->sector_num, op->nb_sectors, ret); trace_mirror_iteration_done(s, op->sector_num, op->nb_sectors, ret);
s->in_flight--; s->in_flight--;
iov = op->qiov.iov;
for (i = 0; i < op->qiov.niov; i++) {
MirrorBuffer *buf = (MirrorBuffer *) iov[i].iov_base;
QSIMPLEQ_INSERT_TAIL(&s->buf_free, buf, next);
s->buf_free_count++;
}
sectors_per_chunk = s->granularity >> BDRV_SECTOR_BITS; sectors_per_chunk = s->granularity >> BDRV_SECTOR_BITS;
chunk_num = op->sector_num / sectors_per_chunk; chunk_num = op->sector_num / sectors_per_chunk;
nb_chunks = op->nb_sectors / sectors_per_chunk; nb_chunks = op->nb_sectors / sectors_per_chunk;
bitmap_clear(s->in_flight_bitmap, chunk_num, nb_chunks);
if (s->cow_bitmap && ret >= 0) { if (s->cow_bitmap && ret >= 0) {
bitmap_set(s->cow_bitmap, chunk_num, nb_chunks); bitmap_set(s->cow_bitmap, chunk_num, nb_chunks);
} }
@ -120,8 +139,8 @@ static void mirror_read_complete(void *opaque, int ret)
static void coroutine_fn mirror_iteration(MirrorBlockJob *s) static void coroutine_fn mirror_iteration(MirrorBlockJob *s)
{ {
BlockDriverState *source = s->common.bs; BlockDriverState *source = s->common.bs;
int nb_sectors, sectors_per_chunk; int nb_sectors, sectors_per_chunk, nb_chunks;
int64_t end, sector_num, chunk_num; int64_t end, sector_num, chunk_num, next_sector, hbitmap_next_sector;
MirrorOp *op; MirrorOp *op;
s->sector_num = hbitmap_iter_next(&s->hbi); s->sector_num = hbitmap_iter_next(&s->hbi);
@ -132,6 +151,8 @@ static void coroutine_fn mirror_iteration(MirrorBlockJob *s)
assert(s->sector_num >= 0); assert(s->sector_num >= 0);
} }
hbitmap_next_sector = s->sector_num;
/* If we have no backing file yet in the destination, and the cluster size /* If we have no backing file yet in the destination, and the cluster size
* is very large, we need to do COW ourselves. The first time a cluster is * is very large, we need to do COW ourselves. The first time a cluster is
* copied, copy it entirely. * copied, copy it entirely.
@ -147,19 +168,56 @@ static void coroutine_fn mirror_iteration(MirrorBlockJob *s)
bdrv_round_to_clusters(s->target, bdrv_round_to_clusters(s->target,
sector_num, sectors_per_chunk, sector_num, sectors_per_chunk,
&sector_num, &nb_sectors); &sector_num, &nb_sectors);
/* The rounding may make us copy sectors before the
* first dirty one.
*/
chunk_num = sector_num / sectors_per_chunk;
}
/* Wait for I/O to this cluster (from a previous iteration) to be done. */
while (test_bit(chunk_num, s->in_flight_bitmap)) {
trace_mirror_yield_in_flight(s, sector_num, s->in_flight);
qemu_coroutine_yield();
} }
end = s->common.len >> BDRV_SECTOR_BITS; end = s->common.len >> BDRV_SECTOR_BITS;
nb_sectors = MIN(nb_sectors, end - sector_num); nb_sectors = MIN(nb_sectors, end - sector_num);
nb_chunks = (nb_sectors + sectors_per_chunk - 1) / sectors_per_chunk;
while (s->buf_free_count < nb_chunks) {
trace_mirror_yield_buf_busy(s, nb_chunks, s->in_flight);
qemu_coroutine_yield();
}
/* We have enough free space to copy these sectors. */
bitmap_set(s->in_flight_bitmap, chunk_num, nb_chunks);
/* Allocate a MirrorOp that is used as an AIO callback. */ /* Allocate a MirrorOp that is used as an AIO callback. */
op = g_slice_new(MirrorOp); op = g_slice_new(MirrorOp);
op->s = s; op->s = s;
op->iov.iov_base = s->buf;
op->iov.iov_len = nb_sectors * 512;
op->sector_num = sector_num; op->sector_num = sector_num;
op->nb_sectors = nb_sectors; op->nb_sectors = nb_sectors;
qemu_iovec_init_external(&op->qiov, &op->iov, 1);
/* Now make a QEMUIOVector taking enough granularity-sized chunks
* from s->buf_free.
*/
qemu_iovec_init(&op->qiov, nb_chunks);
next_sector = sector_num;
while (nb_chunks-- > 0) {
MirrorBuffer *buf = QSIMPLEQ_FIRST(&s->buf_free);
QSIMPLEQ_REMOVE_HEAD(&s->buf_free, next);
s->buf_free_count--;
qemu_iovec_add(&op->qiov, buf, s->granularity);
/* Advance the HBitmapIter in parallel, so that we do not examine
* the same sector twice.
*/
if (next_sector > hbitmap_next_sector && bdrv_get_dirty(source, next_sector)) {
hbitmap_next_sector = hbitmap_iter_next(&s->hbi);
}
next_sector += sectors_per_chunk;
}
bdrv_reset_dirty(source, sector_num, nb_sectors); bdrv_reset_dirty(source, sector_num, nb_sectors);
@ -170,6 +228,23 @@ static void coroutine_fn mirror_iteration(MirrorBlockJob *s)
mirror_read_complete, op); mirror_read_complete, op);
} }
static void mirror_free_init(MirrorBlockJob *s)
{
int granularity = s->granularity;
size_t buf_size = s->buf_size;
uint8_t *buf = s->buf;
assert(s->buf_free_count == 0);
QSIMPLEQ_INIT(&s->buf_free);
while (buf_size != 0) {
MirrorBuffer *cur = (MirrorBuffer *)buf;
QSIMPLEQ_INSERT_TAIL(&s->buf_free, cur, next);
s->buf_free_count++;
buf_size -= granularity;
buf += granularity;
}
}
static void mirror_drain(MirrorBlockJob *s) static void mirror_drain(MirrorBlockJob *s)
{ {
while (s->in_flight > 0) { while (s->in_flight > 0) {
@ -198,6 +273,9 @@ static void coroutine_fn mirror_run(void *opaque)
return; return;
} }
length = (bdrv_getlength(bs) + s->granularity - 1) / s->granularity;
s->in_flight_bitmap = bitmap_new(length);
/* If we have no backing file yet in the destination, we cannot let /* If we have no backing file yet in the destination, we cannot let
* the destination do COW. Instead, we copy sectors around the * the destination do COW. Instead, we copy sectors around the
* dirty data if needed. We need a bitmap to do that. * dirty data if needed. We need a bitmap to do that.
@ -208,7 +286,6 @@ static void coroutine_fn mirror_run(void *opaque)
bdrv_get_info(s->target, &bdi); bdrv_get_info(s->target, &bdi);
if (s->granularity < bdi.cluster_size) { if (s->granularity < bdi.cluster_size) {
s->buf_size = MAX(s->buf_size, bdi.cluster_size); s->buf_size = MAX(s->buf_size, bdi.cluster_size);
length = (bdrv_getlength(bs) + s->granularity - 1) / s->granularity;
s->cow_bitmap = bitmap_new(length); s->cow_bitmap = bitmap_new(length);
} }
} }
@ -216,6 +293,7 @@ static void coroutine_fn mirror_run(void *opaque)
end = s->common.len >> BDRV_SECTOR_BITS; end = s->common.len >> BDRV_SECTOR_BITS;
s->buf = qemu_blockalign(bs, s->buf_size); s->buf = qemu_blockalign(bs, s->buf_size);
sectors_per_chunk = s->granularity >> BDRV_SECTOR_BITS; sectors_per_chunk = s->granularity >> BDRV_SECTOR_BITS;
mirror_free_init(s);
if (s->mode != MIRROR_SYNC_MODE_NONE) { if (s->mode != MIRROR_SYNC_MODE_NONE) {
/* First part, loop on the sectors and initialize the dirty bitmap. */ /* First part, loop on the sectors and initialize the dirty bitmap. */
@ -261,8 +339,9 @@ static void coroutine_fn mirror_run(void *opaque)
*/ */
if (qemu_get_clock_ns(rt_clock) - last_pause_ns < SLICE_TIME && if (qemu_get_clock_ns(rt_clock) - last_pause_ns < SLICE_TIME &&
s->common.iostatus == BLOCK_DEVICE_IO_STATUS_OK) { s->common.iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
if (s->in_flight > 0) { if (s->in_flight == MAX_IN_FLIGHT || s->buf_free_count == 0 ||
trace_mirror_yield(s, s->in_flight, cnt); (cnt == 0 && s->in_flight > 0)) {
trace_mirror_yield(s, s->in_flight, s->buf_free_count, cnt);
qemu_coroutine_yield(); qemu_coroutine_yield();
continue; continue;
} else if (cnt != 0) { } else if (cnt != 0) {
@ -354,6 +433,7 @@ immediate_exit:
assert(s->in_flight == 0); assert(s->in_flight == 0);
qemu_vfree(s->buf); qemu_vfree(s->buf);
g_free(s->cow_bitmap); g_free(s->cow_bitmap);
g_free(s->in_flight_bitmap);
bdrv_set_dirty_tracking(bs, 0); bdrv_set_dirty_tracking(bs, 0);
bdrv_iostatus_disable(s->target); bdrv_iostatus_disable(s->target);
if (s->should_complete && ret == 0) { if (s->should_complete && ret == 0) {

View File

@ -86,7 +86,9 @@ mirror_before_sleep(void *s, int64_t cnt, int synced) "s %p dirty count %"PRId64
mirror_one_iteration(void *s, int64_t sector_num, int nb_sectors) "s %p sector_num %"PRId64" nb_sectors %d" mirror_one_iteration(void *s, int64_t sector_num, int nb_sectors) "s %p sector_num %"PRId64" nb_sectors %d"
mirror_cow(void *s, int64_t sector_num) "s %p sector_num %"PRId64 mirror_cow(void *s, int64_t sector_num) "s %p sector_num %"PRId64
mirror_iteration_done(void *s, int64_t sector_num, int nb_sectors, int ret) "s %p sector_num %"PRId64" nb_sectors %d ret %d" mirror_iteration_done(void *s, int64_t sector_num, int nb_sectors, int ret) "s %p sector_num %"PRId64" nb_sectors %d ret %d"
mirror_yield(void *s, int64_t cnt, int in_flight) "s %p dirty count %"PRId64" in_flight %d" mirror_yield(void *s, int64_t cnt, int buf_free_count, int in_flight) "s %p dirty count %"PRId64" free buffers %d in_flight %d"
mirror_yield_in_flight(void *s, int64_t sector_num, int in_flight) "s %p sector_num %"PRId64" in_flight %d"
mirror_yield_buf_busy(void *s, int nb_chunks, int in_flight) "s %p requested chunks %d in_flight %d"
# blockdev.c # blockdev.c
qmp_block_job_cancel(void *job) "job %p" qmp_block_job_cancel(void *job) "job %p"