fpu/softfloat: Define floatN_silence_nan in terms of parts_silence_nan
Isolate the target-specific choice to 3 functions instead of 6. The code in floatx80_default_nan tried to be over-general. There are only two targets that support this format: x86 and m68k. Thus there is no point in inventing a mechanism for snan_bit_is_one. Move routines that no longer have ifdefs out of softfloat-specialize.h. Tested-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
parent
8fb3d90203
commit
377ed92679
@ -278,24 +278,6 @@ int float16_is_signaling_nan(float16 a_, float_status *status)
|
||||
#endif
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns a quiet NaN from a signalling NaN for the half-precision
|
||||
| floating point value `a'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float16 float16_silence_nan(float16 a, float_status *status)
|
||||
{
|
||||
#ifdef NO_SIGNALING_NANS
|
||||
g_assert_not_reached();
|
||||
#else
|
||||
if (snan_bit_is_one(status)) {
|
||||
return float16_default_nan(status);
|
||||
} else {
|
||||
return a | (1 << 9);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the single-precision floating-point value `a' is a quiet
|
||||
| NaN; otherwise returns 0.
|
||||
@ -334,30 +316,6 @@ int float32_is_signaling_nan(float32 a_, float_status *status)
|
||||
#endif
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns a quiet NaN from a signalling NaN for the single-precision
|
||||
| floating point value `a'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float32 float32_silence_nan(float32 a, float_status *status)
|
||||
{
|
||||
#ifdef NO_SIGNALING_NANS
|
||||
g_assert_not_reached();
|
||||
#else
|
||||
if (snan_bit_is_one(status)) {
|
||||
# ifdef TARGET_HPPA
|
||||
a &= ~0x00400000;
|
||||
a |= 0x00200000;
|
||||
return a;
|
||||
# else
|
||||
return float32_default_nan(status);
|
||||
# endif
|
||||
} else {
|
||||
return a | (1 << 22);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the single-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
@ -706,31 +664,6 @@ int float64_is_signaling_nan(float64 a_, float_status *status)
|
||||
#endif
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns a quiet NaN from a signalling NaN for the double-precision
|
||||
| floating point value `a'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float64 float64_silence_nan(float64 a, float_status *status)
|
||||
{
|
||||
#ifdef NO_SIGNALING_NANS
|
||||
g_assert_not_reached();
|
||||
#else
|
||||
if (snan_bit_is_one(status)) {
|
||||
# ifdef TARGET_HPPA
|
||||
a &= ~0x0008000000000000ULL;
|
||||
a |= 0x0004000000000000ULL;
|
||||
return a;
|
||||
# else
|
||||
return float64_default_nan(status);
|
||||
# endif
|
||||
} else {
|
||||
return a | LIT64(0x0008000000000000);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the double-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
@ -886,17 +819,11 @@ int floatx80_is_signaling_nan(floatx80 a, float_status *status)
|
||||
|
||||
floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
|
||||
{
|
||||
#ifdef NO_SIGNALING_NANS
|
||||
g_assert_not_reached();
|
||||
#else
|
||||
if (snan_bit_is_one(status)) {
|
||||
return floatx80_default_nan(status);
|
||||
} else {
|
||||
/* None of the targets that have snan_bit_is_one use floatx80. */
|
||||
assert(!snan_bit_is_one(status));
|
||||
a.low |= LIT64(0xC000000000000000);
|
||||
return a;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the extended double-precision floating-
|
||||
|
@ -2134,6 +2134,37 @@ float128 float128_default_nan(float_status *status)
|
||||
return r;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns a quiet NaN from a signalling NaN for the floating point value `a'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float16 float16_silence_nan(float16 a, float_status *status)
|
||||
{
|
||||
FloatParts p = float16_unpack_raw(a);
|
||||
p.frac <<= float16_params.frac_shift;
|
||||
p = parts_silence_nan(p, status);
|
||||
p.frac >>= float16_params.frac_shift;
|
||||
return float16_pack_raw(p);
|
||||
}
|
||||
|
||||
float32 float32_silence_nan(float32 a, float_status *status)
|
||||
{
|
||||
FloatParts p = float32_unpack_raw(a);
|
||||
p.frac <<= float32_params.frac_shift;
|
||||
p = parts_silence_nan(p, status);
|
||||
p.frac >>= float32_params.frac_shift;
|
||||
return float32_pack_raw(p);
|
||||
}
|
||||
|
||||
float64 float64_silence_nan(float64 a, float_status *status)
|
||||
{
|
||||
FloatParts p = float64_unpack_raw(a);
|
||||
p.frac <<= float64_params.frac_shift;
|
||||
p = parts_silence_nan(p, status);
|
||||
p.frac >>= float64_params.frac_shift;
|
||||
return float64_pack_raw(p);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
|
||||
| and 7, and returns the properly rounded 32-bit integer corresponding to the
|
||||
|
Loading…
Reference in New Issue
Block a user