ppc patch queue for 2016-02-18

Currently accumulated patches for target-ppc, pseries machine type and
 related devices.
   * Some cleanups to management of SDR1 and the hashed page table
   * Implementations of a number of simple PAPR hypercalls
   * Significant improvements to the Macintosh CUDA device
   * Several bugfixes
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJWxUWzAAoJEGw4ysog2bOSst8QAOBAPa2iaAT/dtBA/NxVACNt
 o344TLo1Hzk2OW28OLBTLT4q8UE0E8Qs84feSC7nN76syR6dyUkvMrCy7/1mlZyl
 5zClsH2RgckWY64GAtaX9RjzXwanr0JJXNEUbqc3SeKun9JDXb4evRGX2dbtxhRf
 1PR+TXlzDbAhSpIIeQoJjp3S4ur+gIuc522K/c6BJ4R48jKl6qVhOMe13sRXWyXR
 T7HED48f+E0ySzP87CdQLwEiJCTY2BMcM4VCjhysVUgHajshkLKu544+VFwHxkgV
 UhLEb+SFeBvL/QzAPZ67hqopUiex1fcMdjnkTBVj6sQmg9k8tRHyrDDw8cMyR2R/
 zWpr5TPiJdDNkaR8oQq1PAfFtDMYiPb4M0dU4WuXn9Jkrxe9NTtvapQXVdAOH4SI
 3lecr+jEGupGw/MCcWLdBZGmhSRPWupx97JuyYAL9BvsEFFCfXaf2RcgArJkspBv
 6iS2j6ge20fSA4NhqgJhsQgPMT3XqxJirUT7V7DQZMF6MGrOlMtmD3oHIEcpKJaZ
 8khJ4Lo4vlvGZcKWLSyGJhpvMECdPDfs/fqZo+dKwn4xL8gNvBsqr7TQnM6iEaja
 oh2XBMpsoiHWz/mrsjxgnrkQStbTNfTB0RWFmXR7LtFjrkLP4a7NH8EB2tEAJVpB
 LEbVMnuVJQxnRzmYroZn
 =YxlE
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-2.6-20160218' into staging

ppc patch queue for 2016-02-18

Currently accumulated patches for target-ppc, pseries machine type and
related devices.
  * Some cleanups to management of SDR1 and the hashed page table
  * Implementations of a number of simple PAPR hypercalls
  * Significant improvements to the Macintosh CUDA device
  * Several bugfixes

# gpg: Signature made Thu 18 Feb 2016 04:16:51 GMT using RSA key ID 20D9B392
# gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>"
# gpg:                 aka "David Gibson (Red Hat) <dgibson@redhat.com>"
# gpg:                 aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>"
# gpg: WARNING: This key is not certified with sufficiently trusted signatures!
# gpg:          It is not certain that the signature belongs to the owner.
# Primary key fingerprint: 75F4 6586 AE61 A66C C44E  87DC 6C38 CACA 20D9 B392

* remotes/dgibson/tags/ppc-for-2.6-20160218: (26 commits)
  hw/ppc/spapr: Halt CPU when powering off via RTAS call
  pseries: Include missing pseries-2.5 compat properties in pseries-2.4
  cuda: remove CUDA_GET_SET_IIC/CUDA_COMBINED_FORMAT_IIC commands
  cuda: remove GET_6805_ADDR command
  cuda: port SET_TIME command to new framework
  cuda: port GET_TIME command to new framework
  cuda: port SET_POWER_MESSAGES command to new framework
  cuda: port FILE_SERVER_FLAG command to new framework
  cuda: port RESET_SYSTEM command to new framework
  cuda: port POWERDOWN command to new framework
  cuda: port SET_DEVICE_LIST command to new framework
  cuda: port SET_AUTO_RATE command to new framework
  cuda: port AUTOPOLL command to new framework
  cuda: move unknown commands reject out of switch
  cuda: add a framework to handle commands
  hw/ppc/spapr: Implement the h_set_xdabr hypercall
  hw/ppc/spapr: Implement h_set_dabr
  hw/ppc/spapr: Add h_set_sprg0 hypercall
  migration: ensure htab_save_first completes after timeout
  target-ppc: Remove hack for ppc_hash64_load_hpte*() with HV KVM
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2016-02-18 10:29:47 +00:00
commit 339b665c88
13 changed files with 395 additions and 234 deletions

View File

@ -89,7 +89,7 @@ int adb_request(ADBBusState *s, uint8_t *obuf, const uint8_t *buf, int len)
} }
/* XXX: move that to cuda ? */ /* XXX: move that to cuda ? */
int adb_poll(ADBBusState *s, uint8_t *obuf) int adb_poll(ADBBusState *s, uint8_t *obuf, uint16_t poll_mask)
{ {
ADBDevice *d; ADBDevice *d;
int olen, i; int olen, i;
@ -100,13 +100,15 @@ int adb_poll(ADBBusState *s, uint8_t *obuf)
if (s->poll_index >= s->nb_devices) if (s->poll_index >= s->nb_devices)
s->poll_index = 0; s->poll_index = 0;
d = s->devices[s->poll_index]; d = s->devices[s->poll_index];
buf[0] = ADB_READREG | (d->devaddr << 4); if ((1 << d->devaddr) & poll_mask) {
olen = adb_request(s, obuf + 1, buf, 1); buf[0] = ADB_READREG | (d->devaddr << 4);
/* if there is data, we poll again the same device */ olen = adb_request(s, obuf + 1, buf, 1);
if (olen > 0) { /* if there is data, we poll again the same device */
obuf[0] = buf[0]; if (olen > 0) {
olen++; obuf[0] = buf[0];
break; olen++;
break;
}
} }
s->poll_index++; s->poll_index++;
} }

View File

@ -106,7 +106,6 @@
#define CUDA_COMBINED_FORMAT_IIC 0x25 #define CUDA_COMBINED_FORMAT_IIC 0x25
#define CUDA_TIMER_FREQ (4700000 / 6) #define CUDA_TIMER_FREQ (4700000 / 6)
#define CUDA_ADB_POLL_FREQ 50
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */ /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
#define RTC_OFFSET 2082844800 #define RTC_OFFSET 2082844800
@ -524,7 +523,7 @@ static void cuda_adb_poll(void *opaque)
uint8_t obuf[ADB_MAX_OUT_LEN + 2]; uint8_t obuf[ADB_MAX_OUT_LEN + 2];
int olen; int olen;
olen = adb_poll(&s->adb_bus, obuf + 2); olen = adb_poll(&s->adb_bus, obuf + 2, s->adb_poll_mask);
if (olen > 0) { if (olen > 0) {
obuf[0] = ADB_PACKET; obuf[0] = ADB_PACKET;
obuf[1] = 0x40; /* polled data */ obuf[1] = 0x40; /* polled data */
@ -532,87 +531,213 @@ static void cuda_adb_poll(void *opaque)
} }
timer_mod(s->adb_poll_timer, timer_mod(s->adb_poll_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(get_ticks_per_sec() / CUDA_ADB_POLL_FREQ)); (get_ticks_per_sec() / (1000 / s->autopoll_rate_ms)));
} }
/* description of commands */
typedef struct CudaCommand {
uint8_t command;
const char *name;
bool (*handler)(CUDAState *s,
const uint8_t *in_args, int in_len,
uint8_t *out_args, int *out_len);
} CudaCommand;
static bool cuda_cmd_autopoll(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
int autopoll;
if (in_len != 1) {
return false;
}
autopoll = (in_data[0] != 0);
if (autopoll != s->autopoll) {
s->autopoll = autopoll;
if (autopoll) {
timer_mod(s->adb_poll_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(get_ticks_per_sec() / (1000 / s->autopoll_rate_ms)));
} else {
timer_del(s->adb_poll_timer);
}
}
return true;
}
static bool cuda_cmd_set_autorate(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 1) {
return false;
}
/* we don't want a period of 0 ms */
/* FIXME: check what real hardware does */
if (in_data[0] == 0) {
return false;
}
s->autopoll_rate_ms = in_data[0];
if (s->autopoll) {
timer_mod(s->adb_poll_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(get_ticks_per_sec() / (1000 / s->autopoll_rate_ms)));
}
return true;
}
static bool cuda_cmd_set_device_list(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 2) {
return false;
}
s->adb_poll_mask = (((uint16_t)in_data[0]) << 8) | in_data[1];
return true;
}
static bool cuda_cmd_powerdown(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 0) {
return false;
}
qemu_system_shutdown_request();
return true;
}
static bool cuda_cmd_reset_system(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 0) {
return false;
}
qemu_system_reset_request();
return true;
}
static bool cuda_cmd_set_file_server_flag(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 1) {
return false;
}
qemu_log_mask(LOG_UNIMP,
"CUDA: unimplemented command FILE_SERVER_FLAG %d\n",
in_data[0]);
return true;
}
static bool cuda_cmd_set_power_message(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 1) {
return false;
}
qemu_log_mask(LOG_UNIMP,
"CUDA: unimplemented command SET_POWER_MESSAGE %d\n",
in_data[0]);
return true;
}
static bool cuda_cmd_get_time(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
uint32_t ti;
if (in_len != 0) {
return false;
}
ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
/ get_ticks_per_sec());
out_data[0] = ti >> 24;
out_data[1] = ti >> 16;
out_data[2] = ti >> 8;
out_data[3] = ti;
*out_len = 4;
return true;
}
static bool cuda_cmd_set_time(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
uint32_t ti;
if (in_len != 4) {
return false;
}
ti = (((uint32_t)in_data[1]) << 24) + (((uint32_t)in_data[2]) << 16)
+ (((uint32_t)in_data[3]) << 8) + in_data[4];
s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
/ get_ticks_per_sec());
return true;
}
static const CudaCommand handlers[] = {
{ CUDA_AUTOPOLL, "AUTOPOLL", cuda_cmd_autopoll },
{ CUDA_SET_AUTO_RATE, "SET_AUTO_RATE", cuda_cmd_set_autorate },
{ CUDA_SET_DEVICE_LIST, "SET_DEVICE_LIST", cuda_cmd_set_device_list },
{ CUDA_POWERDOWN, "POWERDOWN", cuda_cmd_powerdown },
{ CUDA_RESET_SYSTEM, "RESET_SYSTEM", cuda_cmd_reset_system },
{ CUDA_FILE_SERVER_FLAG, "FILE_SERVER_FLAG",
cuda_cmd_set_file_server_flag },
{ CUDA_SET_POWER_MESSAGES, "SET_POWER_MESSAGES",
cuda_cmd_set_power_message },
{ CUDA_GET_TIME, "GET_TIME", cuda_cmd_get_time },
{ CUDA_SET_TIME, "SET_TIME", cuda_cmd_set_time },
};
static void cuda_receive_packet(CUDAState *s, static void cuda_receive_packet(CUDAState *s,
const uint8_t *data, int len) const uint8_t *data, int len)
{ {
uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] }; uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] };
int autopoll; int i, out_len = 0;
uint32_t ti;
switch(data[0]) { for (i = 0; i < ARRAY_SIZE(handlers); i++) {
case CUDA_AUTOPOLL: const CudaCommand *desc = &handlers[i];
autopoll = (data[1] != 0); if (desc->command == data[0]) {
if (autopoll != s->autopoll) { CUDA_DPRINTF("handling command %s\n", desc->name);
s->autopoll = autopoll; out_len = 0;
if (autopoll) { if (desc->handler(s, data + 1, len - 1, obuf + 3, &out_len)) {
timer_mod(s->adb_poll_timer, cuda_send_packet_to_host(s, obuf, 3 + out_len);
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
} else { } else {
timer_del(s->adb_poll_timer); qemu_log_mask(LOG_GUEST_ERROR,
"CUDA: %s: wrong parameters %d\n",
desc->name, len);
obuf[0] = ERROR_PACKET;
obuf[1] = 0x5; /* bad parameters */
obuf[2] = CUDA_PACKET;
obuf[3] = data[0];
cuda_send_packet_to_host(s, obuf, 4);
} }
return;
} }
cuda_send_packet_to_host(s, obuf, 3);
break;
case CUDA_GET_6805_ADDR:
cuda_send_packet_to_host(s, obuf, 3);
break;
case CUDA_SET_TIME:
ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4];
s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
cuda_send_packet_to_host(s, obuf, 3);
break;
case CUDA_GET_TIME:
ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
obuf[3] = ti >> 24;
obuf[4] = ti >> 16;
obuf[5] = ti >> 8;
obuf[6] = ti;
cuda_send_packet_to_host(s, obuf, 7);
break;
case CUDA_FILE_SERVER_FLAG:
case CUDA_SET_DEVICE_LIST:
case CUDA_SET_AUTO_RATE:
case CUDA_SET_POWER_MESSAGES:
cuda_send_packet_to_host(s, obuf, 3);
break;
case CUDA_POWERDOWN:
cuda_send_packet_to_host(s, obuf, 3);
qemu_system_shutdown_request();
break;
case CUDA_RESET_SYSTEM:
cuda_send_packet_to_host(s, obuf, 3);
qemu_system_reset_request();
break;
case CUDA_COMBINED_FORMAT_IIC:
obuf[0] = ERROR_PACKET;
obuf[1] = 0x5;
obuf[2] = CUDA_PACKET;
obuf[3] = data[0];
cuda_send_packet_to_host(s, obuf, 4);
break;
case CUDA_GET_SET_IIC:
if (len == 4) {
cuda_send_packet_to_host(s, obuf, 3);
} else {
obuf[0] = ERROR_PACKET;
obuf[1] = 0x2;
obuf[2] = CUDA_PACKET;
obuf[3] = data[0];
cuda_send_packet_to_host(s, obuf, 4);
}
break;
default:
obuf[0] = ERROR_PACKET;
obuf[1] = 0x2;
obuf[2] = CUDA_PACKET;
obuf[3] = data[0];
cuda_send_packet_to_host(s, obuf, 4);
break;
} }
qemu_log_mask(LOG_GUEST_ERROR, "CUDA: unknown command 0x%02x\n", data[0]);
obuf[0] = ERROR_PACKET;
obuf[1] = 0x2; /* unknown command */
obuf[2] = CUDA_PACKET;
obuf[3] = data[0];
cuda_send_packet_to_host(s, obuf, 4);
} }
static void cuda_receive_packet_from_host(CUDAState *s, static void cuda_receive_packet_from_host(CUDAState *s,
@ -710,8 +835,8 @@ static const VMStateDescription vmstate_cuda_timer = {
static const VMStateDescription vmstate_cuda = { static const VMStateDescription vmstate_cuda = {
.name = "cuda", .name = "cuda",
.version_id = 3, .version_id = 4,
.minimum_version_id = 3, .minimum_version_id = 4,
.fields = (VMStateField[]) { .fields = (VMStateField[]) {
VMSTATE_UINT8(a, CUDAState), VMSTATE_UINT8(a, CUDAState),
VMSTATE_UINT8(b, CUDAState), VMSTATE_UINT8(b, CUDAState),
@ -729,6 +854,8 @@ static const VMStateDescription vmstate_cuda = {
VMSTATE_INT32(data_in_index, CUDAState), VMSTATE_INT32(data_in_index, CUDAState),
VMSTATE_INT32(data_out_index, CUDAState), VMSTATE_INT32(data_out_index, CUDAState),
VMSTATE_UINT8(autopoll, CUDAState), VMSTATE_UINT8(autopoll, CUDAState),
VMSTATE_UINT8(autopoll_rate_ms, CUDAState),
VMSTATE_UINT16(adb_poll_mask, CUDAState),
VMSTATE_BUFFER(data_in, CUDAState), VMSTATE_BUFFER(data_in, CUDAState),
VMSTATE_BUFFER(data_out, CUDAState), VMSTATE_BUFFER(data_out, CUDAState),
VMSTATE_UINT32(tick_offset, CUDAState), VMSTATE_UINT32(tick_offset, CUDAState),
@ -782,6 +909,8 @@ static void cuda_realizefn(DeviceState *dev, Error **errp)
s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET; s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s); s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
s->autopoll_rate_ms = 20;
s->adb_poll_mask = 0xffff;
} }
static void cuda_initfn(Object *obj) static void cuda_initfn(Object *obj)

View File

@ -49,7 +49,8 @@ static void macio_nvram_writeb(void *opaque, hwaddr addr,
addr = (addr >> s->it_shift) & (s->size - 1); addr = (addr >> s->it_shift) & (s->size - 1);
s->data[addr] = value; s->data[addr] = value;
NVR_DPRINTF("writeb addr %04" PHYS_PRIx " val %" PRIx64 "\n", addr, value); NVR_DPRINTF("writeb addr %04" HWADDR_PRIx " val %" PRIx64 "\n",
addr, value);
} }
static uint64_t macio_nvram_readb(void *opaque, hwaddr addr, static uint64_t macio_nvram_readb(void *opaque, hwaddr addr,
@ -60,7 +61,8 @@ static uint64_t macio_nvram_readb(void *opaque, hwaddr addr,
addr = (addr >> s->it_shift) & (s->size - 1); addr = (addr >> s->it_shift) & (s->size - 1);
value = s->data[addr]; value = s->data[addr];
NVR_DPRINTF("readb addr %04x val %x\n", (int)addr, value); NVR_DPRINTF("readb addr %04" HWADDR_PRIx " val %" PRIx32 "\n",
addr, value);
return value; return value;
} }

View File

@ -120,7 +120,7 @@ static void unin_data_write(void *opaque, hwaddr addr,
{ {
UNINState *s = opaque; UNINState *s = opaque;
PCIHostState *phb = PCI_HOST_BRIDGE(s); PCIHostState *phb = PCI_HOST_BRIDGE(s);
UNIN_DPRINTF("write addr %" TARGET_FMT_plx " len %d val %"PRIx64"\n", UNIN_DPRINTF("write addr " TARGET_FMT_plx " len %d val %"PRIx64"\n",
addr, len, val); addr, len, val);
pci_data_write(phb->bus, pci_data_write(phb->bus,
unin_get_config_reg(phb->config_reg, addr), unin_get_config_reg(phb->config_reg, addr),
@ -137,7 +137,7 @@ static uint64_t unin_data_read(void *opaque, hwaddr addr,
val = pci_data_read(phb->bus, val = pci_data_read(phb->bus,
unin_get_config_reg(phb->config_reg, addr), unin_get_config_reg(phb->config_reg, addr),
len); len);
UNIN_DPRINTF("read addr %" TARGET_FMT_plx " len %d val %x\n", UNIN_DPRINTF("read addr " TARGET_FMT_plx " len %d val %x\n",
addr, len, val); addr, len, val);
return val; return val;
} }

View File

@ -111,6 +111,8 @@ typedef struct CUDAState {
int data_out_index; int data_out_index;
qemu_irq irq; qemu_irq irq;
uint16_t adb_poll_mask;
uint8_t autopoll_rate_ms;
uint8_t autopoll; uint8_t autopoll;
uint8_t data_in[128]; uint8_t data_in[128];
uint8_t data_out[16]; uint8_t data_out[16];

View File

@ -1024,84 +1024,94 @@ static void emulate_spapr_hypercall(PowerPCCPU *cpu)
#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
static void spapr_alloc_htab(sPAPRMachineState *spapr) /*
* Get the fd to access the kernel htab, re-opening it if necessary
*/
static int get_htab_fd(sPAPRMachineState *spapr)
{ {
long shift; if (spapr->htab_fd >= 0) {
int index; return spapr->htab_fd;
}
/* allocate hash page table. For now we always make this 16mb, spapr->htab_fd = kvmppc_get_htab_fd(false);
* later we should probably make it scale to the size of guest if (spapr->htab_fd < 0) {
* RAM */ error_report("Unable to open fd for reading hash table from KVM: %s",
strerror(errno));
}
shift = kvmppc_reset_htab(spapr->htab_shift); return spapr->htab_fd;
if (shift < 0) { }
/*
* For HV KVM, host kernel will return -ENOMEM when requested static void close_htab_fd(sPAPRMachineState *spapr)
* HTAB size can't be allocated. {
*/ if (spapr->htab_fd >= 0) {
error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem"); close(spapr->htab_fd);
} else if (shift > 0) { }
/* spapr->htab_fd = -1;
* Kernel handles htab, we don't need to allocate one }
*
* Older kernels can fall back to lower HTAB shift values, static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
* but we don't allow booting of such guests. {
*/ int shift;
if (shift != spapr->htab_shift) {
error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem"); /* We aim for a hash table of size 1/128 the size of RAM (rounded
* up). The PAPR recommendation is actually 1/64 of RAM size, but
* that's much more than is needed for Linux guests */
shift = ctz64(pow2ceil(ramsize)) - 7;
shift = MAX(shift, 18); /* Minimum architected size */
shift = MIN(shift, 46); /* Maximum architected size */
return shift;
}
static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
Error **errp)
{
long rc;
/* Clean up any HPT info from a previous boot */
g_free(spapr->htab);
spapr->htab = NULL;
spapr->htab_shift = 0;
close_htab_fd(spapr);
rc = kvmppc_reset_htab(shift);
if (rc < 0) {
/* kernel-side HPT needed, but couldn't allocate one */
error_setg_errno(errp, errno,
"Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
shift);
/* This is almost certainly fatal, but if the caller really
* wants to carry on with shift == 0, it's welcome to try */
} else if (rc > 0) {
/* kernel-side HPT allocated */
if (rc != shift) {
error_setg(errp,
"Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
shift, rc);
} }
spapr->htab_shift = shift; spapr->htab_shift = shift;
kvmppc_kern_htab = true; kvmppc_kern_htab = true;
} else { } else {
/* Allocate htab */ /* kernel-side HPT not needed, allocate in userspace instead */
spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr)); size_t size = 1ULL << shift;
int i;
/* And clear it */ spapr->htab = qemu_memalign(size, size);
memset(spapr->htab, 0, HTAB_SIZE(spapr)); if (!spapr->htab) {
error_setg_errno(errp, errno,
for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) { "Could not allocate HPT of order %d", shift);
DIRTY_HPTE(HPTE(spapr->htab, index)); return;
}
}
}
/*
* Clear HTAB entries during reset.
*
* If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is
* used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually.
*/
static void spapr_reset_htab(sPAPRMachineState *spapr)
{
long shift;
int index;
shift = kvmppc_reset_htab(spapr->htab_shift);
if (shift < 0) {
error_setg(&error_abort, "Failed to reset HTAB");
} else if (shift > 0) {
if (shift != spapr->htab_shift) {
error_setg(&error_abort, "Requested HTAB allocation failed during reset");
} }
/* Tell readers to update their file descriptor */ memset(spapr->htab, 0, size);
if (spapr->htab_fd >= 0) { spapr->htab_shift = shift;
spapr->htab_fd_stale = true; kvmppc_kern_htab = false;
}
} else {
memset(spapr->htab, 0, HTAB_SIZE(spapr));
for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) { for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
DIRTY_HPTE(HPTE(spapr->htab, index)); DIRTY_HPTE(HPTE(spapr->htab, i));
} }
} }
/* Update the RMA size if necessary */
if (spapr->vrma_adjust) {
spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
spapr->htab_shift);
}
} }
static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
@ -1121,39 +1131,26 @@ static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
return 0; return 0;
} }
/*
* A guest reset will cause spapr->htab_fd to become stale if being used.
* Reopen the file descriptor to make sure the whole HTAB is properly read.
*/
static int spapr_check_htab_fd(sPAPRMachineState *spapr)
{
int rc = 0;
if (spapr->htab_fd_stale) {
close(spapr->htab_fd);
spapr->htab_fd = kvmppc_get_htab_fd(false);
if (spapr->htab_fd < 0) {
error_report("Unable to open fd for reading hash table from KVM: "
"%s", strerror(errno));
rc = -1;
}
spapr->htab_fd_stale = false;
}
return rc;
}
static void ppc_spapr_reset(void) static void ppc_spapr_reset(void)
{ {
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); MachineState *machine = MACHINE(qdev_get_machine());
sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
PowerPCCPU *first_ppc_cpu; PowerPCCPU *first_ppc_cpu;
uint32_t rtas_limit; uint32_t rtas_limit;
/* Check for unknown sysbus devices */ /* Check for unknown sysbus devices */
foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
/* Reset the hash table & recalc the RMA */ /* Allocate and/or reset the hash page table */
spapr_reset_htab(spapr); spapr_reallocate_hpt(spapr,
spapr_hpt_shift_for_ramsize(machine->maxram_size),
&error_fatal);
/* Update the RMA size if necessary */
if (spapr->vrma_adjust) {
spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
spapr->htab_shift);
}
qemu_devices_reset(); qemu_devices_reset();
@ -1200,13 +1197,6 @@ static void spapr_cpu_reset(void *opaque)
env->spr[SPR_HIOR] = 0; env->spr[SPR_HIOR] = 0;
env->external_htab = (uint8_t *)spapr->htab; env->external_htab = (uint8_t *)spapr->htab;
if (kvm_enabled() && !env->external_htab) {
/*
* HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
* functions do the right thing.
*/
env->external_htab = (void *)1;
}
env->htab_base = -1; env->htab_base = -1;
/* /*
* htab_mask is the mask used to normalize hash value to PTEG index. * htab_mask is the mask used to normalize hash value to PTEG index.
@ -1313,14 +1303,6 @@ static int htab_save_setup(QEMUFile *f, void *opaque)
spapr->htab_first_pass = true; spapr->htab_first_pass = true;
} else { } else {
assert(kvm_enabled()); assert(kvm_enabled());
spapr->htab_fd = kvmppc_get_htab_fd(false);
spapr->htab_fd_stale = false;
if (spapr->htab_fd < 0) {
fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
strerror(errno));
return -1;
}
} }
@ -1330,6 +1312,7 @@ static int htab_save_setup(QEMUFile *f, void *opaque)
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
int64_t max_ns) int64_t max_ns)
{ {
bool has_timeout = max_ns != -1;
int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
int index = spapr->htab_save_index; int index = spapr->htab_save_index;
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
@ -1363,7 +1346,8 @@ static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
HASH_PTE_SIZE_64 * n_valid); HASH_PTE_SIZE_64 * n_valid);
if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { if (has_timeout &&
(qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
break; break;
} }
} }
@ -1460,6 +1444,7 @@ static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
static int htab_save_iterate(QEMUFile *f, void *opaque) static int htab_save_iterate(QEMUFile *f, void *opaque)
{ {
sPAPRMachineState *spapr = opaque; sPAPRMachineState *spapr = opaque;
int fd;
int rc = 0; int rc = 0;
/* Iteration header */ /* Iteration header */
@ -1468,13 +1453,12 @@ static int htab_save_iterate(QEMUFile *f, void *opaque)
if (!spapr->htab) { if (!spapr->htab) {
assert(kvm_enabled()); assert(kvm_enabled());
rc = spapr_check_htab_fd(spapr); fd = get_htab_fd(spapr);
if (rc < 0) { if (fd < 0) {
return rc; return fd;
} }
rc = kvmppc_save_htab(f, spapr->htab_fd, rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
if (rc < 0) { if (rc < 0) {
return rc; return rc;
} }
@ -1495,6 +1479,7 @@ static int htab_save_iterate(QEMUFile *f, void *opaque)
static int htab_save_complete(QEMUFile *f, void *opaque) static int htab_save_complete(QEMUFile *f, void *opaque)
{ {
sPAPRMachineState *spapr = opaque; sPAPRMachineState *spapr = opaque;
int fd;
/* Iteration header */ /* Iteration header */
qemu_put_be32(f, 0); qemu_put_be32(f, 0);
@ -1504,18 +1489,20 @@ static int htab_save_complete(QEMUFile *f, void *opaque)
assert(kvm_enabled()); assert(kvm_enabled());
rc = spapr_check_htab_fd(spapr); fd = get_htab_fd(spapr);
if (rc < 0) { if (fd < 0) {
return rc; return fd;
} }
rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1); rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
if (rc < 0) { if (rc < 0) {
return rc; return rc;
} }
close(spapr->htab_fd); close_htab_fd(spapr);
spapr->htab_fd = -1;
} else { } else {
if (spapr->htab_first_pass) {
htab_save_first_pass(f, spapr, -1);
}
htab_save_later_pass(f, spapr, -1); htab_save_later_pass(f, spapr, -1);
} }
@ -1541,10 +1528,12 @@ static int htab_load(QEMUFile *f, void *opaque, int version_id)
section_hdr = qemu_get_be32(f); section_hdr = qemu_get_be32(f);
if (section_hdr) { if (section_hdr) {
/* First section, just the hash shift */ Error *local_err;
if (spapr->htab_shift != section_hdr) {
error_report("htab_shift mismatch: source %d target %d", /* First section gives the htab size */
section_hdr, spapr->htab_shift); spapr_reallocate_hpt(spapr, section_hdr, &local_err);
if (local_err) {
error_report_err(local_err);
return -EINVAL; return -EINVAL;
} }
return 0; return 0;
@ -1797,18 +1786,6 @@ static void ppc_spapr_init(MachineState *machine)
/* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
/* We aim for a hash table of size 1/128 the size of RAM. The
* normal rule of thumb is 1/64 the size of RAM, but that's much
* more than needed for the Linux guests we support. */
spapr->htab_shift = 18; /* Minimum architected size */
while (spapr->htab_shift <= 46) {
if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
break;
}
spapr->htab_shift++;
}
spapr_alloc_htab(spapr);
/* Set up Interrupt Controller before we create the VCPUs */ /* Set up Interrupt Controller before we create the VCPUs */
spapr->icp = xics_system_init(machine, spapr->icp = xics_system_init(machine,
DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
@ -2125,6 +2102,9 @@ static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
static void spapr_machine_initfn(Object *obj) static void spapr_machine_initfn(Object *obj)
{ {
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
spapr->htab_fd = -1;
object_property_add_str(obj, "kvm-type", object_property_add_str(obj, "kvm-type",
spapr_get_kvm_type, spapr_set_kvm_type, NULL); spapr_get_kvm_type, spapr_set_kvm_type, NULL);
object_property_set_description(obj, "kvm-type", object_property_set_description(obj, "kvm-type",
@ -2411,6 +2391,7 @@ DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
* pseries-2.4 * pseries-2.4
*/ */
#define SPAPR_COMPAT_2_4 \ #define SPAPR_COMPAT_2_4 \
SPAPR_COMPAT_2_5 \
HW_COMPAT_2_4 HW_COMPAT_2_4
static void spapr_machine_2_4_instance_options(MachineState *machine) static void spapr_machine_2_4_instance_options(MachineState *machine)

View File

@ -38,6 +38,12 @@ static void set_spr(CPUState *cs, int spr, target_ulong value,
run_on_cpu(cs, do_spr_sync, &s); run_on_cpu(cs, do_spr_sync, &s);
} }
static bool has_spr(PowerPCCPU *cpu, int spr)
{
/* We can test whether the SPR is defined by checking for a valid name */
return cpu->env.spr_cb[spr].name != NULL;
}
static inline bool valid_pte_index(CPUPPCState *env, target_ulong pte_index) static inline bool valid_pte_index(CPUPPCState *env, target_ulong pte_index)
{ {
/* /*
@ -332,11 +338,52 @@ static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
return H_SUCCESS; return H_SUCCESS;
} }
static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
cpu_synchronize_state(CPU(cpu));
cpu->env.spr[SPR_SPRG0] = args[0];
return H_SUCCESS;
}
static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr, static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args) target_ulong opcode, target_ulong *args)
{ {
/* FIXME: actually implement this */ if (!has_spr(cpu, SPR_DABR)) {
return H_HARDWARE; return H_HARDWARE; /* DABR register not available */
}
cpu_synchronize_state(CPU(cpu));
if (has_spr(cpu, SPR_DABRX)) {
cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
} else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
return H_RESERVED_DABR;
}
cpu->env.spr[SPR_DABR] = args[0];
return H_SUCCESS;
}
static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong dabrx = args[1];
if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
return H_HARDWARE;
}
if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
|| (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
return H_PARAMETER;
}
cpu_synchronize_state(CPU(cpu));
cpu->env.spr[SPR_DABRX] = dabrx;
cpu->env.spr[SPR_DABR] = args[0];
return H_SUCCESS;
} }
#define FLAGS_REGISTER_VPA 0x0000200000000000ULL #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
@ -990,13 +1037,16 @@ static void hypercall_register_types(void)
/* hcall-bulk */ /* hcall-bulk */
spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove); spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
/* hcall-dabr */
spapr_register_hypercall(H_SET_DABR, h_set_dabr);
/* hcall-splpar */ /* hcall-splpar */
spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
spapr_register_hypercall(H_CEDE, h_cede); spapr_register_hypercall(H_CEDE, h_cede);
/* processor register resource access h-calls */
spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
spapr_register_hypercall(H_SET_DABR, h_set_dabr);
spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
spapr_register_hypercall(H_SET_MODE, h_set_mode);
/* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
* here between the "CI" and the "CACHE" variants, they will use whatever * here between the "CI" and the "CACHE" variants, they will use whatever
* mapping attributes qemu is using. When using KVM, the kernel will * mapping attributes qemu is using. When using KVM, the kernel will
@ -1013,8 +1063,6 @@ static void hypercall_register_types(void)
/* qemu/KVM-PPC specific hcalls */ /* qemu/KVM-PPC specific hcalls */
spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
spapr_register_hypercall(H_SET_MODE, h_set_mode);
/* ibm,client-architecture-support support */ /* ibm,client-architecture-support support */
spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
} }

View File

@ -113,6 +113,7 @@ static void rtas_power_off(PowerPCCPU *cpu, sPAPRMachineState *spapr,
return; return;
} }
qemu_system_shutdown_request(); qemu_system_shutdown_request();
cpu_stop_current();
rtas_st(rets, 0, RTAS_OUT_SUCCESS); rtas_st(rets, 0, RTAS_OUT_SUCCESS);
} }

View File

@ -79,7 +79,7 @@ struct ADBBusState {
int adb_request(ADBBusState *s, uint8_t *buf_out, int adb_request(ADBBusState *s, uint8_t *buf_out,
const uint8_t *buf, int len); const uint8_t *buf, int len);
int adb_poll(ADBBusState *s, uint8_t *buf_out); int adb_poll(ADBBusState *s, uint8_t *buf_out, uint16_t poll_mask);
#define TYPE_ADB_KEYBOARD "adb-keyboard" #define TYPE_ADB_KEYBOARD "adb-keyboard"
#define TYPE_ADB_MOUSE "adb-mouse" #define TYPE_ADB_MOUSE "adb-mouse"

View File

@ -72,7 +72,6 @@ struct sPAPRMachineState {
int htab_save_index; int htab_save_index;
bool htab_first_pass; bool htab_first_pass;
int htab_fd; int htab_fd;
bool htab_fd_stale;
/* RTAS state */ /* RTAS state */
QTAILQ_HEAD(, sPAPRConfigureConnectorState) ccs_list; QTAILQ_HEAD(, sPAPRConfigureConnectorState) ccs_list;

View File

@ -184,11 +184,6 @@ static inline uint64_t kvmppc_rma_size(uint64_t current_size,
return ram_size; return ram_size;
} }
static inline int kvmppc_update_sdr1(CPUPPCState *env)
{
return 0;
}
#endif /* !CONFIG_USER_ONLY */ #endif /* !CONFIG_USER_ONLY */
static inline bool kvmppc_has_cap_epr(void) static inline bool kvmppc_has_cap_epr(void)

View File

@ -102,7 +102,7 @@ static inline target_ulong ppc_hash64_load_hpte0(PowerPCCPU *cpu,
uint64_t addr; uint64_t addr;
addr = token + (index * HASH_PTE_SIZE_64); addr = token + (index * HASH_PTE_SIZE_64);
if (env->external_htab) { if (kvmppc_kern_htab || env->external_htab) {
return ldq_p((const void *)(uintptr_t)addr); return ldq_p((const void *)(uintptr_t)addr);
} else { } else {
return ldq_phys(CPU(cpu)->as, addr); return ldq_phys(CPU(cpu)->as, addr);
@ -116,7 +116,7 @@ static inline target_ulong ppc_hash64_load_hpte1(PowerPCCPU *cpu,
uint64_t addr; uint64_t addr;
addr = token + (index * HASH_PTE_SIZE_64) + HASH_PTE_SIZE_64/2; addr = token + (index * HASH_PTE_SIZE_64) + HASH_PTE_SIZE_64/2;
if (env->external_htab) { if (kvmppc_kern_htab || env->external_htab) {
return ldq_p((const void *)(uintptr_t)addr); return ldq_p((const void *)(uintptr_t)addr);
} else { } else {
return ldq_phys(CPU(cpu)->as, addr); return ldq_phys(CPU(cpu)->as, addr);

View File

@ -11352,7 +11352,9 @@ void ppc_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
case POWERPC_MMU_64B: case POWERPC_MMU_64B:
case POWERPC_MMU_2_03: case POWERPC_MMU_2_03:
case POWERPC_MMU_2_06: case POWERPC_MMU_2_06:
case POWERPC_MMU_2_06a:
case POWERPC_MMU_2_07: case POWERPC_MMU_2_07:
case POWERPC_MMU_2_07a:
#endif #endif
cpu_fprintf(f, " SDR1 " TARGET_FMT_lx " DAR " TARGET_FMT_lx cpu_fprintf(f, " SDR1 " TARGET_FMT_lx " DAR " TARGET_FMT_lx
" DSISR " TARGET_FMT_lx "\n", env->spr[SPR_SDR1], " DSISR " TARGET_FMT_lx "\n", env->spr[SPR_SDR1],