SCSI support (Blue Swirl)

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1344 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
bellard 2005-04-06 20:31:50 +00:00
parent c3278b7bf0
commit 2f275b8f9f

240
hw/esp.c
View File

@ -24,7 +24,7 @@
#include "vl.h" #include "vl.h"
/* debug ESP card */ /* debug ESP card */
#define DEBUG_ESP //#define DEBUG_ESP
#ifdef DEBUG_ESP #ifdef DEBUG_ESP
#define DPRINTF(fmt, args...) \ #define DPRINTF(fmt, args...) \
@ -39,16 +39,178 @@ do { printf("ESP: " fmt , ##args); } while (0)
typedef struct ESPState { typedef struct ESPState {
BlockDriverState **bd; BlockDriverState **bd;
uint8_t regs[ESP_MAXREG]; uint8_t rregs[ESP_MAXREG];
uint8_t wregs[ESP_MAXREG];
int irq; int irq;
uint32_t espdmaregs[ESPDMA_REGS]; uint32_t espdmaregs[ESPDMA_REGS];
uint32_t ti_size;
int ti_dir;
uint8_t ti_buf[65536];
} ESPState; } ESPState;
#define STAT_DO 0x00
#define STAT_DI 0x01
#define STAT_CD 0x02
#define STAT_ST 0x03
#define STAT_MI 0x06
#define STAT_MO 0x07
#define STAT_TC 0x10
#define STAT_IN 0x80
#define INTR_FC 0x08
#define INTR_BS 0x10
#define INTR_DC 0x20
#define SEQ_0 0x0
#define SEQ_CD 0x4
static void handle_satn(ESPState *s)
{
uint8_t buf[32];
uint32_t dmaptr, dmalen;
unsigned int i;
int64_t nb_sectors;
int target;
dmaptr = iommu_translate(s->espdmaregs[1]);
dmalen = s->wregs[0] | (s->wregs[1] << 8);
DPRINTF("Select with ATN at %8.8x len %d\n", dmaptr, dmalen);
DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & 0x100? 'w': 'r');
cpu_physical_memory_read(dmaptr, buf, dmalen);
for (i = 0; i < dmalen; i++) {
DPRINTF("Command %2.2x\n", buf[i]);
}
s->ti_dir = 0;
s->ti_size = 0;
target = s->wregs[4] & 7;
if (target > 4 || !s->bd[target]) { // No such drive
s->rregs[4] = STAT_IN;
s->rregs[5] = INTR_DC;
s->rregs[6] = SEQ_0;
s->espdmaregs[0] |= 1;
pic_set_irq(s->irq, 1);
return;
}
switch (buf[1]) {
case 0x0:
DPRINTF("Test Unit Ready (len %d)\n", buf[5]);
break;
case 0x12:
DPRINTF("Inquiry (len %d)\n", buf[5]);
memset(s->ti_buf, 0, 36);
if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) {
s->ti_buf[0] = 5;
memcpy(&s->ti_buf[16], "QEMU CDROM ", 16);
} else {
s->ti_buf[0] = 0;
memcpy(&s->ti_buf[16], "QEMU HARDDISK ", 16);
}
memcpy(&s->ti_buf[8], "QEMU ", 8);
s->ti_buf[2] = 1;
s->ti_buf[3] = 2;
s->ti_dir = 1;
s->ti_size = 36;
break;
case 0x1a:
DPRINTF("Mode Sense(6) (page %d, len %d)\n", buf[3], buf[5]);
break;
case 0x25:
DPRINTF("Read Capacity (len %d)\n", buf[5]);
memset(s->ti_buf, 0, 8);
bdrv_get_geometry(s->bd[target], &nb_sectors);
s->ti_buf[0] = (nb_sectors >> 24) & 0xff;
s->ti_buf[1] = (nb_sectors >> 16) & 0xff;
s->ti_buf[2] = (nb_sectors >> 8) & 0xff;
s->ti_buf[3] = nb_sectors & 0xff;
s->ti_buf[4] = 0;
s->ti_buf[5] = 0;
s->ti_buf[6] = 2;
s->ti_buf[7] = 0;
s->ti_dir = 1;
s->ti_size = 8;
break;
case 0x28:
{
int64_t offset, len;
offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6];
len = (buf[8] << 8) | buf[9];
DPRINTF("Read (10) (offset %lld len %lld)\n", offset, len);
bdrv_read(s->bd[target], offset, s->ti_buf, len);
s->ti_dir = 1;
s->ti_size = len * 512;
break;
}
case 0x2a:
{
int64_t offset, len;
offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6];
len = (buf[8] << 8) | buf[9];
DPRINTF("Write (10) (offset %lld len %lld)\n", offset, len);
bdrv_write(s->bd[target], offset, s->ti_buf, len);
s->ti_dir = 0;
s->ti_size = len * 512;
break;
}
default:
DPRINTF("Unknown command (%2.2x)\n", buf[1]);
break;
}
s->rregs[4] = STAT_IN | STAT_TC | STAT_DI;
s->rregs[5] = INTR_BS | INTR_FC;
s->rregs[6] = SEQ_CD;
s->espdmaregs[0] |= 1;
pic_set_irq(s->irq, 1);
}
static void dma_write(ESPState *s, const uint8_t *buf, uint32_t len)
{
uint32_t dmaptr, dmalen;
dmaptr = iommu_translate(s->espdmaregs[1]);
dmalen = s->wregs[0] | (s->wregs[1] << 8);
DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & 0x100? 'w': 'r');
cpu_physical_memory_write(dmaptr, buf, len);
s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
s->rregs[5] = INTR_BS | INTR_FC;
s->rregs[6] = SEQ_CD;
s->espdmaregs[0] |= 1;
pic_set_irq(s->irq, 1);
}
static const uint8_t okbuf[] = {0, 0};
static void handle_ti(ESPState *s)
{
uint32_t dmaptr, dmalen;
unsigned int i;
dmaptr = iommu_translate(s->espdmaregs[1]);
dmalen = s->wregs[0] | (s->wregs[1] << 8);
DPRINTF("Transfer Information at %8.8x len %d\n", dmaptr, dmalen);
DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & 0x100? 'w': 'r');
for (i = 0; i < s->ti_size; i++) {
dmaptr = iommu_translate(s->espdmaregs[1] + i);
if (s->ti_dir)
cpu_physical_memory_write(dmaptr, &s->ti_buf[i], 1);
else
cpu_physical_memory_read(dmaptr, &s->ti_buf[i], 1);
}
s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
s->rregs[5] = INTR_BS;
s->rregs[6] = 0;
s->espdmaregs[0] |= 1;
pic_set_irq(s->irq, 1);
}
static void esp_reset(void *opaque) static void esp_reset(void *opaque)
{ {
ESPState *s = opaque; ESPState *s = opaque;
memset(s->regs, 0, ESP_MAXREG); memset(s->rregs, 0, ESP_MAXREG);
s->regs[0x0e] = 0x4; // Indicate fas100a s->rregs[0x0e] = 0x4; // Indicate fas100a
memset(s->espdmaregs, 0, ESPDMA_REGS * 4); memset(s->espdmaregs, 0, ESPDMA_REGS * 4);
} }
@ -62,8 +224,8 @@ static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
default: default:
break; break;
} }
DPRINTF("esp: read reg[%d]: 0x%2.2x\n", saddr, s->regs[saddr]); DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);
return s->regs[saddr]; return s->rregs[saddr];
} }
static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
@ -72,30 +234,51 @@ static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
uint32_t saddr; uint32_t saddr;
saddr = (addr & ESP_MAXREG) >> 2; saddr = (addr & ESP_MAXREG) >> 2;
DPRINTF("esp: write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->regs[saddr], val); DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val);
switch (saddr) { switch (saddr) {
case 3: case 3:
// Command // Command
switch(val & 0x7f) { switch(val & 0x7f) {
case 0: case 0:
DPRINTF("esp: NOP (%2.2x)\n", val); DPRINTF("NOP (%2.2x)\n", val);
break;
case 1:
DPRINTF("Flush FIFO (%2.2x)\n", val);
s->rregs[6] = 0;
s->rregs[5] = INTR_FC;
break; break;
case 2: case 2:
DPRINTF("esp: Chip reset (%2.2x)\n", val); DPRINTF("Chip reset (%2.2x)\n", val);
esp_reset(s); esp_reset(s);
break; break;
case 3: case 3:
DPRINTF("esp: Bus reset (%2.2x)\n", val); DPRINTF("Bus reset (%2.2x)\n", val);
break;
case 0x10:
handle_ti(s);
break;
case 0x11:
DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
dma_write(s, okbuf, 2);
break;
case 0x12:
DPRINTF("Message Accepted (%2.2x)\n", val);
dma_write(s, okbuf, 2);
s->rregs[5] = INTR_DC;
s->rregs[6] = 0;
break; break;
case 0x1a: case 0x1a:
DPRINTF("esp: Set ATN (%2.2x)\n", val); DPRINTF("Set ATN (%2.2x)\n", val);
break; break;
case 0x42: case 0x42:
DPRINTF("esp: Select with ATN (%2.2x)\n", val); handle_satn(s);
s->regs[4] = 0x1a; // Status: TCNT | TDONE | CMD break;
s->regs[5] = 0x20; // Intr: Disconnect, nobody there case 0x43:
s->regs[6] = 0x4; // Seq: Cmd done DPRINTF("Set ATN & stop (%2.2x)\n", val);
pic_set_irq(s->irq, 1); handle_satn(s);
break;
default:
DPRINTF("Unhandled command (%2.2x)\n", val);
break; break;
} }
break; break;
@ -103,9 +286,9 @@ static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
case 9 ... 0xf: case 9 ... 0xf:
break; break;
default: default:
s->regs[saddr] = val;
break; break;
} }
s->wregs[saddr] = val;
} }
static CPUReadMemoryFunc *esp_mem_read[3] = { static CPUReadMemoryFunc *esp_mem_read[3] = {
@ -126,6 +309,7 @@ static uint32_t espdma_mem_readl(void *opaque, target_phys_addr_t addr)
uint32_t saddr; uint32_t saddr;
saddr = (addr & ESPDMA_MAXADDR) >> 2; saddr = (addr & ESPDMA_MAXADDR) >> 2;
DPRINTF("read dmareg[%d]: 0x%2.2x\n", saddr, s->espdmaregs[saddr]);
return s->espdmaregs[saddr]; return s->espdmaregs[saddr];
} }
@ -135,6 +319,15 @@ static void espdma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t va
uint32_t saddr; uint32_t saddr;
saddr = (addr & ESPDMA_MAXADDR) >> 2; saddr = (addr & ESPDMA_MAXADDR) >> 2;
DPRINTF("write dmareg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->espdmaregs[saddr], val);
switch (saddr) {
case 0:
if (!(val & 0x10))
pic_set_irq(s->irq, 0);
break;
default:
break;
}
s->espdmaregs[saddr] = val; s->espdmaregs[saddr] = val;
} }
@ -153,16 +346,29 @@ static CPUWriteMemoryFunc *espdma_mem_write[3] = {
static void esp_save(QEMUFile *f, void *opaque) static void esp_save(QEMUFile *f, void *opaque)
{ {
ESPState *s = opaque; ESPState *s = opaque;
unsigned int i;
qemu_put_buffer(f, s->rregs, ESP_MAXREG);
qemu_put_buffer(f, s->wregs, ESP_MAXREG);
qemu_put_be32s(f, &s->irq);
for (i = 0; i < ESPDMA_REGS; i++)
qemu_put_be32s(f, &s->espdmaregs[i]);
} }
static int esp_load(QEMUFile *f, void *opaque, int version_id) static int esp_load(QEMUFile *f, void *opaque, int version_id)
{ {
ESPState *s = opaque; ESPState *s = opaque;
unsigned int i;
if (version_id != 1) if (version_id != 1)
return -EINVAL; return -EINVAL;
qemu_get_buffer(f, s->rregs, ESP_MAXREG);
qemu_get_buffer(f, s->wregs, ESP_MAXREG);
qemu_get_be32s(f, &s->irq);
for (i = 0; i < ESPDMA_REGS; i++)
qemu_get_be32s(f, &s->espdmaregs[i]);
return 0; return 0;
} }