target-arm:

* fix preferred return address for A64 BRK insn
  * implement AArch64 single-stepping
  * support loading gzip compressed AArch64 kernels
  * use correct PSCI function IDs in the DT when KVM uses PSCI 0.2
  * minor cleanups
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABCAAGBQJT85GZAAoJEDwlJe0UNgzeSpQP/1/m2nJxDvyKWRsNhk4CObsk
 Ex/HI850B1tOlv8c14jIG0kCg0n5SKrSmNSkIqtaZuykRCUk0F2TZAn6uvKaPxqO
 Xy40HBrdji2FPLk8mKvc0QY3ucV9BsYiPNBQNVqnctlmLeTtcs3ufFFmchC3Damz
 euCDIhCvT4KlyQz7s7WeM8RIA0ugJIpX/umc+GR853vYPixLInQGoRcWEaKfBTEy
 BYLl/LN8MYMxGgNALUf4ErVrReCg3h8485m5GHRb/I+42w62pyI1wKLlkrcEOwhk
 w0JsemPRTyY7QPOHLCwxMKIq4Idil55vNpvLC2qUuig+SWHqfQjhhy4W6NvqkMWJ
 uorgm6WA2C6K1lLMzMtwRjzQQUB+ct7KDUbcO7Z4638X8ACnALP0tzl1n0NZvvPJ
 EN6CQrfWeKmd7VWnCRd5JEvTgQZlwsC9mg8Tob1MamoqzGj4JWnZzVsoP1sE+g+6
 xnglHysQrcjSeYh6RFvbkwv9jZLS4NKJUN3Zgm1S2G+zNT5aK9akEmSpAq2B/mxA
 f2KlI9lSvPbj2JA6ichxxCGr1sgX1PJwLQd5gPLrmEXaGUEGmq4gz1h3mmZdd1wZ
 Uwo9qNCA/RUdkxuLJ93CL/we02kp2cZwN2pjYGWomTkc3VLGCYaaITkIeq+LNG+L
 uPxVdmOUK/05QWrT8gC6
 =+uR+
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20140819' into staging

target-arm:
 * fix preferred return address for A64 BRK insn
 * implement AArch64 single-stepping
 * support loading gzip compressed AArch64 kernels
 * use correct PSCI function IDs in the DT when KVM uses PSCI 0.2
 * minor cleanups

# gpg: Signature made Tue 19 Aug 2014 19:04:09 BST using RSA key ID 14360CDE
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>"

* remotes/pmaydell/tags/pull-target-arm-20140819:
  arm: stellaris: Remove misleading address_space_mem var
  arm: armv7m: Rename address_space_mem -> system_memory
  aarch64: Allow -kernel option to take a gzip-compressed kernel.
  loader: Add load_image_gzipped function.
  arm: cortex-a9: Fix cache-line size and associativity
  arm/virt: Use PSCI v0.2 function IDs in the DT when KVM uses PSCI v0.2
  target-arm: Rename QEMU PSCI v0.1 definitions
  target-arm: Implement MDSCR_EL1 as having state
  target-arm: Implement ARMv8 single-stepping for AArch32 code
  target-arm: Implement ARMv8 single-step handling for A64 code
  target-arm: A64: Avoid duplicate exit_tb(0) in non-linked goto_tb
  target-arm: Set PSTATE.SS correctly on exception return from AArch64
  target-arm: Correctly handle PSTATE.SS when taking exception to AArch32
  target-arm: Don't allow AArch32 to access RES0 CPSR bits
  target-arm: Adjust debug ID registers per-CPU
  target-arm: Provide both 32 and 64 bit versions of debug registers
  target-arm: Allow STATE_BOTH reginfo descriptions for more than cp14
  target-arm: Collect up the debug cp register definitions
  target-arm: Fix return address for A64 BRK instructions

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2014-08-20 09:55:42 +01:00
commit 2656eb7c59
19 changed files with 562 additions and 87 deletions

View File

@ -166,7 +166,7 @@ static void armv7m_reset(void *opaque)
flash_size and sram_size are in kb. flash_size and sram_size are in kb.
Returns the NVIC array. */ Returns the NVIC array. */
qemu_irq *armv7m_init(MemoryRegion *address_space_mem, qemu_irq *armv7m_init(MemoryRegion *system_memory,
int flash_size, int sram_size, int flash_size, int sram_size,
const char *kernel_filename, const char *cpu_model) const char *kernel_filename, const char *cpu_model)
{ {
@ -213,10 +213,10 @@ qemu_irq *armv7m_init(MemoryRegion *address_space_mem,
memory_region_init_ram(flash, NULL, "armv7m.flash", flash_size); memory_region_init_ram(flash, NULL, "armv7m.flash", flash_size);
vmstate_register_ram_global(flash); vmstate_register_ram_global(flash);
memory_region_set_readonly(flash, true); memory_region_set_readonly(flash, true);
memory_region_add_subregion(address_space_mem, 0, flash); memory_region_add_subregion(system_memory, 0, flash);
memory_region_init_ram(sram, NULL, "armv7m.sram", sram_size); memory_region_init_ram(sram, NULL, "armv7m.sram", sram_size);
vmstate_register_ram_global(sram); vmstate_register_ram_global(sram);
memory_region_add_subregion(address_space_mem, 0x20000000, sram); memory_region_add_subregion(system_memory, 0x20000000, sram);
armv7m_bitband_init(); armv7m_bitband_init();
nvic = qdev_create(NULL, "armv7m_nvic"); nvic = qdev_create(NULL, "armv7m_nvic");
@ -257,7 +257,7 @@ qemu_irq *armv7m_init(MemoryRegion *address_space_mem,
when returning from an exception. */ when returning from an exception. */
memory_region_init_ram(hack, NULL, "armv7m.hack", 0x1000); memory_region_init_ram(hack, NULL, "armv7m.hack", 0x1000);
vmstate_register_ram_global(hack); vmstate_register_ram_global(hack);
memory_region_add_subregion(address_space_mem, 0xfffff000, hack); memory_region_add_subregion(system_memory, 0xfffff000, hack);
qemu_register_reset(armv7m_reset, cpu); qemu_register_reset(armv7m_reset, cpu);
return pic; return pic;

View File

@ -514,6 +514,13 @@ void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
kernel_size = load_uimage(info->kernel_filename, &entry, NULL, kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
&is_linux); &is_linux);
} }
/* On aarch64, it's the bootloader's job to uncompress the kernel. */
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
entry = info->loader_start + kernel_load_offset;
kernel_size = load_image_gzipped(info->kernel_filename, entry,
info->ram_size - kernel_load_offset);
is_linux = 1;
}
if (kernel_size < 0) { if (kernel_size < 0) {
entry = info->loader_start + kernel_load_offset; entry = info->loader_start + kernel_load_offset;
kernel_size = load_image_targphys(info->kernel_filename, entry, kernel_size = load_image_targphys(info->kernel_filename, entry,

View File

@ -1208,7 +1208,6 @@ static void stellaris_init(const char *kernel_filename, const char *cpu_model,
0x40024000, 0x40025000, 0x40026000}; 0x40024000, 0x40025000, 0x40026000};
static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31}; static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
MemoryRegion *address_space_mem = get_system_memory();
qemu_irq *pic; qemu_irq *pic;
DeviceState *gpio_dev[7]; DeviceState *gpio_dev[7];
qemu_irq gpio_in[7][8]; qemu_irq gpio_in[7][8];
@ -1223,7 +1222,7 @@ static void stellaris_init(const char *kernel_filename, const char *cpu_model,
flash_size = ((board->dc0 & 0xffff) + 1) << 1; flash_size = ((board->dc0 & 0xffff) + 1) << 1;
sram_size = (board->dc0 >> 18) + 1; sram_size = (board->dc0 >> 18) + 1;
pic = armv7m_init(address_space_mem, pic = armv7m_init(get_system_memory(),
flash_size, sram_size, kernel_filename, cpu_model); flash_size, sram_size, kernel_filename, cpu_model);
if (board->dc1 & (1 << 16)) { if (board->dc1 & (1 << 16)) {

View File

@ -194,20 +194,41 @@ static void fdt_add_psci_node(const VirtBoardInfo *vbi)
/* No PSCI for TCG yet */ /* No PSCI for TCG yet */
if (kvm_enabled()) { if (kvm_enabled()) {
uint32_t cpu_suspend_fn;
uint32_t cpu_off_fn;
uint32_t cpu_on_fn;
uint32_t migrate_fn;
qemu_fdt_add_subnode(fdt, "/psci"); qemu_fdt_add_subnode(fdt, "/psci");
if (armcpu->psci_version == 2) { if (armcpu->psci_version == 2) {
const char comp[] = "arm,psci-0.2\0arm,psci"; const char comp[] = "arm,psci-0.2\0arm,psci";
qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
} else {
cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
}
} else { } else {
qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
} }
qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend",
PSCI_FN_CPU_SUSPEND); qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF); qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON); qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE); qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
} }
} }

View File

@ -577,6 +577,54 @@ int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK); return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK);
} }
/* This simply prevents g_malloc in the function below from allocating
* a huge amount of memory, by placing a limit on the maximum
* uncompressed image size that load_image_gzipped will read.
*/
#define LOAD_IMAGE_MAX_GUNZIP_BYTES (256 << 20)
/* Load a gzip-compressed kernel. */
int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
{
uint8_t *compressed_data = NULL;
uint8_t *data = NULL;
gsize len;
ssize_t bytes;
int ret = -1;
if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
NULL)) {
goto out;
}
/* Is it a gzip-compressed file? */
if (len < 2 ||
compressed_data[0] != 0x1f ||
compressed_data[1] != 0x8b) {
goto out;
}
if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
}
data = g_malloc(max_sz);
bytes = gunzip(data, max_sz, compressed_data, len);
if (bytes < 0) {
fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
filename);
goto out;
}
rom_add_blob_fixed(filename, data, bytes, addr);
ret = bytes;
out:
g_free(compressed_data);
g_free(data);
return ret;
}
/* /*
* Functions for reboot-persistent memory regions. * Functions for reboot-persistent memory regions.
* - used for vga bios and option roms. * - used for vga bios and option roms.

View File

@ -15,7 +15,7 @@
#include "hw/irq.h" #include "hw/irq.h"
/* armv7m.c */ /* armv7m.c */
qemu_irq *armv7m_init(MemoryRegion *address_space_mem, qemu_irq *armv7m_init(MemoryRegion *system_memory,
int flash_size, int sram_size, int flash_size, int sram_size,
const char *kernel_filename, const char *cpu_model); const char *kernel_filename, const char *cpu_model);

View File

@ -15,6 +15,7 @@ int get_image_size(const char *filename);
int load_image(const char *filename, uint8_t *addr); /* deprecated */ int load_image(const char *filename, uint8_t *addr); /* deprecated */
int load_image_targphys(const char *filename, hwaddr, int load_image_targphys(const char *filename, hwaddr,
uint64_t max_sz); uint64_t max_sz);
int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz);
#define ELF_LOAD_FAILED -1 #define ELF_LOAD_FAILED -1
#define ELF_LOAD_NOT_ELF -2 #define ELF_LOAD_NOT_ELF -2

View File

@ -148,6 +148,7 @@ typedef struct ARMCPU {
uint64_t id_aa64isar1; uint64_t id_aa64isar1;
uint64_t id_aa64mmfr0; uint64_t id_aa64mmfr0;
uint64_t id_aa64mmfr1; uint64_t id_aa64mmfr1;
uint32_t dbgdidr;
uint32_t clidr; uint32_t clidr;
/* The elements of this array are the CCSIDR values for each cache, /* The elements of this array are the CCSIDR values for each cache,
* in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.

View File

@ -640,6 +640,7 @@ static void cortex_a8_initfn(Object *obj)
cpu->id_isar2 = 0x21232031; cpu->id_isar2 = 0x21232031;
cpu->id_isar3 = 0x11112131; cpu->id_isar3 = 0x11112131;
cpu->id_isar4 = 0x00111142; cpu->id_isar4 = 0x00111142;
cpu->dbgdidr = 0x15141000;
cpu->clidr = (1 << 27) | (2 << 24) | 3; cpu->clidr = (1 << 27) | (2 << 24) | 3;
cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */ cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */ cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
@ -712,9 +713,10 @@ static void cortex_a9_initfn(Object *obj)
cpu->id_isar2 = 0x21232041; cpu->id_isar2 = 0x21232041;
cpu->id_isar3 = 0x11112131; cpu->id_isar3 = 0x11112131;
cpu->id_isar4 = 0x00111142; cpu->id_isar4 = 0x00111142;
cpu->dbgdidr = 0x35141000;
cpu->clidr = (1 << 27) | (1 << 24) | 3; cpu->clidr = (1 << 27) | (1 << 24) | 3;
cpu->ccsidr[0] = 0xe00fe015; /* 16k L1 dcache. */ cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
cpu->ccsidr[1] = 0x200fe015; /* 16k L1 icache. */ cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
define_arm_cp_regs(cpu, cortexa9_cp_reginfo); define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
} }
@ -773,6 +775,7 @@ static void cortex_a15_initfn(Object *obj)
cpu->id_isar2 = 0x21232041; cpu->id_isar2 = 0x21232041;
cpu->id_isar3 = 0x11112131; cpu->id_isar3 = 0x11112131;
cpu->id_isar4 = 0x10011142; cpu->id_isar4 = 0x10011142;
cpu->dbgdidr = 0x3515f021;
cpu->clidr = 0x0a200023; cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */

View File

@ -220,6 +220,7 @@ typedef struct CPUARMState {
uint64_t dbgbcr[16]; /* breakpoint control registers */ uint64_t dbgbcr[16]; /* breakpoint control registers */
uint64_t dbgwvr[16]; /* watchpoint value registers */ uint64_t dbgwvr[16]; /* watchpoint value registers */
uint64_t dbgwcr[16]; /* watchpoint control registers */ uint64_t dbgwcr[16]; /* watchpoint control registers */
uint64_t mdscr_el1;
/* If the counter is enabled, this stores the last time the counter /* If the counter is enabled, this stores the last time the counter
* was reset. Otherwise it stores the counter value * was reset. Otherwise it stores the counter value
*/ */
@ -411,7 +412,13 @@ int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
#define CPSR_E (1U << 9) #define CPSR_E (1U << 9)
#define CPSR_IT_2_7 (0xfc00U) #define CPSR_IT_2_7 (0xfc00U)
#define CPSR_GE (0xfU << 16) #define CPSR_GE (0xfU << 16)
#define CPSR_RESERVED (0xfU << 20) #define CPSR_IL (1U << 20)
/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
* an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
* env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
* where it is live state but not accessible to the AArch32 code.
*/
#define CPSR_RESERVED (0x7U << 21)
#define CPSR_J (1U << 24) #define CPSR_J (1U << 24)
#define CPSR_IT_0_1 (3U << 25) #define CPSR_IT_0_1 (3U << 25)
#define CPSR_Q (1U << 27) #define CPSR_Q (1U << 27)
@ -428,7 +435,9 @@ int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
/* Bits writable in user mode. */ /* Bits writable in user mode. */
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
/* Execution state bits. MRS read as zero, MSR writes ignored. */ /* Execution state bits. MRS read as zero, MSR writes ignored. */
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J) #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
/* Mask of bits which may be set by exception return copying them from SPSR */
#define CPSR_ERET_MASK (~CPSR_RESERVED)
#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
@ -1111,6 +1120,66 @@ static inline int cpu_mmu_index (CPUARMState *env)
return arm_current_pl(env); return arm_current_pl(env);
} }
/* Return the Exception Level targeted by debug exceptions;
* currently always EL1 since we don't implement EL2 or EL3.
*/
static inline int arm_debug_target_el(CPUARMState *env)
{
return 1;
}
static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
{
if (arm_current_pl(env) == arm_debug_target_el(env)) {
if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
|| (env->daif & PSTATE_D)) {
return false;
}
}
return true;
}
static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
{
if (arm_current_pl(env) == 0 && arm_el_is_aa64(env, 1)) {
return aa64_generate_debug_exceptions(env);
}
return arm_current_pl(env) != 2;
}
/* Return true if debugging exceptions are currently enabled.
* This corresponds to what in ARM ARM pseudocode would be
* if UsingAArch32() then
* return AArch32.GenerateDebugExceptions()
* else
* return AArch64.GenerateDebugExceptions()
* We choose to push the if() down into this function for clarity,
* since the pseudocode has it at all callsites except for the one in
* CheckSoftwareStep(), where it is elided because both branches would
* always return the same value.
*
* Parts of the pseudocode relating to EL2 and EL3 are omitted because we
* don't yet implement those exception levels or their associated trap bits.
*/
static inline bool arm_generate_debug_exceptions(CPUARMState *env)
{
if (env->aarch64) {
return aa64_generate_debug_exceptions(env);
} else {
return aa32_generate_debug_exceptions(env);
}
}
/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
* implicitly means this always returns false in pre-v8 CPUs.)
*/
static inline bool arm_singlestep_active(CPUARMState *env)
{
return extract32(env->cp15.mdscr_el1, 0, 1)
&& arm_el_is_aa64(env, arm_debug_target_el(env))
&& arm_generate_debug_exceptions(env);
}
#include "exec/cpu-all.h" #include "exec/cpu-all.h"
/* Bit usage in the TB flags field: bit 31 indicates whether we are /* Bit usage in the TB flags field: bit 31 indicates whether we are
@ -1136,12 +1205,20 @@ static inline int cpu_mmu_index (CPUARMState *env)
#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT) #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
#define ARM_TBFLAG_CPACR_FPEN_SHIFT 17 #define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
#define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT) #define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
#define ARM_TBFLAG_SS_ACTIVE_SHIFT 18
#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS_SHIFT 19
#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
/* Bit usage when in AArch64 state */ /* Bit usage when in AArch64 state */
#define ARM_TBFLAG_AA64_EL_SHIFT 0 #define ARM_TBFLAG_AA64_EL_SHIFT 0
#define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT) #define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
#define ARM_TBFLAG_AA64_FPEN_SHIFT 2 #define ARM_TBFLAG_AA64_FPEN_SHIFT 2
#define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT) #define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
#define ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT 3
#define ARM_TBFLAG_AA64_SS_ACTIVE_MASK (1 << ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_AA64_PSTATE_SS_SHIFT 4
#define ARM_TBFLAG_AA64_PSTATE_SS_MASK (1 << ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
/* some convenience accessor macros */ /* some convenience accessor macros */
#define ARM_TBFLAG_AARCH64_STATE(F) \ #define ARM_TBFLAG_AARCH64_STATE(F) \
@ -1162,10 +1239,18 @@ static inline int cpu_mmu_index (CPUARMState *env)
(((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT) (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
#define ARM_TBFLAG_CPACR_FPEN(F) \ #define ARM_TBFLAG_CPACR_FPEN(F) \
(((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT) (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
#define ARM_TBFLAG_SS_ACTIVE(F) \
(((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS(F) \
(((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
#define ARM_TBFLAG_AA64_EL(F) \ #define ARM_TBFLAG_AA64_EL(F) \
(((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT) (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
#define ARM_TBFLAG_AA64_FPEN(F) \ #define ARM_TBFLAG_AA64_FPEN(F) \
(((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT) (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
#define ARM_TBFLAG_AA64_SS_ACTIVE(F) \
(((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_AA64_PSTATE_SS(F) \
(((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
target_ulong *cs_base, int *flags) target_ulong *cs_base, int *flags)
@ -1179,6 +1264,19 @@ static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) { if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
*flags |= ARM_TBFLAG_AA64_FPEN_MASK; *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
} }
/* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
* states defined in the ARM ARM for software singlestep:
* SS_ACTIVE PSTATE.SS State
* 0 x Inactive (the TB flag for SS is always 0)
* 1 0 Active-pending
* 1 1 Active-not-pending
*/
if (arm_singlestep_active(env)) {
*flags |= ARM_TBFLAG_AA64_SS_ACTIVE_MASK;
if (env->pstate & PSTATE_SS) {
*flags |= ARM_TBFLAG_AA64_PSTATE_SS_MASK;
}
}
} else { } else {
int privmode; int privmode;
*pc = env->regs[15]; *pc = env->regs[15];
@ -1202,6 +1300,19 @@ static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) { if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
*flags |= ARM_TBFLAG_CPACR_FPEN_MASK; *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
} }
/* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
* states defined in the ARM ARM for software singlestep:
* SS_ACTIVE PSTATE.SS State
* 0 x Inactive (the TB flag for SS is always 0)
* 1 0 Active-pending
* 1 1 Active-not-pending
*/
if (arm_singlestep_active(env)) {
*flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
if (env->uncached_cpsr & PSTATE_SS) {
*flags |= ARM_TBFLAG_PSTATE_SS_MASK;
}
}
} }
*cs_base = 0; *cs_base = 0;

View File

@ -127,6 +127,7 @@ static void aarch64_a57_initfn(Object *obj)
cpu->id_aa64dfr0 = 0x10305106; cpu->id_aa64dfr0 = 0x10305106;
cpu->id_aa64isar0 = 0x00010000; cpu->id_aa64isar0 = 0x00010000;
cpu->id_aa64mmfr0 = 0x00001124; cpu->id_aa64mmfr0 = 0x00001124;
cpu->dbgdidr = 0x3516d000;
cpu->clidr = 0x0a200023; cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */

View File

@ -389,12 +389,6 @@ static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
} }
static const ARMCPRegInfo cp_reginfo[] = { static const ARMCPRegInfo cp_reginfo[] = {
/* DBGDIDR: just RAZ. In particular this means the "debug architecture
* version" bits will read as a reserved value, which should cause
* Linux to not try to use the debug hardware.
*/
{ .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
.resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
@ -471,6 +465,13 @@ static const ARMCPRegInfo not_v7_cp_reginfo[] = {
{ .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
.resetvalue = 0 }, .resetvalue = 0 },
/* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
* implementing it as RAZ means the "debug architecture version" bits
* will read as a reserved value, which should cause Linux to not try
* to use the debug hardware.
*/
{ .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
REGINFO_SENTINEL REGINFO_SENTINEL
}; };
@ -712,13 +713,6 @@ static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
} }
static const ARMCPRegInfo v7_cp_reginfo[] = { static const ARMCPRegInfo v7_cp_reginfo[] = {
/* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
* debug components
*/
{ .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
/* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
{ .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
.access = PL1_W, .type = ARM_CP_NOP }, .access = PL1_W, .type = ARM_CP_NOP },
@ -1734,11 +1728,6 @@ static const ARMCPRegInfo lpae_cp_reginfo[] = {
{ .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
.resetvalue = 0 }, .resetvalue = 0 },
/* 64 bit access versions of the (dummy) debug registers */
{ .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
.access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
.access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
.access = PL1_RW, .type = ARM_CP_64BIT, .access = PL1_RW, .type = ARM_CP_64BIT,
.fieldoffset = offsetof(CPUARMState, cp15.par_el1), .resetvalue = 0 }, .fieldoffset = offsetof(CPUARMState, cp15.par_el1), .resetvalue = 0 },
@ -2083,16 +2072,6 @@ static const ARMCPRegInfo v8_cp_reginfo[] = {
.opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
.resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
/* Dummy implementation of monitor debug system control register:
* we don't support debug.
*/
{ .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
/* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
{ .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
.access = PL1_W, .type = ARM_CP_NOP },
{ .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_NO_MIGRATE, .type = ARM_CP_NO_MIGRATE,
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
@ -2206,29 +2185,98 @@ static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
return CP_ACCESS_OK; return CP_ACCESS_OK;
} }
static void define_aarch64_debug_regs(ARMCPU *cpu) static const ARMCPRegInfo debug_cp_reginfo[] = {
/* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
* debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
* unlike DBGDRAR it is never accessible from EL0.
* DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
* accessor.
*/
{ .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
/* Dummy implementation of monitor debug system control register:
* we don't support debug. (The 32-bit alias is DBGDSCRext.)
*/
{ .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
.resetvalue = 0 },
/* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
{ .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
.access = PL1_W, .type = ARM_CP_NOP },
REGINFO_SENTINEL
};
static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
/* 64 bit access versions of the (dummy) debug registers */
{ .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
.access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
.access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
REGINFO_SENTINEL
};
static void define_debug_regs(ARMCPU *cpu)
{ {
/* Define breakpoint and watchpoint registers. These do nothing /* Define v7 and v8 architectural debug registers.
* but read as written, for now. * These are just dummy implementations for now.
*/ */
int i; int i;
int wrps, brps;
ARMCPRegInfo dbgdidr = {
.name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
};
for (i = 0; i < 16; i++) { brps = extract32(cpu->dbgdidr, 24, 4);
wrps = extract32(cpu->dbgdidr, 28, 4);
/* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
* of the debug registers such as number of breakpoints;
* check that if they both exist then they agree.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
}
define_one_arm_cp_reg(cpu, &dbgdidr);
define_arm_cp_regs(cpu, debug_cp_reginfo);
if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
}
for (i = 0; i < brps + 1; i++) {
ARMCPRegInfo dbgregs[] = { ARMCPRegInfo dbgregs[] = {
{ .name = "DBGBVR", .state = ARM_CP_STATE_AA64, { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
.opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
.access = PL1_RW, .access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) }, .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) },
{ .name = "DBGBCR", .state = ARM_CP_STATE_AA64, { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
.opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
.access = PL1_RW, .access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) }, .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) },
{ .name = "DBGWVR", .state = ARM_CP_STATE_AA64, REGINFO_SENTINEL
.opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, };
define_arm_cp_regs(cpu, dbgregs);
}
for (i = 0; i < wrps + 1; i++) {
ARMCPRegInfo dbgregs[] = {
{ .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
.access = PL1_RW, .access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) }, .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) },
{ .name = "DBGWCR", .state = ARM_CP_STATE_AA64, { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
.opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
.access = PL1_RW, .access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) }, .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) },
REGINFO_SENTINEL REGINFO_SENTINEL
@ -2353,6 +2401,7 @@ void register_cp_regs_for_features(ARMCPU *cpu)
}; };
define_one_arm_cp_reg(cpu, &clidr); define_one_arm_cp_reg(cpu, &clidr);
define_arm_cp_regs(cpu, v7_cp_reginfo); define_arm_cp_regs(cpu, v7_cp_reginfo);
define_debug_regs(cpu);
} else { } else {
define_arm_cp_regs(cpu, not_v7_cp_reginfo); define_arm_cp_regs(cpu, not_v7_cp_reginfo);
} }
@ -2426,7 +2475,6 @@ void register_cp_regs_for_features(ARMCPU *cpu)
define_one_arm_cp_reg(cpu, &rvbar); define_one_arm_cp_reg(cpu, &rvbar);
define_arm_cp_regs(cpu, v8_idregs); define_arm_cp_regs(cpu, v8_idregs);
define_arm_cp_regs(cpu, v8_cp_reginfo); define_arm_cp_regs(cpu, v8_cp_reginfo);
define_aarch64_debug_regs(cpu);
} }
if (arm_feature(env, ARM_FEATURE_EL2)) { if (arm_feature(env, ARM_FEATURE_EL2)) {
define_arm_cp_regs(cpu, v8_el2_cp_reginfo); define_arm_cp_regs(cpu, v8_el2_cp_reginfo);
@ -2779,9 +2827,11 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
/* The AArch32 view of a shared register sees the lower 32 bits /* The AArch32 view of a shared register sees the lower 32 bits
* of a 64 bit backing field. It is not migratable as the AArch64 * of a 64 bit backing field. It is not migratable as the AArch64
* view handles that. AArch64 also handles reset. * view handles that. AArch64 also handles reset.
* We assume it is a cp15 register. * We assume it is a cp15 register if the .cp field is left unset.
*/ */
r2->cp = 15; if (r2->cp == 0) {
r2->cp = 15;
}
r2->type |= ARM_CP_NO_MIGRATE; r2->type |= ARM_CP_NO_MIGRATE;
r2->resetfn = arm_cp_reset_ignore; r2->resetfn = arm_cp_reset_ignore;
#ifdef HOST_WORDS_BIGENDIAN #ifdef HOST_WORDS_BIGENDIAN
@ -2794,8 +2844,11 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
/* To allow abbreviation of ARMCPRegInfo /* To allow abbreviation of ARMCPRegInfo
* definitions, we treat cp == 0 as equivalent to * definitions, we treat cp == 0 as equivalent to
* the value for "standard guest-visible sysreg". * the value for "standard guest-visible sysreg".
* STATE_BOTH definitions are also always "standard
* sysreg" in their AArch64 view (the .cp value may
* be non-zero for the benefit of the AArch32 view).
*/ */
if (r->cp == 0) { if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
r2->cp = CP_REG_ARM64_SYSREG_CP; r2->cp = CP_REG_ARM64_SYSREG_CP;
} }
*key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
@ -3499,6 +3552,10 @@ void arm_cpu_do_interrupt(CPUState *cs)
addr += env->cp15.vbar_el[1]; addr += env->cp15.vbar_el[1];
} }
switch_mode (env, new_mode); switch_mode (env, new_mode);
/* For exceptions taken to AArch32 we must clear the SS bit in both
* PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
*/
env->uncached_cpsr &= ~PSTATE_SS;
env->spsr = cpsr_read(env); env->spsr = cpsr_read(env);
/* Clear IT bits. */ /* Clear IT bits. */
env->condexec_bits = 0; env->condexec_bits = 0;

View File

@ -64,6 +64,7 @@ DEF_HELPER_3(set_cp_reg64, void, env, ptr, i64)
DEF_HELPER_2(get_cp_reg64, i64, env, ptr) DEF_HELPER_2(get_cp_reg64, i64, env, ptr)
DEF_HELPER_3(msr_i_pstate, void, env, i32, i32) DEF_HELPER_3(msr_i_pstate, void, env, i32, i32)
DEF_HELPER_1(clear_pstate_ss, void, env)
DEF_HELPER_1(exception_return, void, env) DEF_HELPER_1(exception_return, void, env)
DEF_HELPER_2(get_r13_banked, i32, env, i32) DEF_HELPER_2(get_r13_banked, i32, env, i32)

View File

@ -290,4 +290,10 @@ static inline uint32_t syn_data_abort(int same_el, int ea, int cm, int s1ptw,
| (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc; | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
} }
static inline uint32_t syn_swstep(int same_el, int isv, int ex)
{
return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
| (isv << 24) | (ex << 6) | 0x22;
}
#endif #endif

View File

@ -17,6 +17,7 @@
#ifdef CONFIG_KVM #ifdef CONFIG_KVM
#include "qemu/compiler.h" #include "qemu/compiler.h"
#include <linux/kvm.h> #include <linux/kvm.h>
#include <linux/psci.h>
#define MISMATCH_CHECK(X, Y) QEMU_BUILD_BUG_ON(X != Y) #define MISMATCH_CHECK(X, Y) QEMU_BUILD_BUG_ON(X != Y)
@ -38,17 +39,43 @@ MISMATCH_CHECK(CP_REG_SIZE_U64, KVM_REG_SIZE_U64)
MISMATCH_CHECK(CP_REG_ARM, KVM_REG_ARM) MISMATCH_CHECK(CP_REG_ARM, KVM_REG_ARM)
MISMATCH_CHECK(CP_REG_ARCH_MASK, KVM_REG_ARCH_MASK) MISMATCH_CHECK(CP_REG_ARCH_MASK, KVM_REG_ARCH_MASK)
#define PSCI_FN_BASE 0x95c1ba5e #define QEMU_PSCI_0_1_FN_BASE 0x95c1ba5e
#define PSCI_FN(n) (PSCI_FN_BASE + (n)) #define QEMU_PSCI_0_1_FN(n) (QEMU_PSCI_0_1_FN_BASE + (n))
#define PSCI_FN_CPU_SUSPEND PSCI_FN(0) #define QEMU_PSCI_0_1_FN_CPU_SUSPEND QEMU_PSCI_0_1_FN(0)
#define PSCI_FN_CPU_OFF PSCI_FN(1) #define QEMU_PSCI_0_1_FN_CPU_OFF QEMU_PSCI_0_1_FN(1)
#define PSCI_FN_CPU_ON PSCI_FN(2) #define QEMU_PSCI_0_1_FN_CPU_ON QEMU_PSCI_0_1_FN(2)
#define PSCI_FN_MIGRATE PSCI_FN(3) #define QEMU_PSCI_0_1_FN_MIGRATE QEMU_PSCI_0_1_FN(3)
MISMATCH_CHECK(PSCI_FN_CPU_SUSPEND, KVM_PSCI_FN_CPU_SUSPEND) MISMATCH_CHECK(QEMU_PSCI_0_1_FN_CPU_SUSPEND, KVM_PSCI_FN_CPU_SUSPEND)
MISMATCH_CHECK(PSCI_FN_CPU_OFF, KVM_PSCI_FN_CPU_OFF) MISMATCH_CHECK(QEMU_PSCI_0_1_FN_CPU_OFF, KVM_PSCI_FN_CPU_OFF)
MISMATCH_CHECK(PSCI_FN_CPU_ON, KVM_PSCI_FN_CPU_ON) MISMATCH_CHECK(QEMU_PSCI_0_1_FN_CPU_ON, KVM_PSCI_FN_CPU_ON)
MISMATCH_CHECK(PSCI_FN_MIGRATE, KVM_PSCI_FN_MIGRATE) MISMATCH_CHECK(QEMU_PSCI_0_1_FN_MIGRATE, KVM_PSCI_FN_MIGRATE)
#define QEMU_PSCI_0_2_FN_BASE 0x84000000
#define QEMU_PSCI_0_2_FN(n) (QEMU_PSCI_0_2_FN_BASE + (n))
#define QEMU_PSCI_0_2_64BIT 0x40000000
#define QEMU_PSCI_0_2_FN64_BASE \
(QEMU_PSCI_0_2_FN_BASE + QEMU_PSCI_0_2_64BIT)
#define QEMU_PSCI_0_2_FN64(n) (QEMU_PSCI_0_2_FN64_BASE + (n))
#define QEMU_PSCI_0_2_FN_CPU_SUSPEND QEMU_PSCI_0_2_FN(1)
#define QEMU_PSCI_0_2_FN_CPU_OFF QEMU_PSCI_0_2_FN(2)
#define QEMU_PSCI_0_2_FN_CPU_ON QEMU_PSCI_0_2_FN(3)
#define QEMU_PSCI_0_2_FN_MIGRATE QEMU_PSCI_0_2_FN(5)
#define QEMU_PSCI_0_2_FN64_CPU_SUSPEND QEMU_PSCI_0_2_FN64(1)
#define QEMU_PSCI_0_2_FN64_CPU_OFF QEMU_PSCI_0_2_FN64(2)
#define QEMU_PSCI_0_2_FN64_CPU_ON QEMU_PSCI_0_2_FN64(3)
#define QEMU_PSCI_0_2_FN64_MIGRATE QEMU_PSCI_0_2_FN64(5)
MISMATCH_CHECK(QEMU_PSCI_0_2_FN_CPU_SUSPEND, PSCI_0_2_FN_CPU_SUSPEND)
MISMATCH_CHECK(QEMU_PSCI_0_2_FN_CPU_OFF, PSCI_0_2_FN_CPU_OFF)
MISMATCH_CHECK(QEMU_PSCI_0_2_FN_CPU_ON, PSCI_0_2_FN_CPU_ON)
MISMATCH_CHECK(QEMU_PSCI_0_2_FN_MIGRATE, PSCI_0_2_FN_MIGRATE)
MISMATCH_CHECK(QEMU_PSCI_0_2_FN64_CPU_SUSPEND, PSCI_0_2_FN64_CPU_SUSPEND)
MISMATCH_CHECK(QEMU_PSCI_0_2_FN64_CPU_ON, PSCI_0_2_FN64_CPU_ON)
MISMATCH_CHECK(QEMU_PSCI_0_2_FN64_MIGRATE, PSCI_0_2_FN64_MIGRATE)
/* Note that KVM uses overlapping values for AArch32 and AArch64 /* Note that KVM uses overlapping values for AArch32 and AArch64
* target CPU numbers. AArch32 targets: * target CPU numbers. AArch32 targets:

View File

@ -258,7 +258,7 @@ void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
uint32_t HELPER(cpsr_read)(CPUARMState *env) uint32_t HELPER(cpsr_read)(CPUARMState *env)
{ {
return cpsr_read(env) & ~CPSR_EXEC; return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
} }
void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask) void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
@ -369,6 +369,11 @@ void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
} }
} }
void HELPER(clear_pstate_ss)(CPUARMState *env)
{
env->pstate &= ~PSTATE_SS;
}
void HELPER(exception_return)(CPUARMState *env) void HELPER(exception_return)(CPUARMState *env)
{ {
int cur_el = arm_current_pl(env); int cur_el = arm_current_pl(env);
@ -380,12 +385,26 @@ void HELPER(exception_return)(CPUARMState *env)
env->exclusive_addr = -1; env->exclusive_addr = -1;
/* We must squash the PSTATE.SS bit to zero unless both of the
* following hold:
* 1. debug exceptions are currently disabled
* 2. singlestep will be active in the EL we return to
* We check 1 here and 2 after we've done the pstate/cpsr write() to
* transition to the EL we're going to.
*/
if (arm_generate_debug_exceptions(env)) {
spsr &= ~PSTATE_SS;
}
if (spsr & PSTATE_nRW) { if (spsr & PSTATE_nRW) {
/* TODO: We currently assume EL1/2/3 are running in AArch64. */ /* TODO: We currently assume EL1/2/3 are running in AArch64. */
env->aarch64 = 0; env->aarch64 = 0;
new_el = 0; new_el = 0;
env->uncached_cpsr = 0x10; env->uncached_cpsr = 0x10;
cpsr_write(env, spsr, ~0); cpsr_write(env, spsr, ~0);
if (!arm_singlestep_active(env)) {
env->uncached_cpsr &= ~PSTATE_SS;
}
for (i = 0; i < 15; i++) { for (i = 0; i < 15; i++) {
env->regs[i] = env->xregs[i]; env->regs[i] = env->xregs[i];
} }
@ -410,6 +429,9 @@ void HELPER(exception_return)(CPUARMState *env)
} }
env->aarch64 = 1; env->aarch64 = 1;
pstate_write(env, spsr); pstate_write(env, spsr);
if (!arm_singlestep_active(env)) {
env->pstate &= ~PSTATE_SS;
}
aarch64_restore_sp(env, new_el); aarch64_restore_sp(env, new_el);
env->pc = env->elr_el[cur_el]; env->pc = env->elr_el[cur_el];
} }
@ -429,6 +451,9 @@ illegal_return:
spsr &= PSTATE_NZCV | PSTATE_DAIF; spsr &= PSTATE_NZCV | PSTATE_DAIF;
spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF); spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
pstate_write(env, spsr); pstate_write(env, spsr);
if (!arm_singlestep_active(env)) {
env->pstate &= ~PSTATE_SS;
}
} }
/* ??? Flag setting arithmetic is awkward because we need to do comparisons. /* ??? Flag setting arithmetic is awkward because we need to do comparisons.

View File

@ -205,10 +205,39 @@ static void gen_exception_insn(DisasContext *s, int offset, int excp,
s->is_jmp = DISAS_EXC; s->is_jmp = DISAS_EXC;
} }
static void gen_ss_advance(DisasContext *s)
{
/* If the singlestep state is Active-not-pending, advance to
* Active-pending.
*/
if (s->ss_active) {
s->pstate_ss = 0;
gen_helper_clear_pstate_ss(cpu_env);
}
}
static void gen_step_complete_exception(DisasContext *s)
{
/* We just completed step of an insn. Move from Active-not-pending
* to Active-pending, and then also take the swstep exception.
* This corresponds to making the (IMPDEF) choice to prioritize
* swstep exceptions over asynchronous exceptions taken to an exception
* level where debug is disabled. This choice has the advantage that
* we do not need to maintain internal state corresponding to the
* ISV/EX syndrome bits between completion of the step and generation
* of the exception, and our syndrome information is always correct.
*/
gen_ss_advance(s);
gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex));
s->is_jmp = DISAS_EXC;
}
static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest) static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
{ {
/* No direct tb linking with singlestep or deterministic io */ /* No direct tb linking with singlestep (either QEMU's or the ARM
if (s->singlestep_enabled || (s->tb->cflags & CF_LAST_IO)) { * debug architecture kind) or deterministic io
*/
if (s->singlestep_enabled || s->ss_active || (s->tb->cflags & CF_LAST_IO)) {
return false; return false;
} }
@ -232,11 +261,14 @@ static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
s->is_jmp = DISAS_TB_JUMP; s->is_jmp = DISAS_TB_JUMP;
} else { } else {
gen_a64_set_pc_im(dest); gen_a64_set_pc_im(dest);
if (s->singlestep_enabled) { if (s->ss_active) {
gen_step_complete_exception(s);
} else if (s->singlestep_enabled) {
gen_exception_internal(EXCP_DEBUG); gen_exception_internal(EXCP_DEBUG);
} else {
tcg_gen_exit_tb(0);
s->is_jmp = DISAS_TB_JUMP;
} }
tcg_gen_exit_tb(0);
s->is_jmp = DISAS_JUMP;
} }
} }
@ -1448,6 +1480,12 @@ static void disas_exc(DisasContext *s, uint32_t insn)
unallocated_encoding(s); unallocated_encoding(s);
break; break;
} }
/* For SVC, HVC and SMC we advance the single-step state
* machine before taking the exception. This is architecturally
* mandated, to ensure that single-stepping a system call
* instruction works properly.
*/
gen_ss_advance(s);
gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16)); gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16));
break; break;
case 1: case 1:
@ -1456,7 +1494,7 @@ static void disas_exc(DisasContext *s, uint32_t insn)
break; break;
} }
/* BRK */ /* BRK */
gen_exception_insn(s, 0, EXCP_BKPT, syn_aa64_bkpt(imm16)); gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16));
break; break;
case 2: case 2:
if (op2_ll != 0) { if (op2_ll != 0) {
@ -1728,6 +1766,7 @@ static void disas_ldst_excl(DisasContext *s, uint32_t insn)
if (is_excl) { if (is_excl) {
if (!is_store) { if (!is_store) {
s->is_ldex = true;
gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair); gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
} else { } else {
gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair); gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
@ -10868,6 +10907,26 @@ void gen_intermediate_code_internal_a64(ARMCPU *cpu,
dc->current_pl = arm_current_pl(env); dc->current_pl = arm_current_pl(env);
dc->features = env->features; dc->features = env->features;
/* Single step state. The code-generation logic here is:
* SS_ACTIVE == 0:
* generate code with no special handling for single-stepping (except
* that anything that can make us go to SS_ACTIVE == 1 must end the TB;
* this happens anyway because those changes are all system register or
* PSTATE writes).
* SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
* emit code for one insn
* emit code to clear PSTATE.SS
* emit code to generate software step exception for completed step
* end TB (as usual for having generated an exception)
* SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
* emit code to generate a software step exception
* end the TB
*/
dc->ss_active = ARM_TBFLAG_AA64_SS_ACTIVE(tb->flags);
dc->pstate_ss = ARM_TBFLAG_AA64_PSTATE_SS(tb->flags);
dc->is_ldex = false;
dc->ss_same_el = (arm_debug_target_el(env) == dc->current_pl);
init_tmp_a64_array(dc); init_tmp_a64_array(dc);
next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
@ -10916,6 +10975,23 @@ void gen_intermediate_code_internal_a64(ARMCPU *cpu,
tcg_gen_debug_insn_start(dc->pc); tcg_gen_debug_insn_start(dc->pc);
} }
if (dc->ss_active && !dc->pstate_ss) {
/* Singlestep state is Active-pending.
* If we're in this state at the start of a TB then either
* a) we just took an exception to an EL which is being debugged
* and this is the first insn in the exception handler
* b) debug exceptions were masked and we just unmasked them
* without changing EL (eg by clearing PSTATE.D)
* In either case we're going to take a swstep exception in the
* "did not step an insn" case, and so the syndrome ISV and EX
* bits should be zero.
*/
assert(num_insns == 0);
gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0));
dc->is_jmp = DISAS_EXC;
break;
}
disas_a64_insn(env, dc); disas_a64_insn(env, dc);
if (tcg_check_temp_count()) { if (tcg_check_temp_count()) {
@ -10932,6 +11008,7 @@ void gen_intermediate_code_internal_a64(ARMCPU *cpu,
} while (!dc->is_jmp && tcg_ctx.gen_opc_ptr < gen_opc_end && } while (!dc->is_jmp && tcg_ctx.gen_opc_ptr < gen_opc_end &&
!cs->singlestep_enabled && !cs->singlestep_enabled &&
!singlestep && !singlestep &&
!dc->ss_active &&
dc->pc < next_page_start && dc->pc < next_page_start &&
num_insns < max_insns); num_insns < max_insns);
@ -10939,7 +11016,8 @@ void gen_intermediate_code_internal_a64(ARMCPU *cpu,
gen_io_end(); gen_io_end();
} }
if (unlikely(cs->singlestep_enabled) && dc->is_jmp != DISAS_EXC) { if (unlikely(cs->singlestep_enabled || dc->ss_active)
&& dc->is_jmp != DISAS_EXC) {
/* Note that this means single stepping WFI doesn't halt the CPU. /* Note that this means single stepping WFI doesn't halt the CPU.
* For conditional branch insns this is harmless unreachable code as * For conditional branch insns this is harmless unreachable code as
* gen_goto_tb() has already handled emitting the debug exception * gen_goto_tb() has already handled emitting the debug exception
@ -10949,7 +11027,11 @@ void gen_intermediate_code_internal_a64(ARMCPU *cpu,
if (dc->is_jmp != DISAS_JUMP) { if (dc->is_jmp != DISAS_JUMP) {
gen_a64_set_pc_im(dc->pc); gen_a64_set_pc_im(dc->pc);
} }
gen_exception_internal(EXCP_DEBUG); if (cs->singlestep_enabled) {
gen_exception_internal(EXCP_DEBUG);
} else {
gen_step_complete_exception(dc);
}
} else { } else {
switch (dc->is_jmp) { switch (dc->is_jmp) {
case DISAS_NEXT: case DISAS_NEXT:

View File

@ -205,6 +205,33 @@ static void gen_exception(int excp, uint32_t syndrome)
tcg_temp_free_i32(tcg_excp); tcg_temp_free_i32(tcg_excp);
} }
static void gen_ss_advance(DisasContext *s)
{
/* If the singlestep state is Active-not-pending, advance to
* Active-pending.
*/
if (s->ss_active) {
s->pstate_ss = 0;
gen_helper_clear_pstate_ss(cpu_env);
}
}
static void gen_step_complete_exception(DisasContext *s)
{
/* We just completed step of an insn. Move from Active-not-pending
* to Active-pending, and then also take the swstep exception.
* This corresponds to making the (IMPDEF) choice to prioritize
* swstep exceptions over asynchronous exceptions taken to an exception
* level where debug is disabled. This choice has the advantage that
* we do not need to maintain internal state corresponding to the
* ISV/EX syndrome bits between completion of the step and generation
* of the exception, and our syndrome information is always correct.
*/
gen_ss_advance(s);
gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex));
s->is_jmp = DISAS_EXC;
}
static void gen_smul_dual(TCGv_i32 a, TCGv_i32 b) static void gen_smul_dual(TCGv_i32 a, TCGv_i32 b)
{ {
TCGv_i32 tmp1 = tcg_temp_new_i32(); TCGv_i32 tmp1 = tcg_temp_new_i32();
@ -3860,7 +3887,7 @@ static inline void gen_goto_tb(DisasContext *s, int n, target_ulong dest)
static inline void gen_jmp (DisasContext *s, uint32_t dest) static inline void gen_jmp (DisasContext *s, uint32_t dest)
{ {
if (unlikely(s->singlestep_enabled)) { if (unlikely(s->singlestep_enabled || s->ss_active)) {
/* An indirect jump so that we still trigger the debug exception. */ /* An indirect jump so that we still trigger the debug exception. */
if (s->thumb) if (s->thumb)
dest |= 1; dest |= 1;
@ -3908,9 +3935,10 @@ static uint32_t msr_mask(CPUARMState *env, DisasContext *s, int flags, int spsr)
mask &= ~(CPSR_E | CPSR_GE); mask &= ~(CPSR_E | CPSR_GE);
if (!arm_feature(env, ARM_FEATURE_THUMB2)) if (!arm_feature(env, ARM_FEATURE_THUMB2))
mask &= ~CPSR_IT; mask &= ~CPSR_IT;
/* Mask out execution state bits. */ /* Mask out execution state and reserved bits. */
if (!spsr) if (!spsr) {
mask &= ~CPSR_EXEC; mask &= ~(CPSR_EXEC | CPSR_RESERVED);
}
/* Mask out privileged bits. */ /* Mask out privileged bits. */
if (IS_USER(s)) if (IS_USER(s))
mask &= CPSR_USER; mask &= CPSR_USER;
@ -3954,7 +3982,7 @@ static void gen_exception_return(DisasContext *s, TCGv_i32 pc)
TCGv_i32 tmp; TCGv_i32 tmp;
store_reg(s, 15, pc); store_reg(s, 15, pc);
tmp = load_cpu_field(spsr); tmp = load_cpu_field(spsr);
gen_set_cpsr(tmp, 0xffffffff); gen_set_cpsr(tmp, CPSR_ERET_MASK);
tcg_temp_free_i32(tmp); tcg_temp_free_i32(tmp);
s->is_jmp = DISAS_UPDATE; s->is_jmp = DISAS_UPDATE;
} }
@ -3962,7 +3990,7 @@ static void gen_exception_return(DisasContext *s, TCGv_i32 pc)
/* Generate a v6 exception return. Marks both values as dead. */ /* Generate a v6 exception return. Marks both values as dead. */
static void gen_rfe(DisasContext *s, TCGv_i32 pc, TCGv_i32 cpsr) static void gen_rfe(DisasContext *s, TCGv_i32 pc, TCGv_i32 cpsr)
{ {
gen_set_cpsr(cpsr, 0xffffffff); gen_set_cpsr(cpsr, CPSR_ERET_MASK);
tcg_temp_free_i32(cpsr); tcg_temp_free_i32(cpsr);
store_reg(s, 15, pc); store_reg(s, 15, pc);
s->is_jmp = DISAS_UPDATE; s->is_jmp = DISAS_UPDATE;
@ -7280,6 +7308,8 @@ static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
{ {
TCGv_i32 tmp = tcg_temp_new_i32(); TCGv_i32 tmp = tcg_temp_new_i32();
s->is_ldex = true;
switch (size) { switch (size) {
case 0: case 0:
gen_aa32_ld8u(tmp, addr, get_mem_index(s)); gen_aa32_ld8u(tmp, addr, get_mem_index(s));
@ -8836,7 +8866,7 @@ static void disas_arm_insn(CPUARMState * env, DisasContext *s)
if ((insn & (1 << 22)) && !user) { if ((insn & (1 << 22)) && !user) {
/* Restore CPSR from SPSR. */ /* Restore CPSR from SPSR. */
tmp = load_cpu_field(spsr); tmp = load_cpu_field(spsr);
gen_set_cpsr(tmp, 0xffffffff); gen_set_cpsr(tmp, CPSR_ERET_MASK);
tcg_temp_free_i32(tmp); tcg_temp_free_i32(tmp);
s->is_jmp = DISAS_UPDATE; s->is_jmp = DISAS_UPDATE;
} }
@ -10916,6 +10946,26 @@ static inline void gen_intermediate_code_internal(ARMCPU *cpu,
dc->current_pl = arm_current_pl(env); dc->current_pl = arm_current_pl(env);
dc->features = env->features; dc->features = env->features;
/* Single step state. The code-generation logic here is:
* SS_ACTIVE == 0:
* generate code with no special handling for single-stepping (except
* that anything that can make us go to SS_ACTIVE == 1 must end the TB;
* this happens anyway because those changes are all system register or
* PSTATE writes).
* SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
* emit code for one insn
* emit code to clear PSTATE.SS
* emit code to generate software step exception for completed step
* end TB (as usual for having generated an exception)
* SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
* emit code to generate a software step exception
* end the TB
*/
dc->ss_active = ARM_TBFLAG_SS_ACTIVE(tb->flags);
dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(tb->flags);
dc->is_ldex = false;
dc->ss_same_el = false; /* Can't be true since EL_d must be AArch64 */
cpu_F0s = tcg_temp_new_i32(); cpu_F0s = tcg_temp_new_i32();
cpu_F1s = tcg_temp_new_i32(); cpu_F1s = tcg_temp_new_i32();
cpu_F0d = tcg_temp_new_i64(); cpu_F0d = tcg_temp_new_i64();
@ -11025,6 +11075,22 @@ static inline void gen_intermediate_code_internal(ARMCPU *cpu,
tcg_gen_debug_insn_start(dc->pc); tcg_gen_debug_insn_start(dc->pc);
} }
if (dc->ss_active && !dc->pstate_ss) {
/* Singlestep state is Active-pending.
* If we're in this state at the start of a TB then either
* a) we just took an exception to an EL which is being debugged
* and this is the first insn in the exception handler
* b) debug exceptions were masked and we just unmasked them
* without changing EL (eg by clearing PSTATE.D)
* In either case we're going to take a swstep exception in the
* "did not step an insn" case, and so the syndrome ISV and EX
* bits should be zero.
*/
assert(num_insns == 0);
gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0));
goto done_generating;
}
if (dc->thumb) { if (dc->thumb) {
disas_thumb_insn(env, dc); disas_thumb_insn(env, dc);
if (dc->condexec_mask) { if (dc->condexec_mask) {
@ -11057,6 +11123,7 @@ static inline void gen_intermediate_code_internal(ARMCPU *cpu,
} while (!dc->is_jmp && tcg_ctx.gen_opc_ptr < gen_opc_end && } while (!dc->is_jmp && tcg_ctx.gen_opc_ptr < gen_opc_end &&
!cs->singlestep_enabled && !cs->singlestep_enabled &&
!singlestep && !singlestep &&
!dc->ss_active &&
dc->pc < next_page_start && dc->pc < next_page_start &&
num_insns < max_insns); num_insns < max_insns);
@ -11072,12 +11139,15 @@ static inline void gen_intermediate_code_internal(ARMCPU *cpu,
/* At this stage dc->condjmp will only be set when the skipped /* At this stage dc->condjmp will only be set when the skipped
instruction was a conditional branch or trap, and the PC has instruction was a conditional branch or trap, and the PC has
already been written. */ already been written. */
if (unlikely(cs->singlestep_enabled)) { if (unlikely(cs->singlestep_enabled || dc->ss_active)) {
/* Make sure the pc is updated, and raise a debug exception. */ /* Make sure the pc is updated, and raise a debug exception. */
if (dc->condjmp) { if (dc->condjmp) {
gen_set_condexec(dc); gen_set_condexec(dc);
if (dc->is_jmp == DISAS_SWI) { if (dc->is_jmp == DISAS_SWI) {
gen_ss_advance(dc);
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb)); gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb));
} else if (dc->ss_active) {
gen_step_complete_exception(dc);
} else { } else {
gen_exception_internal(EXCP_DEBUG); gen_exception_internal(EXCP_DEBUG);
} }
@ -11089,7 +11159,10 @@ static inline void gen_intermediate_code_internal(ARMCPU *cpu,
} }
gen_set_condexec(dc); gen_set_condexec(dc);
if (dc->is_jmp == DISAS_SWI && !dc->condjmp) { if (dc->is_jmp == DISAS_SWI && !dc->condjmp) {
gen_ss_advance(dc);
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb)); gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb));
} else if (dc->ss_active) {
gen_step_complete_exception(dc);
} else { } else {
/* FIXME: Single stepping a WFI insn will not halt /* FIXME: Single stepping a WFI insn will not halt
the CPU. */ the CPU. */

View File

@ -40,6 +40,18 @@ typedef struct DisasContext {
* that it is set at the point where we actually touch the FP regs. * that it is set at the point where we actually touch the FP regs.
*/ */
bool fp_access_checked; bool fp_access_checked;
/* ARMv8 single-step state (this is distinct from the QEMU gdbstub
* single-step support).
*/
bool ss_active;
bool pstate_ss;
/* True if the insn just emitted was a load-exclusive instruction
* (necessary for syndrome information for single step exceptions),
* ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
*/
bool is_ldex;
/* True if a single-step exception will be taken to the current EL */
bool ss_same_el;
#define TMP_A64_MAX 16 #define TMP_A64_MAX 16
int tmp_a64_count; int tmp_a64_count;
TCGv_i64 tmp_a64[TMP_A64_MAX]; TCGv_i64 tmp_a64[TMP_A64_MAX];