target/ppc: Split out ppc_hash64_xlate

Mirror the interface of ppc_radix64_xlate, putting all of
the logic for hash64 translation into a single function.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20210621125115.67717-6-bruno.larsen@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This commit is contained in:
Richard Henderson 2021-06-21 09:51:10 -03:00 committed by David Gibson
parent 077a370499
commit 1a8c647bbd

View File

@ -873,8 +873,10 @@ static int build_vrma_slbe(PowerPCCPU *cpu, ppc_slb_t *slb)
return -1;
}
int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
MMUAccessType access_type, int mmu_idx)
static bool ppc_hash64_xlate(PowerPCCPU *cpu, vaddr eaddr,
MMUAccessType access_type,
hwaddr *raddrp, int *psizep, int *protp,
bool guest_visible)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
@ -918,9 +920,11 @@ int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
slb = &vrma_slbe;
if (build_vrma_slbe(cpu, slb) != 0) {
/* Invalid VRMA setup, machine check */
cs->exception_index = POWERPC_EXCP_MCHECK;
env->error_code = 0;
return 1;
if (guest_visible) {
cs->exception_index = POWERPC_EXCP_MCHECK;
env->error_code = 0;
}
return false;
}
goto skip_slb_search;
@ -929,6 +933,9 @@ int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
/* Emulated old-style RMO mode, bounds check against RMLS */
if (raddr >= limit) {
if (!guest_visible) {
return false;
}
switch (access_type) {
case MMU_INST_FETCH:
ppc_hash64_set_isi(cs, SRR1_PROTFAULT);
@ -943,15 +950,16 @@ int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
default:
g_assert_not_reached();
}
return 1;
return false;
}
raddr |= env->spr[SPR_RMOR];
}
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
TARGET_PAGE_SIZE);
return 0;
*raddrp = raddr;
*protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
*psizep = TARGET_PAGE_BITS;
return true;
}
/* 2. Translation is on, so look up the SLB */
@ -964,6 +972,9 @@ int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
exit(1);
}
/* Segment still not found, generate the appropriate interrupt */
if (!guest_visible) {
return false;
}
switch (access_type) {
case MMU_INST_FETCH:
cs->exception_index = POWERPC_EXCP_ISEG;
@ -978,20 +989,25 @@ int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
default:
g_assert_not_reached();
}
return 1;
return false;
}
skip_slb_search:
skip_slb_search:
/* 3. Check for segment level no-execute violation */
if (access_type == MMU_INST_FETCH && (slb->vsid & SLB_VSID_N)) {
ppc_hash64_set_isi(cs, SRR1_NOEXEC_GUARD);
return 1;
if (guest_visible) {
ppc_hash64_set_isi(cs, SRR1_NOEXEC_GUARD);
}
return false;
}
/* 4. Locate the PTE in the hash table */
ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
if (ptex == -1) {
if (!guest_visible) {
return false;
}
switch (access_type) {
case MMU_INST_FETCH:
ppc_hash64_set_isi(cs, SRR1_NOPTE);
@ -1005,7 +1021,7 @@ skip_slb_search:
default:
g_assert_not_reached();
}
return 1;
return false;
}
qemu_log_mask(CPU_LOG_MMU,
"found PTE at index %08" HWADDR_PRIx "\n", ptex);
@ -1021,6 +1037,9 @@ skip_slb_search:
if (need_prot & ~prot) {
/* Access right violation */
qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
if (!guest_visible) {
return false;
}
if (access_type == MMU_INST_FETCH) {
int srr1 = 0;
if (PAGE_EXEC & ~exec_prot) {
@ -1045,7 +1064,7 @@ skip_slb_search:
}
ppc_hash64_set_dsi(cs, eaddr, dsisr);
}
return 1;
return false;
}
qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
@ -1069,66 +1088,40 @@ skip_slb_search:
/* 7. Determine the real address from the PTE */
raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
*raddrp = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
*protp = prot;
*psizep = apshift;
return true;
}
int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
MMUAccessType access_type, int mmu_idx)
{
CPUState *cs = CPU(cpu);
int page_size, prot;
hwaddr raddr;
if (!ppc_hash64_xlate(cpu, eaddr, access_type, &raddr,
&page_size, &prot, true)) {
return 1;
}
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
prot, mmu_idx, 1ULL << apshift);
prot, mmu_idx, 1UL << page_size);
return 0;
}
hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong eaddr)
{
CPUPPCState *env = &cpu->env;
ppc_slb_t vrma_slbe;
ppc_slb_t *slb;
hwaddr ptex, raddr;
ppc_hash_pte64_t pte;
unsigned apshift;
int psize, prot;
hwaddr raddr;
/* Handle real mode */
if (msr_dr == 0) {
/* In real mode the top 4 effective address bits are ignored */
raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
if (cpu->vhyp) {
/*
* In virtual hypervisor mode, there's nothing to do:
* EA == GPA == qemu guest address
*/
return raddr;
} else if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
/* In HV mode, add HRMOR if top EA bit is clear */
return raddr | env->spr[SPR_HRMOR];
} else if (ppc_hash64_use_vrma(env)) {
/* Emulated VRMA mode */
slb = &vrma_slbe;
if (build_vrma_slbe(cpu, slb) != 0) {
return -1;
}
} else {
target_ulong limit = rmls_limit(cpu);
/* Emulated old-style RMO mode, bounds check against RMLS */
if (raddr >= limit) {
return -1;
}
return raddr | env->spr[SPR_RMOR];
}
} else {
slb = slb_lookup(cpu, addr);
if (!slb) {
return -1;
}
}
ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
if (ptex == -1) {
if (!ppc_hash64_xlate(cpu, eaddr, MMU_DATA_LOAD, &raddr,
&psize, &prot, false)) {
return -1;
}
return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
& TARGET_PAGE_MASK;
return raddr & TARGET_PAGE_MASK;
}
void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,